Figure 6.1 Determination of wavelength

Size: px
Start display at page:

Download "Figure 6.1 Determination of wavelength"

Transcription

1 Figure 6.1 Determination of wavelength Figure 6.2 Particle size determination by LASER Department of Physical Sciences, Bannari Amman Institute of Technology, Sathyamangalam 47

2 Wavelength of Laser and Particle Size Diode LASER Expt. No.: Date: AIM To calculate the wavelength of the given laser using grating and particle size of the given lycopodium powder using laser diffraction method. GENERAL OBJECTIVE To evaluate the wavelength of the laser using a grating and to find the particle size of lycopodium powder SPECIFIC OBJECTIVES 1. To obtain diffraction spots on the screen using grating and the laser source 2. To measure the distance between centre spot and first order spot by varying the distance between the grating and screen 3. To find the angle of diffraction (sin ) using the formula 4. To calculate the wavelength of laser source using the formula 5. To obtain diffraction pattern of lycopodium powder using laser source 6. To measure the radius of the first and second order rings for various screen glass plate distances and calculate the particle size APPARATUS REQUIRED Laser source Glass plate with lycopodium powder Grating Stand Screen Metre scale Department of Physical Sciences, Bannari Amman Institute of Technology, Sathyamangalam 48

3 TABLE - I To determine the wavelength of the given laser λ S. No. Distance between the grating and the centre spot AB (10-2 m) Distance between the centre spot and first order spot BC (10-2 m) Distance between the first order spot (BC) and the grating slit AC= (AB 2 +BC 2 ) (10-2 m) Sin = BC/ AC Mean sin =. Department of Physical Sciences, Bannari Amman Institute of Technology, Sathyamangalam 49

4 FORMULA Wavelength of the given laser sin (m) mn Particle size a of the given powder a 1.22m D r (m) Symbol Explanation Unit Wavelength of the laser light m N Number of lines per metre length of the given grating lines/ m a Particle size of the given powder m m Order of diffraction no unit D Distance between the screen and the glass plate m r Radius of the ring m Angle of diffraction degree PREREQUISITE KNOWLEDGE 1. LASER It is an acronym of Light Amplification by Stimulated Emission of Radiation. 2. Properties of LASER High intensity Directionality Monochromaticity Coherence 3. Diffraction Bending of light around the edges of an obstacle Department of Physical Sciences, Bannari Amman Institute of Technology, Sathyamangalam 50

5 TABLE - II To determine the particle size a Order m 1 Distance between screen and glass plate D (10-2 m) Radius of the ring r (10-2 m) Particle size a (m ) Mean (a) =. Department of Physical Sciences, Bannari Amman Institute of Technology, Sathyamangalam 51

6 4. Optical grating It is a glass plate consisting of alternate ruling and slit 5. Pythagoras theorem It states that the square of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides PROCEDURE I. To determine the wavelength of the given laser source 1. An optical grating of known N value is fixed on the grating mount that is placed on a wooden stand. 2. Laser beam from the given semiconductor laser source is made to fall normally on the fixed grating. 3. Now, the grating diffracts laser beam. A screen is kept on the other side of the grating to obtain the diffraction spots. 4. The distance between the grating and screen (AB) is fixed. 5. The distance between the centre spot and first order diffraction spot (BC) on either side of the screen is measured. 6. The above procedure is repeated for different values of AB. 7. The distance between the diffracting slit and the first order diffraction spot is calculated using AC= (AB 2 +BC 2 ) 8. From the values of BC and AC, sin is calculated and the mean value is found. 9. The wavelength of the laser is calculated using the formula. II. To determine the particle size of the given powder 1. The lycopodium powder dispersed in a transparent thin glass plate is kept vertically using a stand in between the laser source and screen. 2. The laser beam incident on the glass plate undergoes diffraction by the particles. Department of Physical Sciences, Bannari Amman Institute of Technology, Sathyamangalam 52

7 OBSERVATION Number of lines per metre in the given grating N = 6 x 10 5 lines/ m Order of the diffraction m = 1 CALCULATION 1. Wavelength of the given laser sin (m) mn Department of Physical Sciences, Bannari Amman Institute of Technology, Sathyamangalam 53

8 3. By adjusting the distance of the glass plate from the screen, a clear concentric ring pattern is obtained. The ring pattern is due to the diffraction of the laser light by the powder particles. 4. The centre of the ring pattern is marked on the screen. The radius of the first order ring (m = 1) is measured and the measurement can be made for other orders (m = 2, 3, 4,.) also. 5. The readings are taken for different values of D (distance between screen and glass plate). RESULT 1. Wavelength of the laser =.. m 2. The average particle size of the given powder a =.. m APPLICATIONS Photography (3D view-hologram), Medicine (treatment of a detached retina), Computer (Printers), Meteorology (laser interferometer to measure length), Weapons (LIDAR - Light Detection and Ranging), Industry (To weld or melt the materials) VIVA VOCE QUESTIONS 1. Define coherence. 2. Identify two types of coherence. 3. Can we use X-rays instead of laser source in this experiment? Department of Physical Sciences, Bannari Amman Institute of Technology, Sathyamangalam 54

9 2. Particle size of the given lycopodium powder a 1.22m D r (m) Department of Physical Sciences, Bannari Amman Institute of Technology, Sathyamangalam 55

10 4. List six applications of LASER. 5. Why do we get rings in the particle size determination instead of spots? 6. Is there any other method to measure the particle size? STIMULATING QUESTIONS 1. Can we use the sodium vapour lamp as a source to measure particle size? 2. While increasing the distance between the screen and glass plate, what happens to the particle size? Department of Physical Sciences, Bannari Amman Institute of Technology, Sathyamangalam 56

Where n = 0, 1, 2, 3, 4

Where n = 0, 1, 2, 3, 4 Syllabus: Interference and diffraction introduction interference in thin film by reflection Newton s rings Fraunhofer diffraction due to single slit, double slit and diffraction grating Interference 1.

More information

CfE Higher Physics. Particles and Waves

CfE Higher Physics. Particles and Waves Wallace Hall Academy CfE Higher Physics Particles and Waves Exam Questions Part 2 P&W: Exam Questions Part 2 Version 2013 Contents Section 5: Interference and Diffraction 1 Section 6: Refraction of Light

More information

Particles and Waves Final Revision Exam Questions Part 2

Particles and Waves Final Revision Exam Questions Part 2 Particles and Waves Final Revision Exam Questions Part 2 This illustration shows the dual nature of light, which acts like both particles and waves. In a new experiment reported in November 2012, researchers

More information

Chapter 8: Physical Optics

Chapter 8: Physical Optics Chapter 8: Physical Optics Whether light is a particle or a wave had puzzled physicists for centuries. In this chapter, we only analyze light as a wave using basic optical concepts such as interference

More information

Dr. Quantum. General Physics 2 Light as a Wave 1

Dr. Quantum. General Physics 2 Light as a Wave 1 Dr. Quantum General Physics 2 Light as a Wave 1 The Nature of Light When studying geometric optics, we used a ray model to describe the behavior of light. A wave model of light is necessary to describe

More information

Models of Light The wave model: The ray model: The photon model:

Models of Light The wave model: The ray model: The photon model: Models of Light The wave model: under many circumstances, light exhibits the same behavior as sound or water waves. The study of light as a wave is called wave optics. The ray model: The properties of

More information

Introduction: Experiment 1: Wave Properties of Light

Introduction: Experiment 1: Wave Properties of Light Natural Order Properties of Light Lab Introduction: In this lab we will explore the wave and particle nature of light. In the first experiment we will measure the diffraction pattern of light as it passes

More information

light Chapter Type equation here. Important long questions

light Chapter Type equation here. Important long questions Type equation here. Light Chapter 9 Important long questions Q.9.1 Describe Young s double slit experiment for the demonstration of interference of. Derive an expression for fringe spacing? Ans. Young

More information

Figure 1: Derivation of Bragg s Law

Figure 1: Derivation of Bragg s Law What is Bragg s Law and why is it Important? Bragg s law refers to a simple equation derived by English physicists Sir W. H. Bragg and his son Sir W. L. Bragg in 1913. This equation explains why the faces

More information

College Physics B - PHY2054C

College Physics B - PHY2054C Young College - PHY2054C Wave Optics: 10/29/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Outline Young 1 2 3 Young 4 5 Assume a thin soap film rests on a flat glass surface. Young Young

More information

Interference of Light

Interference of Light Interference of Light Review: Principle of Superposition When two or more waves interact they interfere. Wave interference is governed by the principle of superposition. The superposition principle says

More information

Applied Optics. Dr D. Arun Kumar Assistant Professor Department of Physical Sciences Bannari Amman Institute of Technology Sathyamangalam

Applied Optics. Dr D. Arun Kumar Assistant Professor Department of Physical Sciences Bannari Amman Institute of Technology Sathyamangalam Applied Optics Dr D. Arun Kumar Assistant Professor Department of Physical Sciences Bannari Amman Institute of Technology Sathyamangalam LIGHT AS A WAVE Light has dual nature. It has both particle nature

More information

G3 TWO-SOURCE INTERFERENCE OF WAVES

G3 TWO-SOURCE INTERFERENCE OF WAVES G3 TWO-SOURCE INTERFERENCE OF WAVES G4 DIFFRACTION GRATINGS HW/Study Packet Required: READ Tsokos, pp 624-631 SL/HL Supplemental: Hamper, pp 424-428 DO Questions pp 631-632 #1,3,8,9,10 REMEMBER TO. Work

More information

Physical Optics. 1 st year physics laboratories. University of Ottawa.

Physical Optics. 1 st year physics laboratories. University of Ottawa. Physical Optics 1 st year physics laboratories University of Ottawa https://uottawa.brightspace.com/d2l/home INTRODUCTION Physical optics deals with light as a wave which can bend around obstacles (diffraction)

More information

To determine the wavelength of laser light using single slit diffraction

To determine the wavelength of laser light using single slit diffraction 9 To determine the wavelength of laser light using single slit diffraction pattern 91 Apparatus: Helium-Neon laser or diode laser, a single slit with adjustable aperture width, optical detector and power

More information

PHYS 1112L - Introductory Physics Laboratory II

PHYS 1112L - Introductory Physics Laboratory II PHYS 1112L - Introductory Physics Laboratory II Laboratory Advanced Sheet Diffraction 1. Objectives. The objectives of this laboratory are a. To be able use a diffraction grating to measure the wavelength

More information

Ray Optics. Lecture 23. Chapter 23. Physics II. Course website:

Ray Optics. Lecture 23. Chapter 23. Physics II. Course website: Lecture 23 Chapter 23 Physics II Ray Optics Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Let s finish talking about a diffraction grating Diffraction Grating Let s improve (more

More information

Diffraction. Introduction: Diffraction is bending of waves around an obstacle (barrier) or spreading of waves passing through a narrow slit.

Diffraction. Introduction: Diffraction is bending of waves around an obstacle (barrier) or spreading of waves passing through a narrow slit. Introduction: Diffraction is bending of waves around an obstacle (barrier) or spreading of waves passing through a narrow slit. Diffraction amount depends on λ/a proportion If a >> λ diffraction is negligible

More information

Chapter 2: Wave Optics

Chapter 2: Wave Optics Chapter : Wave Optics P-1. We can write a plane wave with the z axis taken in the direction of the wave vector k as u(,) r t Acos tkzarg( A) As c /, T 1/ and k / we can rewrite the plane wave as t z u(,)

More information

Physics 309 Lab 3. where the small angle approximation has been used. This pattern has maxima at. Y Max. n L /d (2)

Physics 309 Lab 3. where the small angle approximation has been used. This pattern has maxima at. Y Max. n L /d (2) Physics 309 Lab 3 Introduction This will be a lab whose purpose is to give you some hands-on experience with optical interference and diffraction, using small green diode lasers as the light sources. Each

More information

Lenses lens equation (for a thin lens) = (η η ) f r 1 r 2

Lenses lens equation (for a thin lens) = (η η ) f r 1 r 2 Lenses lens equation (for a thin lens) 1 1 1 ---- = (η η ) ------ - ------ f r 1 r 2 Where object o f = focal length η = refractive index of lens material η = refractive index of adjacent material r 1

More information

Diffraction. Factors that affect Diffraction

Diffraction. Factors that affect Diffraction Diffraction What is one common property the four images share? Diffraction: Factors that affect Diffraction TELJR Publications 2017 1 Young s Experiment AIM: Does light have properties of a particle? Or

More information

Optics Vac Work MT 2008

Optics Vac Work MT 2008 Optics Vac Work MT 2008 1. Explain what is meant by the Fraunhofer condition for diffraction. [4] An aperture lies in the plane z = 0 and has amplitude transmission function T(y) independent of x. It is

More information

Textbook Reference: Physics (Wilson, Buffa, Lou): Chapter 24

Textbook Reference: Physics (Wilson, Buffa, Lou): Chapter 24 AP Physics-B Physical Optics Introduction: We have seen that the reflection and refraction of light can be understood in terms of both rays and wave fronts of light. Light rays are quite compatible with

More information

WAVE SUPERPOSITION. Challenging MCQ questions by The Physics Cafe. Compiled and selected by The Physics Cafe

WAVE SUPERPOSITION. Challenging MCQ questions by The Physics Cafe. Compiled and selected by The Physics Cafe WVE SUPERPOSITION hallenging MQ questions by The Physics afe ompiled and selected by The Physics afe 1 Two coherent monochromatic waves of equal amplitude are brought together to form an interference pattern

More information

2.) An overhead projector forms an image of a transparency on a screen:

2.) An overhead projector forms an image of a transparency on a screen: 1.) You have measured the wavelength λ of a spectral lamp using a diffraction grating and the relation λ = d sin Θ. Your uncertainty in the grating spacing d is 0.5% and your uncertainty in your angle

More information

EM Waves Practice Problems

EM Waves Practice Problems PSI AP Physics 2 Name 1. Sir Isaac Newton was one of the first physicists to study light. What properties of light did he explain by using the particle model? 2. Who was the first person who was credited

More information

Wave Phenomena Physics 15c

Wave Phenomena Physics 15c Wave Phenomena Physics 15c Lecture 23 Coherence Laser, Holography CUE Evaluation! This course is being evaluated because the course head has requested that the course be included in the CUE Guide. As you

More information

Interference and Diffraction of Light

Interference and Diffraction of Light Name Date Time to Complete h m Partner Course/ Section / Grade Interference and Diffraction of Light Reflection by mirrors and refraction by prisms and lenses can be analyzed using the simple ray model

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 9-2 SINGLE-SLIT DIFFRACTION Essential Idea: Single-slit diffraction occurs when a wave is incident upon a slit of approximately the same

More information

Interference of Light

Interference of Light Interference of Light Young s Double-Slit Experiment If light is a wave, interference effects will be seen, where one part of wavefront can interact with another part. One way to study this is to do a

More information

Diffraction and Interference of Plane Light Waves

Diffraction and Interference of Plane Light Waves PHY 92 Diffraction and Interference of Plane Light Waves Diffraction and Interference of Plane Light Waves Introduction In this experiment you will become familiar with diffraction patterns created when

More information

Interference. Electric fields from two different sources at a single location add together. The same is true for magnetic fields at a single location.

Interference. Electric fields from two different sources at a single location add together. The same is true for magnetic fields at a single location. Interference Electric fields from two different sources at a single location add together. The same is true for magnetic fields at a single location. Thus, interacting electromagnetic waves also add together.

More information

Diffraction is the bending of waves around small obstacles and the spreading out of waves past small openings

Diffraction is the bending of waves around small obstacles and the spreading out of waves past small openings Diffraction Diffraction is the bending of waves around small obstacles and the spreading out of waves past small openings Diffraction by Pinhead When λ the opening, max diffraction occurs When λ < opening

More information

University Physics (Prof. David Flory) Chapt_37 Monday, August 06, 2007

University Physics (Prof. David Flory) Chapt_37 Monday, August 06, 2007 Name: Date: 1. If we increase the wavelength of the light used to form a double-slit diffraction pattern: A) the width of the central diffraction peak increases and the number of bright fringes within

More information

Diffraction and Interference

Diffraction and Interference Experiment #32 Diffraction and Interference Goals: Perform a quantitative investigation of two-slit interference Explore use of a photodiode to measure light intensity References 1. I. G. Main, Vibrations

More information

Which row could be correct for the colours seen at X, at Y and at Z?

Which row could be correct for the colours seen at X, at Y and at Z? 1 The ray diagram shows the image of an formed by a converging lens. converging lens image 50 cm What is the focal length of the lens? 40 cm 72 cm 40 cm 50 cm 72 cm 90 cm 2 The diagram shows the dispersion

More information

Chapter 24. Wave Optics

Chapter 24. Wave Optics Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

PHY 222 Lab 11 Interference and Diffraction Patterns Investigating interference and diffraction of light waves

PHY 222 Lab 11 Interference and Diffraction Patterns Investigating interference and diffraction of light waves PHY 222 Lab 11 Interference and Diffraction Patterns Investigating interference and diffraction of light waves Print Your Name Print Your Partners' Names Instructions April 17, 2015 Before lab, read the

More information

Physics Midterm I

Physics Midterm I Phys121 - February 6, 2009 1 Physics 121 - Midterm I Last Name First Name Student Number Signature Tutorial T.A. (circle one): Ricky Chu Firuz Demir Maysam Emadi Alireza Jojjati Answer ALL 10 questions.

More information

Chapter 37. Interference of Light Waves

Chapter 37. Interference of Light Waves Chapter 37 Interference of Light Waves Wave Optics Wave optics is a study concerned with phenomena that cannot be adequately explained by geometric (ray) optics These phenomena include: Interference Diffraction

More information

LIGHT. Descartes particle theory, however, could not be used to explain diffraction of light.

LIGHT. Descartes particle theory, however, could not be used to explain diffraction of light. 1 LIGHT Theories of Light In the 17 th century Descartes, a French scientist, formulated two opposing theories to explain the nature of light. These two theories are the particle theory and the wave theory.

More information

Higher -o-o-o- Past Paper questions o-o-o- 3.2 Refraction

Higher -o-o-o- Past Paper questions o-o-o- 3.2 Refraction Higher -o-o-o- Past Paper questions 2000-2010 -o-o-o- 3.2 Refraction 2000 Q27 A student is investigating the effect that a semicircular glass block has on a ray of monochromatic light. She observes that

More information

PHYSICS EXPERIMENTS (LIGHT)

PHYSICS EXPERIMENTS (LIGHT) PHYSICS EXPERIMENTS (LIGHT) In the matter of physics, the first lessons should contain nothing but what is experimental and interesting to see. A pretty experiment is in itself often more valuable than

More information

Chapter 35 &36 Physical Optics

Chapter 35 &36 Physical Optics Chapter 35 &36 Physical Optics Physical Optics Phase Difference & Coherence Thin Film Interference 2-Slit Interference Single Slit Interference Diffraction Patterns Diffraction Grating Diffraction & Resolution

More information

2011 Optical Science & Engineering PhD Qualifying Examination Optical Sciences Track: Advanced Optics Time allowed: 90 minutes

2011 Optical Science & Engineering PhD Qualifying Examination Optical Sciences Track: Advanced Optics Time allowed: 90 minutes 2011 Optical Science & Engineering PhD Qualifying Examination Optical Sciences Track: Advanced Optics Time allowed: 90 minutes Answer all four questions. All questions count equally. 3(a) A linearly polarized

More information

INTERFERENCE. where, m = 0, 1, 2,... (1.2) otherwise, if it is half integral multiple of wavelength, the interference would be destructive.

INTERFERENCE. where, m = 0, 1, 2,... (1.2) otherwise, if it is half integral multiple of wavelength, the interference would be destructive. 1.1 INTERFERENCE When two (or more than two) waves of the same frequency travel almost in the same direction and have a phase difference that remains constant with time, the resultant intensity of light

More information

Phy 133 Section 1: f. Geometric Optics: Assume the rays follow straight lines. (No diffraction). v 1 λ 1. = v 2. λ 2. = c λ 2. c λ 1.

Phy 133 Section 1: f. Geometric Optics: Assume the rays follow straight lines. (No diffraction). v 1 λ 1. = v 2. λ 2. = c λ 2. c λ 1. Phy 133 Section 1: f Geometric Optics: Assume the rays follow straight lines. (No diffraction). Law of Reflection: θ 1 = θ 1 ' (angle of incidence = angle of reflection) Refraction = bending of a wave

More information

Page 2. Q1.Electrons and protons in two beams are travelling at the same speed. The beams are diffracted by objects of the same size.

Page 2. Q1.Electrons and protons in two beams are travelling at the same speed. The beams are diffracted by objects of the same size. Q1.Electrons and protons in two beams are travelling at the same speed. The beams are diffracted by objects of the same size. Which correctly compares the de roglie wavelength λ e of the electrons with

More information

Diffraction: Propagation of wave based on Huygens s principle.

Diffraction: Propagation of wave based on Huygens s principle. Diffraction: In addition to interference, waves also exhibit another property diffraction, which is the bending of waves as they pass by some objects or through an aperture. The phenomenon of diffraction

More information

Wallace Hall Academy

Wallace Hall Academy Wallace Hall Academy CfE Higher Physics Unit 2 - Waves Notes Name 1 Waves Revision You will remember the following equations related to Waves from National 5. d = vt f = n/t v = f T=1/f They form an integral

More information

CHAPTER 26 INTERFERENCE AND DIFFRACTION

CHAPTER 26 INTERFERENCE AND DIFFRACTION CHAPTER 26 INTERFERENCE AND DIFFRACTION INTERFERENCE CONSTRUCTIVE DESTRUCTIVE YOUNG S EXPERIMENT THIN FILMS NEWTON S RINGS DIFFRACTION SINGLE SLIT MULTIPLE SLITS RESOLVING POWER 1 IN PHASE 180 0 OUT OF

More information

f. (5.3.1) So, the higher frequency means the lower wavelength. Visible part of light spectrum covers the range of wavelengths from

f. (5.3.1) So, the higher frequency means the lower wavelength. Visible part of light spectrum covers the range of wavelengths from Lecture 5-3 Interference and Diffraction of EM Waves During our previous lectures we have been talking about electromagnetic (EM) waves. As we know, harmonic waves of any type represent periodic process

More information

Diffraction and Interference of Plane Light Waves

Diffraction and Interference of Plane Light Waves 1 Diffraction and Interference of Plane Light Waves Introduction In this experiment you will become familiar with diffraction patterns created when a beam of light scatters from objects placed in its path.

More information

Laser Diffraction and Interference

Laser Diffraction and Interference Laser Diffraction and Interference Objective 1. To determine the wavelength of laser light from a thin wire diffraction pattern.. Compare the thickness of the wire with the single-slit width that form

More information

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

Unit I Light and Optics

Unit I Light and Optics Unit I Light and Optics Outline By the time you finish this, you should understand the following aspects of our experiment: 1) Why you produce a grating pattern when you cross two laser beams. 2) What

More information

Experiment 8 Wave Optics

Experiment 8 Wave Optics Physics 263 Experiment 8 Wave Optics In this laboratory, we will perform two experiments on wave optics. 1 Double Slit Interference In two-slit interference, light falls on an opaque screen with two closely

More information

Physics 1C, Summer 2011 (Session 1) Practice Midterm 2 (50+4 points) Solutions

Physics 1C, Summer 2011 (Session 1) Practice Midterm 2 (50+4 points) Solutions Physics 1C, Summer 2011 (Session 1) Practice Midterm 2 (50+4 points) s Problem 1 (5x2 = 10 points) Label the following statements as True or False, with a one- or two-sentence explanation for why you chose

More information

AP Physics Problems -- Waves and Light

AP Physics Problems -- Waves and Light AP Physics Problems -- Waves and Light 1. 1975-4 (Physical Optics) a. Light of a single wavelength is incident on a single slit of width w. (w is a few wavelengths.) Sketch a graph of the intensity as

More information

Light & Optical Systems Reflection & Refraction. Notes

Light & Optical Systems Reflection & Refraction. Notes Light & Optical Systems Reflection & Refraction Notes What is light? Light is electromagnetic radiation Ultra-violet + visible + infra-red Behavior of Light Light behaves in 2 ways particles (photons)

More information

Chapter 24. Wave Optics

Chapter 24. Wave Optics Chapter 24 Wave Optics hitt1 An upright object is located a distance from a convex mirror that is less than the mirror's focal length. The image formed by the mirror is (1) virtual, upright, and larger

More information

Chapter 25. Wave Optics

Chapter 25. Wave Optics Chapter 25 Wave Optics Interference Light waves interfere with each other much like mechanical waves do All interference associated with light waves arises when the electromagnetic fields that constitute

More information

Chapter 37. Wave Optics

Chapter 37. Wave Optics Chapter 37 Wave Optics Wave Optics Wave optics is a study concerned with phenomena that cannot be adequately explained by geometric (ray) optics. Sometimes called physical optics These phenomena include:

More information

E x Direction of Propagation. y B y

E x Direction of Propagation. y B y x E x Direction of Propagation k z z y B y An electromagnetic wave is a travelling wave which has time varying electric and magnetic fields which are perpendicular to each other and the direction of propagation,

More information

PHYS 1402 DIFFRACTION AND INTERFERENCE OF LIGHT: MEASURE THE WAVELENGTH OF LIGHT

PHYS 1402 DIFFRACTION AND INTERFERENCE OF LIGHT: MEASURE THE WAVELENGTH OF LIGHT PHYS 1402 DIFFRACTION AND INTERFERENCE OF LIGHT: MEASURE THE WAVELENGTH OF LIGHT I. OBJECTIVE The objective of this experiment is to observe the interference pattern from a double slit and a diffraction

More information

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

Physics 123 Optics Review

Physics 123 Optics Review Physics 123 Optics Review I. Definitions & Facts concave converging convex diverging real image virtual image real object virtual object upright inverted dispersion nearsighted, farsighted near point,

More information

PY212 Lecture 25. Prof. Tulika Bose 12/3/09. Interference and Diffraction. Fun Link: Diffraction with Ace Ventura

PY212 Lecture 25. Prof. Tulika Bose 12/3/09. Interference and Diffraction. Fun Link: Diffraction with Ace Ventura PY212 Lecture 25 Interference and Diffraction Prof. Tulika Bose 12/3/09 Fun Link: Diffraction with Ace Ventura Summary from last time The wave theory of light is strengthened by the interference and diffraction

More information

The sources must be coherent. This means they emit waves with a constant phase with respect to each other.

The sources must be coherent. This means they emit waves with a constant phase with respect to each other. CH. 24 Wave Optics The sources must be coherent. This means they emit waves with a constant phase with respect to each other. The waves need to have identical wavelengths. Can t be coherent without this.

More information

MICHELSON S INTERFEROMETER

MICHELSON S INTERFEROMETER MICHELSON S INTERFEROMETER Objectives: 1. Alignment of Michelson s Interferometer using He-Ne laser to observe concentric circular fringes 2. Measurement of the wavelength of He-Ne Laser and Na lamp using

More information

Lab 12 - Interference-Diffraction of Light Waves

Lab 12 - Interference-Diffraction of Light Waves Lab 12 - Interference-Diffraction of Light Waves Equipment and Safety: No special safety equipment is required for this lab. Do not look directly into the laser. Do not point the laser at other people.

More information

Light and the Properties of Reflection & Refraction

Light and the Properties of Reflection & Refraction Light and the Properties of Reflection & Refraction OBJECTIVE To study the imaging properties of a plane mirror. To prove the law of reflection from the previous imaging study. To study the refraction

More information

Past Paper Questions Waves

Past Paper Questions Waves Past Paper Questions Waves Name 1. Explain the differences between an undamped progressive transverse wave and a stationary transverse wave, in terms of amplitude, (ii) phase and (iii) energy transfer.

More information

The location of the bright fringes can be found using the following equation.

The location of the bright fringes can be found using the following equation. What You Need to Know: In the past two labs we ve been thinking of light as a particle that reflects off of a surface or refracts into a medium. Now we are going to talk about light as a wave. If you take

More information

5. Double Slit Diffraction

5. Double Slit Diffraction Double Date slit : diffraction 5. Double Slit Diffraction Background Aim of the experiment Huygens s principle Interference Fraunhofer and Fresnel diffraction Coherence Laser 1. To plot the intensity distribution

More information

UNIT VI OPTICS ALL THE POSSIBLE FORMULAE

UNIT VI OPTICS ALL THE POSSIBLE FORMULAE 58 UNIT VI OPTICS ALL THE POSSIBLE FORMULAE Relation between focal length and radius of curvature of a mirror/lens, f = R/2 Mirror formula: Magnification produced by a mirror: m = - = - Snell s law: 1

More information

Revision Notes. Light

Revision Notes. Light Revision Notes Light Experiments Formulae Definitions MEASUREMENT OF THE FOCAL LENGTH OF A CONCAVE MIRROR Apparatus Concave mirror, screen, lamp-box with crosswire. Concave mirror Crosswire Lamp-box Screen

More information

Chapter 36. Diffraction. Dr. Armen Kocharian

Chapter 36. Diffraction. Dr. Armen Kocharian Chapter 36 Diffraction Dr. Armen Kocharian Diffraction Light of wavelength comparable to or larger than the width of a slit spreads out in all forward directions upon passing through the slit This phenomena

More information

Interference of Light

Interference of Light Lecture 23 Chapter 22 Physics II 08.07.2015 Wave Optics: Interference of Light Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html

More information

A Level. A Level Physics. WAVES: Combining Waves (Answers) Edexcel. Name: Total Marks: /30

A Level. A Level Physics. WAVES: Combining Waves (Answers) Edexcel. Name: Total Marks: /30 Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources. Edexcel A Level A Level Physics WAVES: Combining Waves (Answers) Name: Total Marks: /30 Maths Made Easy Complete Tuition Ltd 2017 1.

More information

Winmeen Tnpsc Group 1 & 2 Self Preparation Course Physics UNIT 9. Ray Optics. surface at the point of incidence, all lie in the same plane.

Winmeen Tnpsc Group 1 & 2 Self Preparation Course Physics UNIT 9. Ray Optics. surface at the point of incidence, all lie in the same plane. Laws of reflection Physics UNIT 9 Ray Optics The incident ray, the reflected ray and the normal drawn to the reflecting surface at the point of incidence, all lie in the same plane. The angle of incidence

More information

Chapter 36. Diffraction. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 36. Diffraction. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Chapter 36 Diffraction Copyright 36-1 Single-Slit Diffraction Learning Objectives 36.01 Describe the diffraction of light waves by a narrow opening and an edge, and also describe the resulting interference

More information

INTERFERENCE. (i) When the film is quite thin as compared to the wavelength of light,

INTERFERENCE. (i) When the film is quite thin as compared to the wavelength of light, (a) Reflected System: For the thin film in air the ray BG suffers reflection at air medium (rare to denser) boundary, it undergoes a phase change of π and a path change of λ/2, while the ray DF does not,

More information

EXPERIMENT 8 PFUND REFRACTION

EXPERIMENT 8 PFUND REFRACTION EXPERIMENT 8 PFUND REFRACTION A narrow beam of light passes through the face of a glass plate, then undergoes a diffuse reflection from the rear surface of the plate. The diffused light travels back toward

More information

Interference of Light

Interference of Light Lecture 23 Chapter 22 Physics II Wave Optics: Interference of Light Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html

More information

Physics 214 Midterm Fall 2003 Form A

Physics 214 Midterm Fall 2003 Form A 1. A ray of light is incident at the center of the flat circular surface of a hemispherical glass object as shown in the figure. The refracted ray A. emerges from the glass bent at an angle θ 2 with respect

More information

UNIT 102-9: INTERFERENCE AND DIFFRACTION

UNIT 102-9: INTERFERENCE AND DIFFRACTION Name St.No. - Date(YY/MM/DD) / / Section Group # UNIT 102-9: INTERFERENCE AND DIFFRACTION Patterns created by interference of light in a thin film. OBJECTIVES 1. Understand the creation of double-slit

More information

Chapter 24. Wave Optics

Chapter 24. Wave Optics Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

Michelson Interferometer

Michelson Interferometer Michelson Interferometer The Michelson interferometer uses the interference of two reflected waves The third, beamsplitting, mirror is partially reflecting ( half silvered, except it s a thin Aluminum

More information

PHYS 3410/3411/6750/6751: Modern Optics Midterm #2

PHYS 3410/3411/6750/6751: Modern Optics Midterm #2 Name: PHYS 3410/3411/6750/6751: Modern Optics Midterm #2 Wednesday 17 November 2010 Prof. Bolton Only pen or pencil are allowed. No calculators or additional materials. PHYS 3410/3411/6750/6751 Midterm

More information

PHYSICS. Chapter 33 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 33 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 33 Lecture RANDALL D. KNIGHT Chapter 33 Wave Optics IN THIS CHAPTER, you will learn about and apply the wave model of light. Slide

More information

LECTURE 20: Interference, Diffraction, Resolution. Interference. Interference: Double Slit (for very narrow slits) Interference: Double Slit (DEMO)

LECTURE 20: Interference, Diffraction, Resolution. Interference. Interference: Double Slit (for very narrow slits) Interference: Double Slit (DEMO) LECTURE 0: Interference, Diffraction, Resolution Interference *Three ways in which the phase ifference between two waves can change: 1. By traveling though meia of ifferent inexes of refraction. By traveling

More information

A 4. An electromagnetic wave travelling through a transparent medium is given by y. in S units. Then what is the refractive index of the medium?

A 4. An electromagnetic wave travelling through a transparent medium is given by y. in S units. Then what is the refractive index of the medium? SECTION (A) : PRINCIPLE OF SUPERPOSITION, PATH DIFFERENCE, WAVEFRONTS, AND COHERENCE A 1. Two sources of intensity I & 4I are used in an interference experiment. Find the intensity at points where the

More information

Diffraction at a single slit and double slit Measurement of the diameter of a hair

Diffraction at a single slit and double slit Measurement of the diameter of a hair Diffraction at a single slit and double slit Measurement of the diameter of a hair AREEJ AL JARB Background... 3 Objects of the experiments 4 Principles Single slit... 4 Double slit.. 6 Setup. 7 Procedure

More information

Laboratory 6: Light and the Laser

Laboratory 6: Light and the Laser Laboratory 6: Light and the Laser WARNING NEVER LOOK DIRECTLY AT LASER LIGHT Index of Refraction: Snell's Law 1. Read the section on physical optics in some introductory physics text. 2. Set the semicircular

More information

Interference of Light

Interference of Light Lecture 22 Chapter 22 Physics II Wave Optics: Interference of Light Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Wave Motion Interference Models of Light (Water waves are Easy

More information

DIFFRACTION 4.1 DIFFRACTION Difference between Interference and Diffraction Classification Of Diffraction Phenomena

DIFFRACTION 4.1 DIFFRACTION Difference between Interference and Diffraction Classification Of Diffraction Phenomena 4.1 DIFFRACTION Suppose a light wave incident on a slit AB of sufficient width b, as shown in Figure 1. According to concept of rectilinear propagation of light the region A B on the screen should be uniformly

More information

LIGHT SCATTERING THEORY

LIGHT SCATTERING THEORY LIGHT SCATTERING THEORY Laser Diffraction (Static Light Scattering) When a Light beam Strikes a Particle Some of the light is: Diffracted Reflected Refracted Absorbed and Reradiated Reflected Refracted

More information

Unit 5.C Physical Optics Essential Fundamentals of Physical Optics

Unit 5.C Physical Optics Essential Fundamentals of Physical Optics Unit 5.C Physical Optics Essential Fundamentals of Physical Optics Early Booklet E.C.: + 1 Unit 5.C Hwk. Pts.: / 25 Unit 5.C Lab Pts.: / 20 Late, Incomplete, No Work, No Units Fees? Y / N 1. Light reflects

More information