# d = (x 2 - x 1 ) 2 + (y 2 - y 1 ) 2 Student Name: Date: Teacher Name: Sunil Dudeja Score:

Save this PDF as:

Size: px
Start display at page:

Download "d = (x 2 - x 1 ) 2 + (y 2 - y 1 ) 2 Student Name: Date: Teacher Name: Sunil Dudeja Score:"

## Transcription

1 Geometry EOC (GSE) Quiz Answer Key Equations and Measurement - (MGSE9 12.G.GPE.4) Use Coordinates For Theorems, (MGSE9 12.G.GPE.5 ) Prove Slope Criteria, (MGSE9 12.G.GPE.6) Find The Point, (MGSE9 12.G.GPE.7 ) Use Coordinates For Perimeter/area, (MGSE9-12.G.GMD.4) Identify Shapes, (MGSE9-12.G.MG.1) Describe Objects, (MGSE9-12.G.MG.2) Density Concepts, (MGSE9-12.G.MG.3) Geometric Methods 1) Student Name: Teacher Name: Sunil Dudeja Date: Score: Each unit on the grid stands for one mile. Determine two ways to calculate the distance from Josie's house to Annie's house. A) Distance Formula and Slope Formula B) Midpoint Formula and Slope Formula C) Distance Formula and Midpoint Formula D) Distance Formula and Pythagorean Theorem You can use the Distance Formula and Pythagorean Theorem. Both formulas will give the same distance from Josie's house to Annie's house. d = (x 2 - x 1 ) 2 + (y 2 - y 1 ) 2 a 2 + b 2 = c 2 1/17

2 2) On a coordinate grid, the movie theater is located at (0,0) and the mall is located at (4,3). If the bowling alley is located at the midpoint between the theater and the mall, what is the approximate distance from the bowling alley to the mall? (Note: 1 unit equals 1 mile) A) 1.3 miles B) 1.5 miles C) 2 miles D) 2.5 miles Solution: 2.5 miles. The first step required for solving this problem is to calculate the midpoint between the theater and the mall (2,1.5). Then use the distance formula to calculate the distance from the bowling alley to the mall. d = (x 2 - x 1 ) 2 + (y 2 - y 1 ) 2 M = ( x 1 + x 2 2, y 1 + y 2 ) 2 2/17

3 3) Two points are shown on the graph. What is the distance between the two points? A) 6 units B) 8 units C) 10 units D) 12 units 10 units The points are (-5, -3), (1, 5). D = ( ) D = ( ) D = (100) D = /17

4 4) y = 2x + 3 y = 2x - 5 What is the BEST description for the lines represented by the equations? A) skew B) parallel C) vertical. D) intersecting The solution is parallel. The slope in both equations is 2. Therefore, the lines are parallel. 5) Line A: y = 1 2 x + 2 Line B: y = 1 2 x + 7 Line C: y = 2x + 4 Line D: y = 1 2 x Which lines are perpendicular? A) A and B B) A and C C) B and C D) A and D Lines B and C are perpendicular. The equations shown are in the form y = mx + b where m represents the slope of the line. Lines B and C have slopes that are opposite reciprocals of each other and are therefore perpendicular. 4/17

5 6) What is the best description for the lines? A) parallel B) vertical C) perpendicular D) the same line Equation 1: x - 3y = 9 Equation 2: y = -3x + 3 Perpendicular lines have slopes that are opposite reciprocals of each other. That is, they have different signs and are reciprocals. When equation 1 is put in slope-intercept form, it becomes y = 1 3 x - 3. Its slope is 1. Equation 2 is already in slope-intercept form. 3 Its slope is and -3 are opposite reciprocals. The two lines are perpendicular. 7) Find the point, M, that is five-sixths of the distance from A(-7, 2) to B(-1, -4). A) (-1, -3) B) (-2, -3) C) (-1, -4) D) (-2, -4) (-2, -3) The coordinates of M are (x m, y m ), where x m = (-1 - (-7)) and y m = (-4-2) /17

6 8) Find the point, M, that divides segment AB into a ratio of 5:5 if A is at (0, 15) and B is at (20, 0). A) (35, 10) B) (20, 10) C) (10, 7.5) D) (17.5, 5) (10, 7.5) The sum of the ratio numbers (5+5) is 10, so M is 5 10 = 1 2 of the distance from A to B. The coordinates of M are (x m, y m ), where x m = = (20-0) and y m = (0-15). 2 9) Find the point, M, that divides segment AB into a ratio of 3:1 if A is at (-4, -2) and B is at (4, -10). A) (8, 2) B) (4, -2) C) (-2, 4) D) (2, -8) (2, 4) The sum of the ratio numbers (3+1) is 4, so M is [[3/4] of the distance from A to B. The coordinates of M are (x m, y m ), where x m = = (4 - -(4)) and y m = (-10 - (-2)). 4 10) What is your location on the coordinate plane if you walked one-third of the way from home to school in a straight line? A) (3, 11 2 ) B) (3, 11 3 ) C) ( 9 2, 11 3 ) D) ( 9 2, 11 2 ) (3, 11 3 ) 6/17

7 (mx 2 + nx 1 ) (m + n), (my 2 + ny 1 ) (m + n) Where the point divides the segment internally in the ratio m:n ((1)(7) + (2)(1)), (1 + 2) ((1)(1) + (2)(5)) (1 + 2) = 9 3, 11 3 = (3, 11 3 ) 7/17

8 11) On the coordinate grid of a map, Josie's house is located at (2,7). Her school is located at (-5,5). If each map unit equals one mile, what is the approximate distance from her house to school? A) 2.83 miles B) 4.79 miles C) 7.28 miles D) miles Solution: 7.28 miles. The distance formula is used to solve this problem. d = (x 2 - x 1 ) 2 + (y 2 - y 1 ) 2 12) What is the area of the rectangle shown in the graph? A) -28 units 2 B) -3 units 2 C) 30 units 2 D) 54 units 2 Find the lenght and the width by counting the distance. The negatives do not matter in distance. So the area = 9 6 = 54 units 2 8/17

9 13) The drawing represents A) the intersection of a plane and a cone. B) the intersection of a plane and a prism. C) the intersection of a plane and a sphere. D) the intersection of a plane and a cylinder. The drawing represents the intersection of a plane and a sphere. The plane in the diagram is slicing horizontally through the sphere. 14) A plane intersects a rectangular prism as shown. Describe the cross-section. A) circle B) rectangle C) trapezoid D) triangle The solution is triangle. As you can see in the diagram, the plane slices through the rectangular prism at an angle and forms a triangular cross-section. 9/17

10 15) If this triangle is translated backwards through space, what three-dimensional figure will be formed? A) Square pyramid. B) Triangular prism. C) Rectangular prism. D) Triangular pyramid. When the triangle is translated backwards through space, a triangular prism is formed. The original triangle serves as one base and when the triangle stops translating, the second triangle is the other base of the prism. The three edges of the triangle extend to form the faces of the triangular prism. 16) The batteries in the diagram best resembles what geometric solid? A) cone B) cylinder C) pyramid D) sphere The solution is cylinder. A cylinder has two circular bases as seen in the diagram of the batteries. 10/17

11 17) The vertices on the snowflake pictured form what kind of geometric figure? A) decagon B) hexagon C) pentagon D) triangles The vertices form a hexagon. If you draw a line around the perimeter of the snowflake, you will notice it has 6 sides, a hexagon. 18) Which triangle is a regular polygon? A) All triangles B) An equiangular triangle C) triangle D) triangle An equiangular triangle The sides of a regular polygon are all equal. The sides of an equiangular triangle are all equal. Therefore, it is a regular polygon. 19) At Macon County High School, a classroom is 400 ft 2. After the teacher sets up her desk, computer, and podium, there are 250 ft 2 left for student desks. If each desk takes up 8 ft 2 of room, how many desks can fit in the classroom? A) about 19 B) about 25 C) about 31 D) about 50 Divide 250 by 8. There is enough room for about 31 desks. 11/17

12 20) Given an 8 foot length of tree trunk with a radius of 3 feet, what is the volume of the tree trunk section? (to the nearest whole ft 3 ) A) 75 ft 3 B) 151 ft 3 C) 226 ft 3 D) 452 ft ft 3 Use the formula for the volume of a cylinder to model the volume of the tree trunk. V = πr 2 h V = π(3 2 )(8) V = 72π ft ft 3 21) Alex determines that there are 5 chocolate candies per cubic inch. If there are 150 chocolate candies in a jar, what is the volume of the jar? A) 30 in 3 B) 75 in 3 C) 500 in 3 D) 750 in 3 Divide 150 by 5. The volume of the jar is 30 in /17

13 22) Given that the population density of Georgia is 170 people per square mile and 10,100,000 people live in Georgia, what is the area of the state? (to the nearest hundred mi 2 ) A) 50,000 mi 2 B) 50,500 mi 2 C) 58,800 mi 2 D) 59,400 mi 2 59,400 mi 2 Population Density = Number of People Land Area 170 = 10,100,000 Area Area = 59,412 23) A jewelry designer is working with a design that is a regular hexagon inscribed in a circle. He needs to cut a diamond to fit into each of the triangles shown. What is the measure of the indicated angle? A) 30 B) 45 C) 60 D) 360 Since this is a regular hexagon you know that each angle has the same measure. There are 360 in a circle and divide that by the number of angles, 6. The measure of the indicated angle is /17

14 24) A plane is to be loaded with bottles of water and medical supplies to be sent to victims of an earthquake. Each bottle of water serves 10 people and each medical kit aids six people. The goal is to maximize z, the total number of people helped, where z = 10x + 6y, and x is the number of bottles and y is the number of medical kits. Using the constraints of the situation (plane weight and volume capacities) the shaded region is in the graph is obtained. Which vertex of the region represents the solution to the maximization problem? A) (0, 6000) B) (4000, 0) C) (2000, 4000) D) (6000, 8000) (2000, 4000) is correct. Test each of the 4 vertices [(0, 0), (0, 6000), (4000, 0), and (2000, 4000)] in the z function to get the largest answer. 14/17

15 25) An open box will be made from a rectangular piece of cardboard that is 8 in. by 10 in. The box will be cut on the dashed red lines, removing the corners, and then folded up on the dotted lines. The box needs to have the MAXIMUM volume possible. How long should the cuts be? A) 1.5 in. B) 5.8 in. C) 52 in. D) 80 in. The height, width, and length of the box will be (x)(8-2x)(10-2x). The volume of the box will be 4x 3-36x x = 0 Use a graphing calculator to graph the polynomial. Use the maximum feature to see the greatest volume the box can have. Be sure to set your window accordingly and think about what constraints are on the box. The maximum volume for the box is 52 in 3. The cut would be 1.5 in. long. This is where the graph crosses the x-axis. 26) A steel plant has two sources of ore, source A and source B. In order to keep the plant running, at least three tons of ore must be processed each day. Ore from source A costs \$20 per ton to process, and ore from source B costs \$10 per ton to process. Costs must be kept to no more than \$80 per day. Moreover, Federal Regulations require that the amount of ore from source B cannot exceed twice the amount of ore from source A. If ore from source A yields 300 lbs of steel per ton, and ore from source B yields 400 lbs of steel per ton, how many tons of ore from each source should be processed each day to maximize the amount of steel produced? A) 1 ton from source A, 2 tons from source B B) 2 tons from source A, 4 tons from source B C) 3 tons from source A, 0 tons from source B D) 4 tons from source A, 0 tons from source B 2 tons from source A, 4 tons from source B is correct. The three inequalities are a+b 3, b 2a, and 20a + 10b 80. They form a quadrilateral (with the x-axis) having vertices (1,2), (2,4), (3,0), (4,0). Test each of these in the production function, P = 300a + 400b to get the answer. 15/17

16 27) An open box will be made from a rectangular piece of cardboard that is 8 in. by 10 in. The box will be cut on the dashed red lines, removing the corners, and then folded up on the dotted lines. What is the MAXIMUM possible volume for the box? A) 1.5 in 3 B) 5.8 in 3 C) 52 in 3 D) 64 in 3 The height, width, and length of the box will be (x)(8-2x)(10-2x). The volume of the box will be 4x 3-36x x = 0 Use a graphing calculator to graph the polynomial. Use the maximum feature to see the greatest volume the box can have. Be sure to set your window accordingly and think about what constraints are on the box. The maximum volume for the box is 52 in 3. The cut would be 1.5 inches long. This is where the graph crosses the x-axis. 16/17

17 28) Farmer John needs to build a new watering trough for his horses. He has laid out a diagram on grid paper so he knows how much material to buy. If each unit mark represents 1 foot, what is the total square footage of material he needs to buy? A) 2 ft 2 B) 8 ft 2 C) 12 ft 2 D) 16 ft 2 The total surface area is 8 ft 2 2 squares 1 ft 2 = 2 ft 2 3 rectangles 2 ft 2 = 6 ft 2 2 ft ft 2 = 8 ft /17

### UNIT 5: GEOMETRIC AND ALGEBRAIC CONNECTIONS. Apply Geometric Concepts in Modeling Situations

UNIT 5: GEOMETRIC AND ALGEBRAIC CONNECTIONS This unit investigates coordinate geometry. Students look at equations for circles and use given information to derive equations for representations of these

### Geometry/Pre AP Geometry Common Core Standards

1st Nine Weeks Transformations Transformations *Rotations *Dilation (of figures and lines) *Translation *Flip G.CO.1 Experiment with transformations in the plane. Know precise definitions of angle, circle,

### Pre-Algebra, Unit 10: Measurement, Area, and Volume Notes

Pre-Algebra, Unit 0: Measurement, Area, and Volume Notes Triangles, Quadrilaterals, and Polygons Objective: (4.6) The student will classify polygons. Take this opportunity to review vocabulary and previous

### Lesson Polygons

Lesson 4.1 - Polygons Obj.: classify polygons by their sides. classify quadrilaterals by their attributes. find the sum of the angle measures in a polygon. Decagon - A polygon with ten sides. Dodecagon

### Polygons. 5 sides 5 angles. pentagon. no no R89. Name

Lesson 11.1 Polygons A polygon is a closed plane figure formed by three or more line segments that meet at points called vertices. You can classify a polygon by the number of sides and the number of angles

### 1 William is drawing pictures of cross sections of the right circular cone below.

1 William is drawing pictures of cross sections of the right circular cone below. Which drawing can not be a cross section of a cone? 1) 2) 3) 4) 2 An equation of a line perpendicular to the line represented

### Geometry. Geometry is the study of shapes and sizes. The next few pages will review some basic geometry facts. Enjoy the short lesson on geometry.

Geometry Introduction: We live in a world of shapes and figures. Objects around us have length, width and height. They also occupy space. On the job, many times people make decision about what they know

### FSA Geometry End-of-Course Review Packet. Modeling and Geometry

FSA Geometry End-of-Course Review Packet Modeling and Geometry Table of Contents MAFS.912.G-MG.1.1 EOC Practice... 3 MAFS.912.G-MG.1.2 EOC Practice... 6 MAFS.912.G-MG.1.3 EOC Practice... 8 Modeling with

### Geometry GEOMETRY. Congruence

Geometry Geometry builds on Algebra I concepts and increases students knowledge of shapes and their properties through geometry-based applications, many of which are observable in aspects of everyday life.

### PERSPECTIVES ON GEOMETRY PRE-ASSESSMENT ANSWER SHEET (GEO )

PERSPECTIVES ON GEOMETRY PRE-ASSESSMENT ANSWER SHEET (GEO.11.02.2) Name Date Site TURN IN BOTH TEST AND ANSWER SHEET TO YOUR INSTRUCTOR WHEN DONE. 1. 18. I. 2. 19. 3. 20. 4. 21. 5. 22. 6. 23. 7. 24. 8.

### Mathematics Standards for High School Geometry

Mathematics Standards for High School Geometry Geometry is a course required for graduation and course is aligned with the College and Career Ready Standards for Mathematics in High School. Throughout

### 3 Identify shapes as two-dimensional (lying in a plane, flat ) or three-dimensional ( solid ).

Geometry Kindergarten Identify and describe shapes (squares, circles, triangles, rectangles, hexagons, cubes, cones, cylinders, and spheres). 1 Describe objects in the environment using names of shapes,

### Unit 7: 3D Figures 10.1 & D formulas & Area of Regular Polygon

Unit 7: 3D Figures 10.1 & 10.2 2D formulas & Area of Regular Polygon NAME Name the polygon with the given number of sides: 3-sided: 4-sided: 5-sided: 6-sided: 7-sided: 8-sided: 9-sided: 10-sided: Find

### NAEP Released Items Aligned to the Iowa Core: Geometry

NAEP Released Items Aligned to the Iowa Core: Geometry Congruence G-CO Experiment with transformations in the plane 1. Know precise definitions of angle, circle, perpendicular line, parallel line, and

### Geometry. Unit 9 Equations of Circles, Circle Formulas, and Volume

Geometry Unit 9 Equations of Circles, Circle Formulas, and Volume 0 Warm-up 1. Use the Pythagorean Theorem to find the length of a right triangle s hypotenuse if the two legs are length 8 and 14. Leave

### The radius for a regular polygon is the same as the radius of the circumscribed circle.

Perimeter and Area The perimeter and area of geometric shapes are basic properties that we need to know. The more complex a shape is, the more complex the process can be in finding its perimeter and area.

Unit 1 Basic Skills Review BEDMAS a way of remembering order of operations: Brackets, Exponents, Division, Multiplication, Addition, Subtraction Collect like terms gather all like terms and simplify as

### A triangle that has three acute angles Example:

1. acute angle : An angle that measures less than a right angle (90 ). 2. acute triangle : A triangle that has three acute angles 3. angle : A figure formed by two rays that meet at a common endpoint 4.

### Someone else might choose to describe the closet by determining how many square tiles it would take to cover the floor. 6 ft.

Areas Rectangles One way to describe the size of a room is by naming its dimensions. So a room that measures 12 ft. by 10 ft. could be described by saying its a 12 by 10 foot room. In fact, that is how

### ACCELERATED MATHEMATICS CHAPTER 11 DIMENSIONAL GEOMETRY TOPICS COVERED:

ACCELERATED MATHEMATICS CHAPTER DIMENSIONAL GEOMETRY TOPICS COVERED: Naming 3D shapes Nets Volume of Prisms Volume of Pyramids Surface Area of Prisms Surface Area of Pyramids Surface Area using Nets Accelerated

### Mathematics Assessment Anchor Glossary Grades 3 & 4

Mathematics Assessment Anchor Glossary Grades 3 & 4 The definitions for this glossary were taken from one or more of the following sources: Webster s Dictionary, various mathematics dictionaries, the PA

### MATH DICTIONARY. Number Sense. Number Families. Operations. Counting (Natural) Numbers The numbers we say when we count. Example: {0, 1, 2, 3, 4 }

Number Sense Number Families MATH DICTIONARY Counting (Natural) Numbers The numbers we say when we count Example: {1, 2, 3, 4 } Whole Numbers The counting numbers plus zero Example: {0, 1, 2, 3, 4 } Positive

### Pearson Geometry Common Core 2015

A Correlation of Geometry Common Core to the Common Core State Standards for Mathematics High School , Introduction This document demonstrates how meets the Mathematics High School, PARRC Model Content

### Archdiocese of Washington Catholic Schools Academic Standards Mathematics

5 th GRADE Archdiocese of Washington Catholic Schools Standard 1 - Number Sense Students compute with whole numbers*, decimals, and fractions and understand the relationship among decimals, fractions,

### Unit Activity Correlations to Common Core State Standards. Geometry. Table of Contents. Geometry 1 Statistics and Probability 8

Unit Activity Correlations to Common Core State Standards Geometry Table of Contents Geometry 1 Statistics and Probability 8 Geometry Experiment with transformations in the plane 1. Know precise definitions

### Geometry Practice. 1. Angles located next to one another sharing a common side are called angles.

Geometry Practice Name 1. Angles located next to one another sharing a common side are called angles. 2. Planes that meet to form right angles are called planes. 3. Lines that cross are called lines. 4.

### 5th Grade Mathematics Essential Standards

Standard 1 Number Sense (10-20% of ISTEP/Acuity) Students compute with whole numbers*, decimals, and fractions and understand the relationship among decimals, fractions, and percents. They understand the

### Understand the concept of volume M.TE Build solids with unit cubes and state their volumes.

Strand II: Geometry and Measurement Standard 1: Shape and Shape Relationships - Students develop spatial sense, use shape as an analytic and descriptive tool, identify characteristics and define shapes,

### Math 6: Geometry 3-Dimensional Figures

Math 6: Geometry 3-Dimensional Figures Three-Dimensional Figures A solid is a three-dimensional figure that occupies a part of space. The polygons that form the sides of a solid are called a faces. Where

### 2 nd Grade Math Learning Targets. Algebra:

2 nd Grade Math Learning Targets Algebra: 2.A.2.1 Students are able to use concepts of equal to, greater than, and less than to compare numbers (0-100). - I can explain what equal to means. (2.A.2.1) I

### Mathematics High School Geometry

Mathematics High School Geometry An understanding of the attributes and relationships of geometric objects can be applied in diverse contexts interpreting a schematic drawing, estimating the amount of

### Assignment Guide: Chapter 11 Geometry (L3)

Assignment Guide: Chapter 11 Geometry (L3) (136) 11.1 Space Figures and Cross Sections Page 692-693 #7-23 odd, 35 (137) 11.2/11.4 Surface Areas and Volumes of Prisms Page 703-705 #1, 2, 7-9, 11-13, 25,

### Geometry Unit 10 Note Sheets Date Name of Lesson. 1.6 Two-Dimensional Figures Areas of Circles and Sectors

Date Name of Lesson 1.6 Two-Dimensional Figures 11.3 Areas of Circles and Sectors Quiz 11.1 Areas of Parallelograms and Triangles 11.2 Areas of Trapezoids, Rhombi and Kites 11.4 Areas of Regular Polygons

### 3 Dimensional Geometry Chapter Questions. 1. What are the differences between prisms and pyramids? Cylinders and cones?

3 Dimensional Geometry Chapter Questions 1. What are the differences between prisms and pyramids? Cylinders and cones? 2. What is volume and how is it found? 3. How are the volumes of cylinders, cones

### Attendance Questions: Find the area of each shape. Round your answer to the nearest tenth. 1. An equilateral triangle with edge length 20 cm.

Page 1 of 17 Attendance Questions: Find the area of each shape. Round your answer to the nearest tenth. 1. An equilateral triangle with edge length 20 cm. Page 1 of 17 Page 2 of 17 2. A regular hexagon

### 2003/2010 ACOS MATHEMATICS CONTENT CORRELATION GEOMETRY 2003 ACOS 2010 ACOS

CURRENT ALABAMA CONTENT PLACEMENT G.1 Determine the equation of a line parallel or perpendicular to a second line through a given point. G.2 Justify theorems related to pairs of angles, including angles

Name: 6th Grade Math Unit 7 GEOMETRY 2012 10 17 www.njctl.org 1 Table of Contents Area of Rectangles Area of Parallelograms Area of Triangles Area of Trapezoids Mixed Review Area of Irregular Figures Area

### Geometry SOL G.13 G.14 Area, Surface Area, Volume Study Guide

Geometry SOL G.13 G.14 Area, Surface Area, Volume Study Guide Name Date Block Area, Surface Area, Volume Review and Study Guide You may use the SOL formula sheet but you must bring your own copy. Know

### UNIT 7 Coordinate Geometry 15 DAYS

Pg 46 UNIT 7 Coordinate Geometry 15 DAYS G.GPE.5 Prove the slope criteria for parallel and perpendicular lines and uses them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular

### Unit Lesson Plan: Measuring Length and Area: Area of shapes

Unit Lesson Plan: Measuring Length and Area: Area of shapes Day 1: Area of Square, Rectangles, and Parallelograms Day 2: Area of Triangles Trapezoids, Rhombuses, and Kites Day 3: Quiz over Area of those

### GEOMETRY REVIEW PACKET

Obstacles are those frightful things you see when you take your eyes off your goal -Henry Ford As of Spring 2016, geometry is no longer a prerequisite for MTH101 and MTH165 Spend time with the material

### A C E. Applications. Applications Connections Extensions

A C E Applications Connections Extensions Applications 1. Suppose that the polygons below were drawn on centimeter grid paper. How many 1-centimeter cubes (some cut in pieces) would it take to cover each

### Answer Key: Three-Dimensional Cross Sections

Geometry A Unit Answer Key: Three-Dimensional Cross Sections Name Date Objectives In this lesson, you will: visualize three-dimensional objects from different perspectives be able to create a projection

### Unit 14 Review. To be eligible to retake, this packet must be completed in its entirety by the start of class tomorrow!

Name: Geometry Pd. Unit 14 Review Date: To be eligible to retake, this packet must be completed in its entirety by the start of class tomorrow! Need to break up the figure into triangles Steps: 1. Calculate

### UNIT 5 GEOMETRY TEMPLATE CREATED BY REGION 1 ESA UNIT 5

UNIT 5 GEOMETRY TEMPLATE CREATED BY REGION 1 ESA UNIT 5 Geometry Unit 5 Overview: Circles With and Without Coordinates In this unit, students prove basic theorems about circles, with particular attention

Table of Contents Introduction... Division by Tens... 38 Common Core State Standards Correlation... Division of -Digit Numbers... 39 Student Practice Pages Number Lines and Operations Numbers Inverse Operations

### Carnegie Learning High School Math Series: Geometry Indiana Standards Worktext Correlations

Carnegie Learning High School Math Series: Logic and Proofs G.LP.1 Understand and describe the structure of and relationships within an axiomatic system (undefined terms, definitions, axioms and postulates,

### Geometry Solids Identify Three-Dimensional Figures Notes

26 Geometry Solids Identify Three-Dimensional Figures Notes A three dimensional figure has THREE dimensions length, width, and height (or depth). Intersecting planes can form three dimensional figures

### G.8D. A. 495cm2. B. 584cm2. C. 615cm2. D. 975cm2 G.9B, G.2B A. 65 B. 55 C. 45 D. 35

1. Mary, Dan Jane and Lucy walked into a shop at four different times. If Mary went into the shop before Lucy, Jane was the first person after Dan,and Mary was not the first person in the shop, who wa

### Unit 11 Three Dimensional Geometry

Unit 11 Three Dimensional Geometry Day Classwork Day Homework Monday 2/12 Tuesday 2/13 Wednesday 2/14 Areas of Regular Polygons 1 HW 11.1 Volume of Prisms & Cylinders 2 HW 11.4 Volume of Pyramids and Cones

### Agile Mind CCSS Geometry Scope & Sequence

Geometric structure 1: Using inductive reasoning and conjectures 2: Rigid transformations 3: Transformations and coordinate geometry 8 blocks G-CO.01 (Know precise definitions of angle, circle, perpendicular

### GEOMETRY CURRICULUM MAP

2017-2018 MATHEMATICS GEOMETRY CURRICULUM MAP Department of Curriculum and Instruction RCCSD Congruence Understand congruence in terms of rigid motions Prove geometric theorems Common Core Major Emphasis

### Also available in Hardcopy (.pdf): Coordinate Geometry

Multiple Choice Practice Coordinate Geometry Geometry Level Geometry Index Regents Exam Prep Center Also available in Hardcopy (.pdf): Coordinate Geometry Directions: Choose the best answer. Answer ALL

### Geometry H Semester 2 Practice Exam

1. tire has a radius of 15 inches. What is the approximate circumference, in inches, of the tire?. 47 in.. 94 in.. 188 in. D. 707 in. 2. In the figure below, adjacent sides of the polygon are perpendicular.

### UNIT 3 CIRCLES AND VOLUME Lesson 5: Explaining and Applying Area and Volume Formulas Instruction

Prerequisite Skills This lesson requires the use of the following skills: understanding and using formulas for the volume of prisms, cylinders, pyramids, and cones understanding and applying the formula

### UNIT 11 VOLUME AND THE PYTHAGOREAN THEOREM

UNIT 11 VOLUME AND THE PYTHAGOREAN THEOREM INTRODUCTION In this Unit, we will use the idea of measuring volume that we studied to find the volume of various 3 dimensional figures. We will also learn about

### Geometry: Unit 11 Rectangular Prism Notes Rectangular Prism:

: Unit 11 Rectangular Prism Notes Date: Rectangular Prism: How do we find Total Area? Example 1 Find the area of each face: 6cm Front: Back: Top: 8cm Bottom: Left Side: Right Side: 10cm Total: How do you

### UNIT 6: Connecting Algebra & Geometry through Coordinates

TASK: Vocabulary UNIT 6: Connecting Algebra & Geometry through Coordinates Learning Target: I can identify, define and sketch all the vocabulary for UNIT 6. Materials Needed: 4 pieces of white computer

### Geometry. Geometry. No Louisiana Connectors written for this standard.

GM: G-CO.A.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a

### Distance in Coordinate Geometry

Page 1 of 6 L E S S O N 9.5 We talk too much; we should talk less and draw more. Distance in Coordinate Geometry Viki is standing on the corner of Seventh Street and 8th Avenue, and her brother Scott is

### Sect Volume. 3 ft. 2 ft. 5 ft

199 Sect 8.5 - Volume Objective a & b: Understanding Volume of Various Solids The Volume is the amount of space a three dimensional object occupies. Volume is measured in cubic units such as in or cm.

### 0117geo. Geometry CCSS Regents Exam y = 1 2 x + 8? 2 AB AC 3) 2AB + 2AC 4) AB + AC

0117geo 1 Which equation represents the line that passes through the point ( 2,2) and is parallel to y = 1 2 x + 8? 1) y = 1 2 x 2) y = 2x ) y = 1 2 x + 4) y = 2x + Given ABC DEF, which statement is not

### CHAPTER 12. Extending Surface Area and Volume

CHAPTER 12 Extending Surface Area and Volume 0 Learning Targets Students will be able to draw isometric views of three-dimensional figures. Students will be able to investigate cross-sections of three-dimensional

### CORRELATION TO GEORGIA QUALITY CORE CURRICULUM FOR GEOMETRY (GRADES 9-12)

CORRELATION TO GEORGIA (GRADES 9-12) SUBJECT AREA: Mathematics COURSE: 27. 06300 TEXTBOOK TITLE: PUBLISHER: Geometry: Tools for a Changing World 2001 Prentice Hall 1 Solves problems and practical applications

### Math 2 Plane Geometry part 1 Unit Updated January 13, 2017

Complementary angles (two angles whose sum is 90 ) and supplementary angles (two angles whose sum is 180. A straight line = 180. In the figure below and to the left, angle EFH and angle HFG form a straight

### Mathematics Background

Measurement All measurements are approximations. In their work in this Unit, students explore ways to find measures for two and three dimensional figures. Even using exact formulas depends on how students

### Texas High School Geometry

Texas High School Geometry This course covers the topics shown below. Students navigate learning paths based on their level of readiness. Institutional users may customize the scope and sequence to meet

### Assignment List. Chapter 1 Essentials of Geometry. Chapter 2 Reasoning and Proof. Chapter 3 Parallel and Perpendicular Lines

Geometry Assignment List Chapter 1 Essentials of Geometry 1.1 Identify Points, Lines, and Planes 5 #1, 4-38 even, 44-58 even 27 1.2 Use Segments and Congruence 12 #4-36 even, 37-45 all 26 1.3 Use Midpoint

### Name (s) Class Date ERROR ANALYSIS GEOMETRY WORD PROBLEMS

7 th Grade Common Core Name (s) Class Date ERROR ANALYSIS GEOMETRY WORD PROBLEMS Includes: * Angles * Triangles * Scale Drawings * Area and Circumference of a Circle * Volume of Prisms and Pyramids * Surface

### Houghton Mifflin Harcourt Geometry 2015 correlated to the New York Common Core Learning Standards for Mathematics Geometry

Houghton Mifflin Harcourt Geometry 2015 correlated to the New York Common Core Learning Standards for Mathematics Geometry Standards for Mathematical Practice SMP.1 Make sense of problems and persevere

### 6.G.1. SELECTED RESPONSE Select the correct answer. CONSTRUCTED RESPONSE. 3. What is the area of this shape?

6.G.1 SELECTED RESPONSE Select the correct answer. 3. What is the area of this shape? 1. What is the area of the triangle below? 5.65 cm 10.9375 cm 11.5 cm 1.875 cm 48 in 144 in 96 in 88 in 4. What is

### GEOMETRY SEMESTER 2 REVIEW PACKET 2016

GEOMETRY SEMESTER 2 REVIEW PACKET 2016 Your Geometry Final Exam will take place on Friday, May 27 th, 2016. Below is the list of review problems that will be due in order to prepare you: Assignment # Due

### , Geometry, Quarter 1

2017.18, Geometry, Quarter 1 The following Practice Standards and Literacy Skills will be used throughout the course: Standards for Mathematical Practice Literacy Skills for Mathematical Proficiency 1.

### Algebra Area of Parallelograms

Lesson 10.1 Reteach Algebra Area of Parallelograms The formula for the area of a parallelogram is the product of the base and height. The formula for the area of a square is the square of one of its sides.

### Triangles. Leg = s. Hypotenuse = s 2

Honors Geometry Second Semester Final Review This review is designed to give the student a BASIC outline of what needs to be reviewed for the second semester final exam in Honors Geometry. It is up to

### Geometry Second Semester Review

Class: Date: Geometry Second Semester Review Short Answer 1. Identify the pairs of congruent angles and corresponding sides. 2. Determine whether the rectangles are similar. If so, write the similarity

### CURRICULUM GUIDE. Honors Geometry

CURRICULUM GUIDE Honors Geometry This level of Geometry is approached at an accelerated pace. Topics of postulates, theorems and proofs are discussed both traditionally and with a discovery approach. The

### Excel Math Glossary Fourth Grade

Excel Math Glossary Fourth Grade Mathematical Term [Lesson #] TE Page # A acute angle Acute Angle an angle that measures less than 90º [Lesson 78] 187 Addend any number being added [Lesson 1] 003 AM (ante

### Math Content

2013-2014 Math Content PATHWAY TO ALGEBRA I Hundreds and Tens Tens and Ones Comparing Whole Numbers Adding and Subtracting 10 and 100 Ten More, Ten Less Adding with Tens and Ones Subtracting with Tens

### This image cannot currently be displayed. Course Catalog. Geometry Glynlyon, Inc.

This image cannot currently be displayed. Course Catalog Geometry 2016 Glynlyon, Inc. Table of Contents COURSE OVERVIEW... 1 UNIT 1: INTRODUCTION... 1 UNIT 2: LOGIC... 1 UNIT 3: ANGLES AND PARALLELS...

### 11.4 Volume of Prisms and Cylinders

11.4 Volume of Prisms and Cylinders Learning Objectives Find the volume of a prism. Find the volume of a cylinder. Review Queue 1. Define volume in your own words. 2. What is the surface area of a cube

### Section 1-1 Points, Lines, and Planes

Section 1-1 Points, Lines, and Planes I CAN. Identify and model points, lines, and planes. Identify collinear and coplanar points and intersecting lines and planes in space. Undefined Term- Words, usually

### Pre AP Geometry. Mathematics Standards of Learning Curriculum Framework 2009: Pre AP Geometry

Pre AP Geometry Mathematics Standards of Learning Curriculum Framework 2009: Pre AP Geometry 1 The content of the mathematics standards is intended to support the following five goals for students: becoming

### Muskogee Public Schools Curriculum Map, Math, Grade 8

Muskogee Public Schools Curriculum Map, 2010-2011 Math, Grade 8 The Test Blueprint reflects the degree to which each PASS Standard and Objective is represented on the test. Page1 1 st Nine Standard 1:

### GEOMETRY STANDARDS. August 2009 Geometry 1

STANDARDS The DoDEA high school mathematics program centers around six courses which are grounded by rigorous standards. Two of the courses, AP Calculus and AP Statistics, are defined by a course syllabus

### Curriculum Catalog

2017-2018 Curriculum Catalog 2017 Glynlyon, Inc. Table of Contents GEOMETRY COURSE OVERVIEW...1 UNIT 1: INTRODUCTION... 1 UNIT 2: LOGIC... 1 UNIT 3: ANGLES AND PARALLELS... 2 UNIT 4: CONGRUENT TRIANGLES

### Chapter Test Form A. 187 Holt Geometry. Name Date Class

10 Form A Circle the best answer. 1. Which three-dimensional figure does NOT have a vertex? A cylinder B rectangular prism C rectangular pyramid D triangular prism 5. Use Euler s formula to determine which

### Math 8 Honors Coordinate Geometry part 3 Unit Updated July 29, 2016

Review how to find the distance between two points To find the distance between two points, use the Pythagorean theorem. The difference between is one leg and the difference between and is the other leg.

### Math 1 Plane Geometry Part 1

Math 1 Plane Geometry Part 1 1 Intersecting lines: When two lines intersect, adjacent angles are supplementary (they make a line and add up to 180 degrees, and vertical angles (angles across from each

### Caught in a Net. SETTING THE STAGE Examine and define faces of solids. LESSON OVERVIEW. Examine and define edges of solids.

Caught in a Net LESSON FOCUS Using informal geometric vocabulary to describe physical objects and geometric figures. Constructing mental and physical images of common geometric figures. Classifying geometric

### Maximum and Minimum Problems

Maximum and Minimum Problems Numbers 1. The sum of two positive numbers is 20. Find the two numbers such that a) the sum of the square is minimum, b) the product of one and the square of the other is maximum.

### Geometry SIA #3. Name: Class: Date: Short Answer. 1. Find the perimeter of parallelogram ABCD with vertices A( 2, 2), B(4, 2), C( 6, 1), and D(0, 1).

Name: Class: Date: ID: A Geometry SIA #3 Short Answer 1. Find the perimeter of parallelogram ABCD with vertices A( 2, 2), B(4, 2), C( 6, 1), and D(0, 1). 2. If the perimeter of a square is 72 inches, what

### Surface Area of Prisms and Cylinders

Surface Area of Prisms and Cylinders Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content,

### Common Core. Mathematics Instruction

014 Common Core Mathematics Instruction 7 Part 1: Introduction rea of Composed Figures Develop Skills and Strategies CCSS 7.G.B.6 In previous grades you learned that you can find the area of many different

### END OF COURSE GEOMETRY

VIRGINI STNDRDS OF LERNING Spring 2010 Released Test END OF OURSE GEOMETRY Form M0110, ORE 1 Property of the Virginia Department of Education opyright 2010 by the ommonwealth of Virginia, Department of

### Russell County Pacing Guide

August Experiment with transformations in the plane. 1. Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment based on the undefined notions of point, line, distance