1. if both the powers m and n are even, rewrite both trig functions using the identities in (1)

Size: px
Start display at page:

Download "1. if both the powers m and n are even, rewrite both trig functions using the identities in (1)"

Transcription

1 Section 7. Avance Integration Techniques: Trigonometric Integrals We will use the following ientities quite often in this section; you woul o well to memorize them. sin x 1 cos(x cos x 1+cos(x (1 cos(x 1 sin x cos(x cos x 1 sec x 1 + tan x csc x 1 + cot x When attempting to integrate a function built up from trigonometric functions, there are often many ifferent possibilities for choosing an integration technique. For example, we can solve sin x cos x using the u-substitution u cos x. The same substitution coul be use to fin tan x if we note that tan x sin x cos x. We can use integration by parts to solve sin(5x cos(3x. However, there are many other trigonometric functions whose integrals can not be evaluate so easily. In this section, we will look at multiple techniques for hanling integrals of several ifferent types of trig functions. Integrals of the form sin m x cos n x To integrate a function of the form sin m x cos n x, we will use one of the two following methos: 1. if both the powers m an n are even, rewrite both trig functions using the ientities in (1. Otherwise, we will rewrite the function so that only one power of sin x (or one power of cos x appears; this will allow us to make a helpful substitution: (a If m k + 1 is o, then rewrite sin m x sin k+1 x (sin x(sin k x (sin x(sin x k (sin x(1 cos x k, then use the u-substitution u cos x. (b If n k + 1 is o, then rewrite cos n x cos k+1 x (cos x(cos k x (cos x(cos x k (cos x(1 sin x k, then use the u-substitution u sin x. Examples: Fin cos 3 (x. Since cos(x has an o power, let s rewrite cos 3 (x cos(x cos (x cos(x(1 sin (x. Then cos 3 (x cos(x(1 sin (x. 1

2 Section 7. We will nee the substitution u sin(x so that u cos(x. Now we can finish the problem: cos 3 (x cos(x(1 sin (x 1 1 u u using the substitution u sin(x (u 1 13 u3 + C 1 u 1 6 u3 + C 1 sin(x 1 6 sin3 (x + C. Fin sin 3 x cos 5 x. Since both trig functions have o powers, we will rewrite one of them using the Pythagorean ientity. Let s try sin 3 x cos 5 x sin 3 x cos x cos x sin 3 x(cos x cos x sin 3 x(1 sin x cos x. As in the previous example, we can use a simple u-substitution to finish the problem. u sin x so that u cos x. Then sin 3 x(1 sin x cos x u 3 (1 u u u 3 (1 u + u u u 3 u 5 + u 7 u Set 1 u 6 u6 + 1 u + C 1 sin x 1 3 sin6 x + 1 sin x + C. Fin cos (x. Since there are no o powers in this function, we will rewrite cos (x 1+cos(x using the

3 Section 7. equation in (1. Then the integral calculation is fairly routine: 1 + cos(x cos (x cos(x 1 (x + 1 sin(x + C using the substitution u x 1 x + 1 sin(x + C. an Evaluate cos x sin x. Since both the powers of cos x an sin x are even, we will write cos x 1 + cos(x sin x (sin x ( 1 cos(x. Then ( ( cos x sin 1 + cos(x 1 cos(x x ( ( 1 + cos(x 1 cos(x + cos (x 1 1 cos(x + cos (x + cos(x cos (x + cos 3 (x 1 1 cos(x cos (x + cos 3 (x (x 1 1 sin x cos (x + cos 3 (x. We have alreay showe that cos (x 1 x + 1 sin(x + C an cos 3 (x 1 sin(x 1 6 sin3 (x + C, so finally we have ( cos x sin x 1 x 1 sin x 1 x 1 sin(x + 1 sin(x 1 6 sin3 (x + C. 3

4 Section 7. Integrating powers of tan x, sec x, csc x, an cot x To integrate powers of the other trig functions, we will often nee to use u-substitution or integration by parts together with the pythagorean ientities; if possible, we will nee to take avantage of the fact that tan x sec x, sec x sec x tan x, Example: Evaluate csc x. csc x csc x cot x, an cot x csc x. Writing csc x (csc x(csc x (1 + cot x(csc x is avantageous, as it will allow us to use the substitution u cot x: csc x (1 + cot x(csc x (1 + u u using u cot x an u csc x u 1 3 u3 + C cot x 1 3 cot3 x + C. Eliminating square roots If the function we wish to integrate involves the square root of some trigonometric function, we may be able to eliminate the root by using the pythagorean ientities or the ientities from (1. Examples: Evaluate cos y + 1y The ientity cos x 1+cos(x can help us here. Setting y x, so that x y, the ientity becomes cos ( y 1+cos y. We woul like to replace the quantity cos y +1; solving for this quantity in the above ientity, we have cos y + 1 cos ( y. So we may rewrite the integral as cos(y ( y + 1 cos y ( y cos y ( y sin + C. Fin csc θ 1θ.

5 Section 7. Since csc θ 1 cot θ, let s rewrite csc cot θ 1θ θθ cot θθ. Since cot θ cos θ, we can integrate the function using a substitution; setting u sin θ so that sin θ u cos θθ, we have csc θ 1θ cot θθ cos θ sin θ θ 1 u u ln u + C ln(sin θ + C. A brief asie We have not yet learne how to evaluate sec x, an as we will nee to know this integral in future sections, let s go ahea an compute it. It turns out that the best way to evaluate the integral is by using Mathemagic: note that sec x can be rewritten as sec x sec x sec x + sec x tan x. This may seem pointless, but it will actually allow us to use a basic substitution to evaluate the integral. Setting u so that u sec x tan x + sec x, we have sec x + sec x tan x sec x 1 u u ln u + C ln + C. 5

5.2 Verifying Trigonometric Identities

5.2 Verifying Trigonometric Identities 360 Chapter 5 Analytic Trigonometry 5. Verifying Trigonometric Identities Introduction In this section, you will study techniques for verifying trigonometric identities. In the next section, you will study

More information

Verifying Trigonometric Identities

Verifying Trigonometric Identities 40 Chapter Analytic Trigonometry. f x sec x Sketch the graph of y cos x Amplitude: Period: One cycle: first. The x-intercepts of y correspond to the vertical asymptotes of f x. cos x sec x 4 x, x 4 4,...

More information

Using Fundamental Identities. Fundamental Trigonometric Identities. Reciprocal Identities. sin u 1 csc u. sec u. sin u Quotient Identities

Using Fundamental Identities. Fundamental Trigonometric Identities. Reciprocal Identities. sin u 1 csc u. sec u. sin u Quotient Identities 3330_050.qxd /5/05 9:5 AM Page 374 374 Chapter 5 Analytic Trigonometry 5. Using Fundamental Identities What you should learn Recognize and write the fundamental trigonometric identities. Use the fundamental

More information

Use the indicated strategy from your notes to simplify each expression. Each section may use the indicated strategy AND those strategies before.

Use the indicated strategy from your notes to simplify each expression. Each section may use the indicated strategy AND those strategies before. Pre Calculus Worksheet: Fundamental Identities Day 1 Use the indicated strategy from your notes to simplify each expression. Each section may use the indicated strategy AND those strategies before. Strategy

More information

Chapter 4 Using Fundamental Identities Section USING FUNDAMENTAL IDENTITIES. Fundamental Trigonometric Identities. Reciprocal Identities

Chapter 4 Using Fundamental Identities Section USING FUNDAMENTAL IDENTITIES. Fundamental Trigonometric Identities. Reciprocal Identities Chapter 4 Using Fundamental Identities Section 4.1 4.1 USING FUNDAMENTAL IDENTITIES Fundamental Trigonometric Identities Reciprocal Identities csc x sec x cot x Quotient Identities tan x cot x Pythagorean

More information

Chapter 7: Analytic Trigonometry

Chapter 7: Analytic Trigonometry Chapter 7: Analytic Trigonometry 7. Trigonometric Identities Below are the basic trig identities discussed in previous chapters. Reciprocal csc(x) sec(x) cot(x) sin(x) cos(x) tan(x) Quotient sin(x) cos(x)

More information

Trigonometric Integrals

Trigonometric Integrals Most trigonometric integrals can be solved by using trigonometric identities or by following a strategy based on the form of the integrand. There are some that are not so easy! Basic Trig Identities and

More information

Verifying Trigonometric Identities

Verifying Trigonometric Identities Verifying Trigonometric Identities What you should learn Verify trigonometric identities. Why you should learn it You can use trigonometric identities to rewrite trigonometric equations that model real-life

More information

Differentiation Using Product and Quotient Rule 1

Differentiation Using Product and Quotient Rule 1 Differentiation Using Prouct an Quotient Rule 1 1.. ( + 1)( + + 1) + 1 + +. 4. (7 + 15) ( 7 + 15) 5. 6. ( + 7) (5 + 14) 7. 9. + 4 ( 1) (10 + ) 8 + 49 6 4 + 7 10. 8. 1 4 1 11. 1. 1 ( + 1) ( 1) 1. 04 + 59

More information

Pre Calculus Worksheet: Fundamental Identities Day 1

Pre Calculus Worksheet: Fundamental Identities Day 1 Pre Calculus Worksheet: Fundamental Identities Day 1 Use the indicated strategy from your notes to simplify each expression. Each section may use the indicated strategy AND those strategies before. Strategy

More information

HW#50: Finish Evaluating Using Inverse Trig Functions (Packet p. 7) Solving Linear Equations (Packet p. 8) ALL

HW#50: Finish Evaluating Using Inverse Trig Functions (Packet p. 7) Solving Linear Equations (Packet p. 8) ALL MATH 4R TRIGONOMETRY HOMEWORK NAME DATE HW#49: Inverse Trigonometric Functions (Packet pp. 5 6) ALL HW#50: Finish Evaluating Using Inverse Trig Functions (Packet p. 7) Solving Linear Equations (Packet

More information

Practice Set 44 Simplifying Trigonometric Expressions

Practice Set 44 Simplifying Trigonometric Expressions Practice Set Simplifying Trigonometric Expressions No Calculator Objectives Simplify trigonometric expression using the fundamental trigonometric identities Use the trigonometric co-function identities

More information

Review of Trigonometry

Review of Trigonometry Worksheet 8 Properties of Trigonometric Functions Section Review of Trigonometry This section reviews some of the material covered in Worksheets 8, and The reader should be familiar with the trig ratios,

More information

PARAMETERIZATIONS OF PLANE CURVES

PARAMETERIZATIONS OF PLANE CURVES PARAMETERIZATIONS OF PLANE CURVES Suppose we want to plot the path of a particle moving in a plane. This path looks like a curve, but we cannot plot it like we would plot any other type of curve in the

More information

18.01 Single Variable Calculus Fall 2006

18.01 Single Variable Calculus Fall 2006 MIT OpenCourseWare http://ocw.mit.edu 18.01 Single Variable Calculus Fall 006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Lecture 6: Trigonometric

More information

AP Calculus Summer Review Packet School Year. Name

AP Calculus Summer Review Packet School Year. Name AP Calculus Summer Review Packet 016-017 School Year Name Objectives for AP/CP Calculus Summer Packet 016-017 I. Solving Equations & Inequalities (Problems # 1-6) Using the properties of equality Solving

More information

SOME PROPERTIES OF TRIGONOMETRIC FUNCTIONS. 5! x7 7! + = 6! + = 4! x6

SOME PROPERTIES OF TRIGONOMETRIC FUNCTIONS. 5! x7 7! + = 6! + = 4! x6 SOME PROPERTIES OF TRIGONOMETRIC FUNCTIONS PO-LAM YUNG We defined earlier the sine cosine by the following series: sin x = x x3 3! + x5 5! x7 7! + = k=0 cos x = 1 x! + x4 4! x6 6! + = k=0 ( 1) k x k+1

More information

1. Let be a point on the terminal side of θ. Find the 6 trig functions of θ. (Answers need not be rationalized). b. P 1,3. ( ) c. P 10, 6.

1. Let be a point on the terminal side of θ. Find the 6 trig functions of θ. (Answers need not be rationalized). b. P 1,3. ( ) c. P 10, 6. Q. Right Angle Trigonometry Trigonometry is an integral part of AP calculus. Students must know the basic trig function definitions in terms of opposite, adjacent and hypotenuse as well as the definitions

More information

Chapter 3: Trigonometric Identities

Chapter 3: Trigonometric Identities Chapter 3: Trigonometric Identities Chapter 3 Overview Two important algebraic aspects of trigonometric functions must be considered: how functions interact with each other and how they interact with their

More information

Proving Trigonometric Identities

Proving Trigonometric Identities MHF 4UI Unit 7 Day Proving Trigonometric Identities An identity is an epression which is true for all values in the domain. Reciprocal Identities csc θ sin θ sec θ cos θ cot θ tan θ Quotient Identities

More information

Multiple Angle and Product-to-Sum Formulas. Multiple-Angle Formulas. Double-Angle Formulas. sin 2u 2 sin u cos u. 2 tan u 1 tan 2 u. tan 2u.

Multiple Angle and Product-to-Sum Formulas. Multiple-Angle Formulas. Double-Angle Formulas. sin 2u 2 sin u cos u. 2 tan u 1 tan 2 u. tan 2u. 3330_0505.qxd 1/5/05 9:06 AM Page 407 Section 5.5 Multiple-Angle and Product-to-Sum Formulas 407 5.5 Multiple Angle and Product-to-Sum Formulas What you should learn Use multiple-angle formulas to rewrite

More information

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. Preface Here are my online notes for my Calculus I course that I teach here at Lamar University. Despite the fact that these are my class notes, they shoul be accessible to anyone wanting to learn Calculus

More information

5.5 Multiple-Angle and Product-to-Sum Formulas

5.5 Multiple-Angle and Product-to-Sum Formulas Section 5.5 Multiple-Angle and Product-to-Sum Formulas 87 5.5 Multiple-Angle and Product-to-Sum Formulas Multiple-Angle Formulas In this section, you will study four additional categories of trigonometric

More information

Math 144 Activity #7 Trigonometric Identities

Math 144 Activity #7 Trigonometric Identities 44 p Math 44 Activity #7 Trigonometric Identities What is a trigonometric identity? Trigonometric identities are equalities that involve trigonometric functions that are true for every single value of

More information

To sketch the graph we need to evaluate the parameter t within the given interval to create our x and y values.

To sketch the graph we need to evaluate the parameter t within the given interval to create our x and y values. Module 10 lesson 6 Parametric Equations. When modeling the path of an object, it is useful to use equations called Parametric equations. Instead of using one equation with two variables, we will use two

More information

Precalculus: Graphs of Tangent, Cotangent, Secant, and Cosecant Practice Problems. Questions

Precalculus: Graphs of Tangent, Cotangent, Secant, and Cosecant Practice Problems. Questions Questions 1. Describe the graph of the function in terms of basic trigonometric functions. Locate the vertical asymptotes and sketch two periods of the function. y = 3 tan(x/2) 2. Solve the equation csc

More information

AP Calculus Summer Review Packet

AP Calculus Summer Review Packet AP Calculus Summer Review Packet Name: Date began: Completed: **A Formula Sheet has been stapled to the back for your convenience!** Email anytime with questions: danna.seigle@henry.k1.ga.us Complex Fractions

More information

Plane Trigonometry Test File Fall 2014

Plane Trigonometry Test File Fall 2014 Plane Trigonometry Test File Fall 2014 Test #1 1.) Fill in the blanks in the two tables with the EXACT values (no calculator) of the given trigonometric functions. The total point value for the tables

More information

Today we will focus on solving for the sides and angles of non-right triangles when given two angles and a side.

Today we will focus on solving for the sides and angles of non-right triangles when given two angles and a side. 5.5 The Law of Sines Pre-Calculus. Use the Law of Sines to solve non-right triangles. Today we will focus on solving for the sides and angles of non-right triangles when given two angles and a side. Derivation:

More information

TRIGONOMETRIC FUNCTIONS

TRIGONOMETRIC FUNCTIONS MTF TRIGONOMETRIC FUNCTIONS NCERT Solved examples upto the section (Introduction) and (Angles) : Example : Convert 0 0 0 into radian measure radian 0 Example : Convert radians into degree measure 0 8 approximately

More information

11. Differentiating inverse functions.

11. Differentiating inverse functions. . Differentiating inverse functions. The General Case: Fin y x when y f x. Since f y x an we regar y as being a function of x, we ifferentiate both sies of the equation f y x with respect to x using the

More information

Chapter 4. Trigonometric Functions. 4.6 Graphs of Other. Copyright 2014, 2010, 2007 Pearson Education, Inc.

Chapter 4. Trigonometric Functions. 4.6 Graphs of Other. Copyright 2014, 2010, 2007 Pearson Education, Inc. Chapter 4 Trigonometric Functions 4.6 Graphs of Other Trigonometric Functions Copyright 2014, 2010, 2007 Pearson Education, Inc. 1 Objectives: Understand the graph of y = tan x. Graph variations of y =

More information

Trigonometric Functions of Any Angle

Trigonometric Functions of Any Angle Trigonometric Functions of Any Angle MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 2011 Objectives In this lesson we will learn to: evaluate trigonometric functions of any angle,

More information

TImath.com Algebra 2. Proof of Identity

TImath.com Algebra 2. Proof of Identity TImath.com Algebra Proof of Identity ID: 9846 Time required 45 minutes Activity Overview Students use graphs to verify the reciprocal identities. They then use the handheld s manual graph manipulation

More information

9.1 Use Trigonometry with Right Triangles

9.1 Use Trigonometry with Right Triangles 9.1 Use Trigonometry with Right Triangles Use the Pythagorean Theorem to find missing lengths in right triangles. Find trigonometric ratios using right triangles. Use trigonometric ratios to find angle

More information

Math 144 Activity #2 Right Triangle Trig and the Unit Circle

Math 144 Activity #2 Right Triangle Trig and the Unit Circle 1 p 1 Right Triangle Trigonometry Math 1 Activity #2 Right Triangle Trig and the Unit Circle We use right triangles to study trigonometry. In right triangles, we have found many relationships between the

More information

Walt Whitman High School SUMMER REVIEW PACKET. For students entering AP CALCULUS BC

Walt Whitman High School SUMMER REVIEW PACKET. For students entering AP CALCULUS BC Walt Whitman High School SUMMER REVIEW PACKET For students entering AP CALCULUS BC Name: 1. This packet is to be handed in to your Calculus teacher on the first day of the school year.. All work must be

More information

Sec 4.1 Trigonometric Identities Basic Identities. Name: Reciprocal Identities:

Sec 4.1 Trigonometric Identities Basic Identities. Name: Reciprocal Identities: Sec 4. Trigonometric Identities Basic Identities Name: Reciprocal Identities: Quotient Identities: sin csc cos sec csc sin sec cos sin tan cos cos cot sin tan cot cot tan Using the Reciprocal and Quotient

More information

1 Finding Trigonometric Derivatives

1 Finding Trigonometric Derivatives MTH 121 Fall 2008 Essex County College Division of Matematics Hanout Version 8 1 October 2, 2008 1 Fining Trigonometric Derivatives 1.1 Te Derivative as a Function Te efinition of te erivative as a function

More information

In a right triangle, the sum of the squares of the equals the square of the

In a right triangle, the sum of the squares of the equals the square of the Math 098 Chapter 1 Section 1.1 Basic Concepts about Triangles 1) Conventions in notation for triangles - Vertices with uppercase - Opposite sides with corresponding lower case 2) Pythagorean theorem In

More information

Lesson Title 2: Problem TK Solving with Trigonometric Ratios

Lesson Title 2: Problem TK Solving with Trigonometric Ratios Part UNIT RIGHT solving TRIANGLE equations TRIGONOMETRY and inequalities Lesson Title : Problem TK Solving with Trigonometric Ratios Georgia Performance Standards MMG: Students will define and apply sine,

More information

Trig/Math Anal Name No HW NO. SECTIONS ASSIGNMENT DUE TG 1. Practice Set J #1, 9*, 13, 17, 21, 22

Trig/Math Anal Name No HW NO. SECTIONS ASSIGNMENT DUE TG 1. Practice Set J #1, 9*, 13, 17, 21, 22 Trig/Math Anal Name No LATE AND ABSENT HOMEWORK IS ACCEPTED UP TO THE TIME OF THE CHAPTER TEST ON NO GRAPHING CALCULATORS ALLOWED ON THIS TEST HW NO. SECTIONS ASSIGNMENT DUE TG (per & amp) Practice Set

More information

Right Triangle Trigonometry Definitions (Instructor Notes)

Right Triangle Trigonometry Definitions (Instructor Notes) Right Triangle Trigonometry Definitions (Instructor Notes) This activity is designed for a 50 min. class. Materials: Triangles Print out the last 10 pages of this document. It helps to use different colors

More information

A Quick Review of Trigonometry

A Quick Review of Trigonometry A Quick Review of Trigonometry As a starting point, we consider a ray with vertex located at the origin whose head is pointing in the direction of the positive real numbers. By rotating the given ray (initial

More information

Contents 20. Trigonometric Formulas, Identities, and Equations

Contents 20. Trigonometric Formulas, Identities, and Equations Contents 20. Trigonometric Formulas, Identities, and Equations 2 20.1 Basic Identities............................... 2 Using Graphs to Help Verify Identities................... 2 Example 20.1................................

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Precalculus CP Final Exam Review - 01 Name Date: / / MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Convert the angle in degrees to radians. Express

More information

7.2 Trigonometric Integrals

7.2 Trigonometric Integrals 7. Trigonometric Integrals The three identities sin x + cos x, cos x (cos x + ) and sin x ( cos x) can be used to integrate expressions involving powers of Sine and Cosine. The basic idea is to use an

More information

Warm-Up: Final Review #1. A rectangular pen is made from 80 feet of fencing. What is the maximum area the pen can be?

Warm-Up: Final Review #1. A rectangular pen is made from 80 feet of fencing. What is the maximum area the pen can be? Warm-Up: Final Review #1 A rectangular pen is made from 80 feet of fencing. What is the maximum area the pen can be? Warm-Up: Final Review #2 1) Find distance (-2, 4) (6, -3) 2) Find roots y = x 4-6x 2

More information

Chapter 7. Exercise 7A. dy dx = 30x(x2 3) 2 = 15(2x(x 2 3) 2 ) ( (x 2 3) 3 ) y = 15

Chapter 7. Exercise 7A. dy dx = 30x(x2 3) 2 = 15(2x(x 2 3) 2 ) ( (x 2 3) 3 ) y = 15 Chapter 7 Exercise 7A. I will use the intelligent guess method for this question, but my preference is for the rearranging method, so I will use that for most of the questions where one of these approaches

More information

This is called the horizontal displacement of also known as the phase shift.

This is called the horizontal displacement of also known as the phase shift. sin (x) GRAPHS OF TRIGONOMETRIC FUNCTIONS Definitions A function f is said to be periodic if there is a positive number p such that f(x + p) = f(x) for all values of x. The smallest positive number p for

More information

Lesson 10.1 TRIG RATIOS AND COMPLEMENTARY ANGLES PAGE 231

Lesson 10.1 TRIG RATIOS AND COMPLEMENTARY ANGLES PAGE 231 1 Lesson 10.1 TRIG RATIOS AND COMPLEMENTARY ANGLES PAGE 231 What is Trigonometry? 2 It is defined as the study of triangles and the relationships between their sides and the angles between these sides.

More information

6 Computing Derivatives the Quick and Easy Way

6 Computing Derivatives the Quick and Easy Way Jay Daigle Occiental College Mat 4: Calculus Experience 6 Computing Derivatives te Quick an Easy Way In te previous section we talke about wat te erivative is, an we compute several examples, an ten we

More information

C. HECKMAN TEST 2A SOLUTIONS 170

C. HECKMAN TEST 2A SOLUTIONS 170 C HECKMN TEST SOLUTIONS 170 (1) [15 points] The angle θ is in Quadrant IV and tan θ = Find the exact values of 5 sin θ, cos θ, tan θ, cot θ, sec θ, and csc θ Solution: point that the terminal side of the

More information

to and go find the only place where the tangent of that

to and go find the only place where the tangent of that Study Guide for PART II of the Spring 14 MAT187 Final Exam. NO CALCULATORS are permitted on this part of the Final Exam. This part of the Final exam will consist of 5 multiple choice questions. You will

More information

Appendix D Trigonometry

Appendix D Trigonometry Math 151 c Lynch 1 of 8 Appendix D Trigonometry Definition. Angles can be measure in either degree or radians with one complete revolution 360 or 2 rad. Then Example 1. rad = 180 (a) Convert 3 4 into degrees.

More information

MATH EXAM 1 - SPRING 2018 SOLUTION

MATH EXAM 1 - SPRING 2018 SOLUTION MATH 140 - EXAM 1 - SPRING 018 SOLUTION 8 February 018 Instructor: Tom Cuchta Instructions: Show all work, clearly and in order, if you want to get full credit. If you claim something is true you must

More information

Angle Measure 1. Use the relationship π rad = 180 to express the following angle measures in radian measure. a) 180 b) 135 c) 270 d) 258

Angle Measure 1. Use the relationship π rad = 180 to express the following angle measures in radian measure. a) 180 b) 135 c) 270 d) 258 Chapter 4 Prerequisite Skills BLM 4-1.. Angle Measure 1. Use the relationship π rad = 180 to express the following angle measures in radian measure. a) 180 b) 135 c) 70 d) 58. Use the relationship 1 =!

More information

Chapter 9: Right Triangle Trigonometry

Chapter 9: Right Triangle Trigonometry Haberman MTH 11 Section I: The Trigonometric Functions Chapter 9: Right Triangle Trigonometry As we studied in Intro to the Trigonometric Functions: Part 1, if we put the same angle in the center of two

More information

Answer: Find the volume of the solid generated by revolving the shaded region about the given axis. 2) About the x-axis. y = 9 - x π.

Answer: Find the volume of the solid generated by revolving the shaded region about the given axis. 2) About the x-axis. y = 9 - x π. Final Review Study All Eams. Omit the following sections: 6.,.6,., 8. For Ch9 and, study Eam4 and Eam 4 review sheets. Find the volume of the described solid. ) The base of the solid is the disk + y 4.

More information

Pre-Calc Trig ~1~ NJCTL.org. Unit Circle Class Work Find the exact value of the given expression. 7. Given the terminal point ( 3, 2 10.

Pre-Calc Trig ~1~ NJCTL.org. Unit Circle Class Work Find the exact value of the given expression. 7. Given the terminal point ( 3, 2 10. Unit Circle Class Work Find the exact value of the given expression.. cos π. tan 5π 6. sin 7π 5. cot 5π. sec π 6. csc 9π 7. Given the terminal point (, 0 ) find tanθ 7 tan θ = 0 7 8. Given the terminal

More information

Trigonometric Functions. Concept Category 3

Trigonometric Functions. Concept Category 3 Trigonometric Functions Concept Category 3 Goals 6 basic trig functions (geometry) Special triangles Inverse trig functions (to find the angles) Unit Circle: Trig identities a b c The Six Basic Trig functions

More information

Unit 2: Trigonometry. This lesson is not covered in your workbook. It is a review of trigonometry topics from previous courses.

Unit 2: Trigonometry. This lesson is not covered in your workbook. It is a review of trigonometry topics from previous courses. Unit 2: Trigonometry This lesson is not covered in your workbook. It is a review of trigonometry topics from previous courses. Pythagorean Theorem Recall that, for any right angled triangle, the square

More information

Name Summer Work Packet AP Calculus AB

Name Summer Work Packet AP Calculus AB Name Summer Work Packet AP Calculus AB Welcome to AP Calculus AB! Advanced Placement courses are designed to expose you to college level curriculum. This requires a great amount of planning from your teacher

More information

8-1 Simple Trigonometric Equations. Objective: To solve simple Trigonometric Equations and apply them

8-1 Simple Trigonometric Equations. Objective: To solve simple Trigonometric Equations and apply them Warm Up Use your knowledge of UC to find at least one value for q. 1) sin θ = 1 2 2) cos θ = 3 2 3) tan θ = 1 State as many angles as you can that are referenced by each: 1) 30 2) π 3 3) 0.65 radians Useful

More information

Review Notes for the Calculus I/Precalculus Placement Test

Review Notes for the Calculus I/Precalculus Placement Test Review Notes for the Calculus I/Precalculus Placement Test Part 9 -. Degree and radian angle measures a. Relationship between degrees and radians degree 80 radian radian 80 degree Example Convert each

More information

1. (a) = tanθ (as required) AG A1 cso 2. Note

1. (a) = tanθ (as required) AG A1 cso 2. Note sinθ cosθ. (a) + cos θ sinθ cosθ cosθ cosθ Note tanθ (as required) AG A cso : Uses both a correct identity for sin θ and a correct identityfor cosθ. Also allow a candidate writing +cosθ cos θ on the denominator.

More information

Part I. There are 5 problems in Part I, each worth 5 points. No partial credit will be given, so be careful. Circle the correct answer.

Part I. There are 5 problems in Part I, each worth 5 points. No partial credit will be given, so be careful. Circle the correct answer. Math 109 Final Exam-Spring 016 Page 1 Part I. There are 5 problems in Part I, each worth 5 points. No partial credit will be given, so be careful. Circle the correct answer. 1) Determine an equivalent

More information

AP Calculus AB. Table of Contents. Slide 1 / 180. Slide 2 / 180. Slide 3 / 180. Review Unit

AP Calculus AB. Table of Contents. Slide 1 / 180. Slide 2 / 180. Slide 3 / 180. Review Unit Slide 1 / 180 Slide 2 / 180 P alculus Review Unit 2015-10-20 www.njctl.org Table of ontents lick on the topic to go to that section Slide 3 / 180 Slopes Equations of Lines Functions Graphing Functions

More information

MAT137 Calculus! Lecture 31

MAT137 Calculus! Lecture 31 MAT137 Calculus! Lecture 31 Today: Next: Integration Methods: Integration Methods: Trig. Functions (v. 9.10-9.12) Rational Functions Trig. Substitution (v. 9.13-9.15) (v. 9.16-9.17) Integration by Parts

More information

Math 142, Exam 1 Information.

Math 142, Exam 1 Information. Mth 14, Exm 1 Informtion. 9/14/10, LC 41, 9:30-10:45. Exm 1 will be bsed on: Sections 7.1-7.5. The corresponding ssigned homework problems (see http://www.mth.sc.edu/ boyln/sccourses/14f10/14.html) At

More information

Name Student Activity

Name Student Activity Open the TI-Nspire document Proofs_of_Identities.tns. An identity is an equation that is true for all values of the variables for which both sides of the equation are defined. In this activity, you will

More information

2/3 Unit Math Homework for Year 12

2/3 Unit Math Homework for Year 12 Yimin Math Centre 2/3 Unit Math Homework for Year 12 Student Name: Grade: Date: Score: Table of contents 12 Trigonometry 2 1 12.1 The Derivative of Trigonometric Functions....................... 1 12.2

More information

AP Calculus AB. Table of Contents. Slide 1 / 180. Slide 2 / 180. Slide 3 / 180. Review Unit

AP Calculus AB. Table of Contents. Slide 1 / 180. Slide 2 / 180. Slide 3 / 180. Review Unit Slide 1 / 180 Slide 2 / 180 P alculus Review Unit 2015-10-20 www.njctl.org Table of ontents lick on the topic to go to that section Slide 3 / 180 Slopes Equations of Lines Functions Graphing Functions

More information

1. The circle below is referred to as a unit circle. Why is this the circle s name?

1. The circle below is referred to as a unit circle. Why is this the circle s name? Right Triangles and Coordinates on the Unit Circle Learning Task: 1. The circle below is referred to as a unit circle. Why is this the circle s name? Part I 2. Using a protractor, measure a 30 o angle

More information

Pre-calculus: 1st Semester Review Concepts Name: Date: Period:

Pre-calculus: 1st Semester Review Concepts Name: Date: Period: Pre-calculus: 1st Semester Review Concepts Name: Date: Period: Problem numbers preceded by a $ are those similar to high miss questions on the Semester Final last year. You have multiple resources to study

More information

Proof of Identities TEACHER NOTES MATH NSPIRED. Math Objectives. Vocabulary. About the Lesson. TI-Nspire Navigator System

Proof of Identities TEACHER NOTES MATH NSPIRED. Math Objectives. Vocabulary. About the Lesson. TI-Nspire Navigator System Math Objectives Students will be able to interpret reciprocal, negative angle, cofunction, and Pythagorean identities in terms of the graphs of the trigonometric functions involved Students will be able

More information

HONORS PRECALCULUS Prove the following identities- x x= x x 1.) ( ) 2 2.) 4.) tan x 1 cos x 6.)

HONORS PRECALCULUS Prove the following identities- x x= x x 1.) ( ) 2 2.) 4.) tan x 1 cos x 6.) HONORS PRECALCULUS Prove the following identities- 1.) ( ) cosx sinx = 1 sinxcosx.) cos x tan x+ sec x= 1 sinx 3.) 1 + 1 = csc x 1 cos x 1+ cos x 4.) sec x + 1 sin x = tan x 1 cos x 5.) cot cos cos cot

More information

Objective: Manipulate trigonometric properties to verify, prove, and understand trigonmetric relationships.

Objective: Manipulate trigonometric properties to verify, prove, and understand trigonmetric relationships. Objective: Manipulate trigonometric properties to verify, prove, and understand trigonmetric relationships. Apr 21 4:09 AM Warm-up: Determine the exact value of the following (without a calculator): sin

More information

Related Angles WS # 6.1. Co-Related Angles WS # 6.2. Solving Linear Trigonometric Equations Linear

Related Angles WS # 6.1. Co-Related Angles WS # 6.2. Solving Linear Trigonometric Equations Linear UNIT 6 TRIGONOMETRIC IDENTITIES AND EQUATIONS Date Lesson Text TOPIC Homework 13 6.1 (60) 7.1 Related Angles WS # 6.1 15 6. (61) 7.1 Co-Related Angles WS # 6. 16 6.3 (63) 7. Compound Angle Formulas I Sine

More information

Education Resources. This section is designed to provide examples which develop routine skills necessary for completion of this section.

Education Resources. This section is designed to provide examples which develop routine skills necessary for completion of this section. Education Resources Trigonometry Higher Mathematics Supplementary Resources Section A This section is designed to provide examples which develop routine skills necessary for completion of this section.

More information

Module 4 Graphs of the Circular Functions

Module 4 Graphs of the Circular Functions MAC 1114 Module 4 Graphs of the Circular Functions Learning Objectives Upon completing this module, you should be able to: 1. Recognize periodic functions. 2. Determine the amplitude and period, when given

More information

Math 1330 Final Exam Review Covers all material covered in class this semester.

Math 1330 Final Exam Review Covers all material covered in class this semester. Math 1330 Final Exam Review Covers all material covered in class this semester. 1. Give an equation that could represent each graph. A. Recall: For other types of polynomials: End Behavior An even-degree

More information

1) The domain of y = sin-1x is The range of y = sin-1x is. 2) The domain of y = cos-1x is The range of y = cos-1x is

1) The domain of y = sin-1x is The range of y = sin-1x is. 2) The domain of y = cos-1x is The range of y = cos-1x is MAT 204 NAME TEST 4 REVIEW ASSIGNMENT Sections 8.1, 8.3-8.5, 9.2-9.3, 10.1 For # 1-3, fill in the blank with the appropriate interval. 1) The domain of y = sin-1x is The range of y = sin-1x is 2) The domain

More information

Trigonometry LESSON FIVE - Trigonometric Equations Lesson Notes

Trigonometry LESSON FIVE - Trigonometric Equations Lesson Notes Example Find all angles in the domain 0 θ that satisfy the given equation. Write the general solution. Primary Ratios Solving equations with the unit circle. a) b) c) 0 d) tan θ = www.math0.ca a) Example

More information

Math 144 Activity #3 Coterminal Angles and Reference Angles

Math 144 Activity #3 Coterminal Angles and Reference Angles 144 p 1 Math 144 Activity #3 Coterminal Angles and Reference Angles For this activity we will be referring to the unit circle. Using the unit circle below, explain how you can find the sine of any given

More information

UNIT 2 RIGHT TRIANGLE TRIGONOMETRY Lesson 1: Exploring Trigonometric Ratios Instruction

UNIT 2 RIGHT TRIANGLE TRIGONOMETRY Lesson 1: Exploring Trigonometric Ratios Instruction Prerequisite Skills This lesson requires the use of the following skills: measuring angles with a protractor understanding how to label angles and sides in triangles converting fractions into decimals

More information

6. Write the polynomial function of least degree & with integer coefficients if the zeros occur at 6 and i.

6. Write the polynomial function of least degree & with integer coefficients if the zeros occur at 6 and i. MIDTERM REVIEW PACKET IM3H For questions 1-, perform the given operation. Leave your answers as factored as possible. 6x 5x 4 x 4x 3 1.. 3 4 1 x 17x 8 1x 5x x x 4 x x For questions 3-5, find all the zeros

More information

SPRING 2015 Differentiation Practice (EXTRA PROBLEMS) 1

SPRING 2015 Differentiation Practice (EXTRA PROBLEMS) 1 SPRING 2015 Differentiation Practice (EXTRA PROBLEMS) 1 WARNING: These are EXTRA problems, which means you have to do all the homework, webassign and NYTI problems before doing this. Also You ll have to

More information

Checkpoint 1 Define Trig Functions Solve each right triangle by finding all missing sides and angles, round to four decimal places

Checkpoint 1 Define Trig Functions Solve each right triangle by finding all missing sides and angles, round to four decimal places Checkpoint 1 Define Trig Functions Solve each right triangle by finding all missing sides and angles, round to four decimal places. 1.. B P 10 8 Q R A C. Find the measure of A and the length of side a..

More information

Santiago AP Calculus AB/BC Summer Assignment 2018 AB: complete problems 1 64, BC: complete problems 1 73

Santiago AP Calculus AB/BC Summer Assignment 2018 AB: complete problems 1 64, BC: complete problems 1 73 Santiago AP Calculus AB/BC Summer Assignment 2018 AB: complete problems 1 64, BC: complete problems 1 73 AP Calculus is a rigorous college level math course. It will be necessary to do some preparatory

More information

Lesson 26 - Review of Right Triangle Trigonometry

Lesson 26 - Review of Right Triangle Trigonometry Lesson 26 - Review of Right Triangle Trigonometry PreCalculus Santowski PreCalculus - Santowski 1 (A) Review of Right Triangle Trig Trigonometry is the study and solution of Triangles. Solving a triangle

More information

Basic Graphs of the Sine and Cosine Functions

Basic Graphs of the Sine and Cosine Functions Chapter 4: Graphs of the Circular Functions 1 TRIG-Fall 2011-Jordan Trigonometry, 9 th edition, Lial/Hornsby/Schneider, Pearson, 2009 Section 4.1 Graphs of the Sine and Cosine Functions Basic Graphs of

More information

PRECALCULUS MATH Trigonometry 9-12

PRECALCULUS MATH Trigonometry 9-12 1. Find angle measurements in degrees and radians based on the unit circle. 1. Students understand the notion of angle and how to measure it, both in degrees and radians. They can convert between degrees

More information

5-2 Verifying Trigonometric Identities

5-2 Verifying Trigonometric Identities 5- Verifying Trigonometric Identities Verify each identity. 1. (sec 1) cos = sin 3. sin sin 3 = sin cos 4 5. = cot 7. = cot 9. + tan = sec Page 1 5- Verifying Trigonometric Identities 7. = cot 9. + tan

More information

Math 1330 Test 3 Review Sections , 5.1a, ; Know all formulas, properties, graphs, etc!

Math 1330 Test 3 Review Sections , 5.1a, ; Know all formulas, properties, graphs, etc! Math 1330 Test 3 Review Sections 4.1 4.3, 5.1a, 5. 5.4; Know all formulas, properties, graphs, etc! 1. Similar to a Free Response! Triangle ABC has right angle C, with AB = 9 and AC = 4. a. Draw and label

More information

Math 113 Exam 1 Practice

Math 113 Exam 1 Practice Math Exam Practice January 6, 00 Exam will cover sections 6.-6.5 and 7.-7.5 This sheet has three sections. The first section will remind you about techniques and formulas that you should know. The second

More information

Triangle Trigonometry

Triangle Trigonometry Honors Finite/Brief: Trigonometry review notes packet Triangle Trigonometry Right Triangles All triangles (including non-right triangles) Law of Sines: a b c sin A sin B sin C Law of Cosines: a b c bccos

More information

Science One Math. Jan

Science One Math. Jan Science One Math Jan 21 2019 Today s Goal: Compute Trigonometric Integrals Apply the technique of substitution to compute trigonometric integrals of the form sin % x cos * x dx for both m > 1 and n > 1

More information

MA 154 PRACTICE QUESTIONS FOR THE FINAL 11/ The angles with measures listed are all coterminal except: 5π B. A. 4

MA 154 PRACTICE QUESTIONS FOR THE FINAL 11/ The angles with measures listed are all coterminal except: 5π B. A. 4 . If θ is in the second quadrant and sinθ =.6, find cosθ..7.... The angles with measures listed are all coterminal except: E. 6. The radian measure of an angle of is: 7. Use a calculator to find the sec

More information

f(x) lim does not exist.

f(x) lim does not exist. Indeterminate Forms and L Hopital s Rule When we computed its of quotients, i.e. its of the form f() a g(), we came across several different things that could happen: f(). a g() = f(a) g(a) when g(). a

More information