Chapter 6. THE NORMAL DISTRIBUTION

Size: px
Start display at page:

Download "Chapter 6. THE NORMAL DISTRIBUTION"

Transcription

1 Chapter 6. THE NORMAL DISTRIBUTION Introducing Normally Distributed Variables The distributions of some variables like thickness of the eggshell, serum cholesterol concentration in blood, white blood cells count in a specimen of blood have roughly the shape of a normal curve (bell shaped curve) Normally Distributed Variable A variable is said to be normally distributed or to have a normal distribution if its distribution has the shape of a normal curve. Normal distribution (curve) completely determined by mean ( ) and standard deviation ( ). Parameters of Normal distribution = (, ) Characteristics of Normal distribution Bell-shaped Symmetric around the mean Close to the horizontal axis outside the range from -3 to +3 Spread depends on the standard deviation. Area under the curve is 1 for any (, ). Notation: Y~N(12, 7) indicates that Y has normal distribution with mean 12 and standard deviation 7 1

2 Normally distributed variables and normal-curve areas For a normally distributed variable, the percentage of all possible observations that lie within any specified range equals the corresponding area under its associated normal curve expressed as a percentage. This holds true approximately for a variable that is approximately normally distributed. Example (Heights of Female of College Students): A college has an enrollment of 3264 female students. Records show that the mean height of these students is 64.4 inches and the standard deviation is 2.4 inches. Since the shape of the relative histogram of this sample college students approximately normally distributed, we assume the total population distribution of the height of all the female college students follows the normal distribution with the same mean and the standard deviation. Now if you want to find out the percentage of students whose heights are between 66 and 68 inches, you have to evaluate the area under the normal curve from 66 to 68. 2

3 68 Area = (2.4) 2 e 2 ( x 64.4) 2 2( 2.4) dx = (by TABLE) Relative frequency = = (by relative frequency distribution) Standardizing a Normally Distributed Variable Facts: 1) Once we know the mean and standard deviation of a normally distributed variable, we know its distribution and associated normal curve 2) Percentages for a normally distributed variable are equal to areas under its associated normal curve. How do we find areas under a normal curve? Integration? Or tables for each different and? Or standardize your normal curve and use only one table with mean( )=0 and standard deviation( )=1? Standard Normal Distribution; Standard Normal Curve A normally distributed variable having mean 0 and standard deviation 1 is said to have the standard normal distribution. Its associated normal curve is called the standard normal curve. Standardized Normally Distributed Variable The standardized version of a normally distributed variable Y, Z= Y μ σ standard normal distribution. has the 3

4 Areas under the Standard Normal Curve Basic Properties of the Standard Normal Curve 1. The total area under the standard normal curve is equal to The standard normal curve extends indefinitely in both directions, approaching, but never touching, the horizontal axis as it does so. 3. The standard normal curve is symmetric about 0; i.e., the part of the curve to the left of 0 is the mirror image of the part of the curve to the right of Most of the area under the standard normal curve lies between 3 and 3. Using the Standard-Normal Table There are infinitely many normally distributed variables, however, if these variables can be standardized, then the standard normal tables can be used to find the areas under the curve. * Table set up to accumulate the area under the curve from - to and specified value. * The table starts at 3.9 and goes to 3.9 since outside this range of values the area is negligible. * The table can be used to find a z value given and area, or and area given a z value. 4

5 The z Notation The symbol z is used to denote the z- score having area (alpha) to its right under the standard normal curve. z - z sub alpha or simply z. Working with Normally Distributed Variables To Determine a Percentage or Probability for a normally Distributed Variable 1. Sketch the normal curve associated with the variable. 2. Shade the region of interest and mark the delimiting x-values. 3. Compute the z-scores for the delimiting x-values found in step Use Table II to obtain the area under the standard normal curve delimited by the z-scores found in step 3. Example (contd.) Height of Female students: Normal distribution with = 64.4, = 2.4. We want to determine the probability that randomly selected student will have height between 66 and 68. z-score for x = 66: z = ( )/2.4 = 0.67, x=68: z = ( )/2.4 = 1.5 area under standard normal curve: z= 1.5 -> , z = > resulting probability: = In conclusion: For normally distributed variables Y questions: 1)What percentage of values of Y are in the range a to b 2)For randomly selected Y what is the probability P(a< Y < b) can both be answered by computing area under the normal curve between a and b. 5

6 Visualizing a Normal Distribution % of all possible observations lie within one standard deviation to either side of the mean, i.e., between - and % of all possible observations lie within two standard deviations to either side of the mean, i.e., between - 2 and % of all possible observations lie within three standard deviations to either side of the mean, i.e., between - 3 and + 3. To Determine the Observations Corresponding to a specified Percentage or Probability for a Normally Distributed Variable. 1. Sketch the normal curve associated with the variable. 2. Shade the region of interest. 3. Use Table II to obtain the z-scores delimiting the region in step Obtain the x-values having the z-scores found in step 3: x=μ+ z(σ) Example (contd.) a. Obtain the Q 3 (75 th percentile) of the height of female students. The z-score corresponding to Q 3 is the one having an area of 0.75 to its left under the standard normal curve. From Table II, that z-score is 0.67, approximately. So the x-value (height) corresponding to that z-score is (0.67)*2.4 = 66 inches. b. Obtain the 10 th percentile. z-score corresponding to P 10 is the one having an area of 0.1 to its left under the standard normal curve. From Table II, that z-score is 1.28, approximately. So the x-value (height) corresponding to that z-score is (-1.28)*2.4 = Assessing Normality. Normal Probability Plots. 1. Many statistical procedures are based on the assumption that data analyzed is coming from normally distributed populations. One way to assess the normality of your data is through the use of Empirical Rule. We can compute percentages within 1, 2 and 3 SD-s from the mean of the data and check is the percentages are close to expected Visual check of the histogram is also helpful, if we have unimodal, nearly symmetric graph with no long or very short tails, we can be pretty sure that normality assumption can be made. 2. With small data sets in particular Empirical Rule or a visual check of the histogram is not as useful. A special statistical graph: Normal Probability Plot is often used. The plot is a scatterplot that compares observed data values to the values we would expect to have if the population were normal. If the data came from normal population, points would follow a straight line; Following example illustrates the procedure. 6

7 Ex. Y= age of onset of diabetes, sample of size 5: 7, 48, 43, 51, 49. Order your data. Compute mean and standard deviation: y=39.6, s=18.46 Y=observed height (i-.5)/n= adjusted percentile z α Y=theoretical height= y+ z α s Graphing theoretical height (x-axis) vs observed height (y-axis) we can see that points do not follow a line, first value is much smaller than expected theoretical value indicating left skewness. Following two pictures illustrate Normal Quantile plots for other data sets. normal Ex1 Rainwater ph value Good fit, distribution is close to population normal have particularly Ex2 Survival times in some Curved pattern, distribution is not but right skewed, few individuals long survival times. 7

8 Interpreting Normal plots: Distribution close to normal will be indicated by a straight line (more or less) Left skewed distribution will be indicated by the line curving down from the left (lower observations smaller than expected for normal distr.). Right skewed distribution will be indicated by the line curving up from the right (upper observations larger than expected for normal distr.) Outliers will appear as points far away from the overall pattern of the plot. Granularity: sometimes plotted points appear to form a horizontal segments indicating repeated identical observations. This should not prevent us from adopting a normal distribution for the data. We can avoid this problem often by taking more precise measurements (not rounding to much). Instructions for : TI83, 83-Plus, 84-Plus Computing areas under normal curves: use 2 nd VARS to get to the DISTR menu: option 2 normalcdf(lower limit, upper limit, mean, standard deviation) will give are between lower and upper limits (mean=0 and SD=1 are default values) Ex1 To find area between 1 and 1.7 under N(0,1) use normalcdf(1,1.7,0,1)=.1141 Ex2 To find area onder N(0,1) left of 2.3 use normalcdf( , 2.3,0,1)=.9893 (use any large negative number as lower limit) Ex3 To find area right of 2.11 under N(0,1) use normalcdf(2.11, ,0,1)=.0174 (use any large positive number as upper limit) Ex4 To find area under curve N(12,3) between 10 and 16 use normalcdf(10, 16, 12,3)=.6563 Finding points from under the normal curves when area is given. use 2 nd VARS to get to the DISTR menu: option 3 invnorm(area to the left, mean, standard deviation) (mean=0 and SD=1 are default values) 8

9 Ex5 To find third decile of N(0,1) use invnorm(.3,0,1)=-.52 Ex6 To find 95 th percentile of N(0,1) (or to find Z. 05 ) use invnorm(.95,0,1)=1.645 Ex7 To find third quartile on N(12,3) use invnorm(.75,12,3)=

Chapter 6. THE NORMAL DISTRIBUTION

Chapter 6. THE NORMAL DISTRIBUTION Chapter 6. THE NORMAL DISTRIBUTION Introducing Normally Distributed Variables The distributions of some variables like thickness of the eggshell, serum cholesterol concentration in blood, white blood cells

More information

STA Module 4 The Normal Distribution

STA Module 4 The Normal Distribution STA 2023 Module 4 The Normal Distribution Learning Objectives Upon completing this module, you should be able to 1. Explain what it means for a variable to be normally distributed or approximately normally

More information

STA /25/12. Module 4 The Normal Distribution. Learning Objectives. Let s Look at Some Examples of Normal Curves

STA /25/12. Module 4 The Normal Distribution. Learning Objectives. Let s Look at Some Examples of Normal Curves STA 2023 Module 4 The Normal Distribution Learning Objectives Upon completing this module, you should be able to 1. Explain what it means for a variable to be normally distributed or approximately normally

More information

Data Analysis & Probability

Data Analysis & Probability Unit 5 Probability Distributions Name: Date: Hour: Section 7.2: The Standard Normal Distribution (Area under the curve) Notes By the end of this lesson, you will be able to Find the area under the standard

More information

Normal Distribution. 6.4 Applications of Normal Distribution

Normal Distribution. 6.4 Applications of Normal Distribution Normal Distribution 6.4 Applications of Normal Distribution 1 /20 Homework Read Sec 6-4. Discussion question p316 Do p316 probs 1-10, 16-22, 31, 32, 34-37, 39 2 /20 3 /20 Objective Find the probabilities

More information

Chapter 2 Modeling Distributions of Data

Chapter 2 Modeling Distributions of Data Chapter 2 Modeling Distributions of Data Section 2.1 Describing Location in a Distribution Describing Location in a Distribution Learning Objectives After this section, you should be able to: FIND and

More information

Density Curve (p52) Density curve is a curve that - is always on or above the horizontal axis.

Density Curve (p52) Density curve is a curve that - is always on or above the horizontal axis. 1.3 Density curves p50 Some times the overall pattern of a large number of observations is so regular that we can describe it by a smooth curve. It is easier to work with a smooth curve, because the histogram

More information

Chapter 5: The standard deviation as a ruler and the normal model p131

Chapter 5: The standard deviation as a ruler and the normal model p131 Chapter 5: The standard deviation as a ruler and the normal model p131 Which is the better exam score? 67 on an exam with mean 50 and SD 10 62 on an exam with mean 40 and SD 12? Is it fair to say: 67 is

More information

The Normal Distribution

The Normal Distribution The Normal Distribution Lecture 20 Section 6.3.1 Robb T. Koether Hampden-Sydney College Wed, Sep 28, 2011 Robb T. Koether (Hampden-Sydney College) The Normal Distribution Wed, Sep 28, 2011 1 / 41 Outline

More information

Lecture 3 Questions that we should be able to answer by the end of this lecture:

Lecture 3 Questions that we should be able to answer by the end of this lecture: Lecture 3 Questions that we should be able to answer by the end of this lecture: Which is the better exam score? 67 on an exam with mean 50 and SD 10 or 62 on an exam with mean 40 and SD 12 Is it fair

More information

CHAPTER 2 Modeling Distributions of Data

CHAPTER 2 Modeling Distributions of Data CHAPTER 2 Modeling Distributions of Data 2.2 Density Curves and Normal Distributions The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers Density Curves

More information

Lecture 3 Questions that we should be able to answer by the end of this lecture:

Lecture 3 Questions that we should be able to answer by the end of this lecture: Lecture 3 Questions that we should be able to answer by the end of this lecture: Which is the better exam score? 67 on an exam with mean 50 and SD 10 or 62 on an exam with mean 40 and SD 12 Is it fair

More information

appstats6.notebook September 27, 2016

appstats6.notebook September 27, 2016 Chapter 6 The Standard Deviation as a Ruler and the Normal Model Objectives: 1.Students will calculate and interpret z scores. 2.Students will compare/contrast values from different distributions using

More information

CHAPTER 2 Modeling Distributions of Data

CHAPTER 2 Modeling Distributions of Data CHAPTER 2 Modeling Distributions of Data 2.2 Density Curves and Normal Distributions The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers HW 34. Sketch

More information

MAT 102 Introduction to Statistics Chapter 6. Chapter 6 Continuous Probability Distributions and the Normal Distribution

MAT 102 Introduction to Statistics Chapter 6. Chapter 6 Continuous Probability Distributions and the Normal Distribution MAT 102 Introduction to Statistics Chapter 6 Chapter 6 Continuous Probability Distributions and the Normal Distribution 6.2 Continuous Probability Distributions Characteristics of a Continuous Probability

More information

Learning Objectives. Continuous Random Variables & The Normal Probability Distribution. Continuous Random Variable

Learning Objectives. Continuous Random Variables & The Normal Probability Distribution. Continuous Random Variable Learning Objectives Continuous Random Variables & The Normal Probability Distribution 1. Understand characteristics about continuous random variables and probability distributions 2. Understand the uniform

More information

Lecture 21 Section Fri, Oct 3, 2008

Lecture 21 Section Fri, Oct 3, 2008 Lecture 21 Section 6.3.1 Hampden-Sydney College Fri, Oct 3, 2008 Outline 1 2 3 4 5 6 Exercise 6.15, page 378. A young woman needs a 15-ampere fuse for the electrical system in her apartment and has decided

More information

CHAPTER 2 Modeling Distributions of Data

CHAPTER 2 Modeling Distributions of Data CHAPTER 2 Modeling Distributions of Data 2.2 Density Curves and Normal Distributions The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers Density Curves

More information

Chapter 2: Modeling Distributions of Data

Chapter 2: Modeling Distributions of Data Chapter 2: Modeling Distributions of Data Section 2.2 The Practice of Statistics, 4 th edition - For AP* STARNES, YATES, MOORE Chapter 2 Modeling Distributions of Data 2.1 Describing Location in a Distribution

More information

Section 2.2 Normal Distributions. Normal Distributions

Section 2.2 Normal Distributions. Normal Distributions Section 2.2 Normal Distributions Normal Distributions One particularly important class of density curves are the Normal curves, which describe Normal distributions. All Normal curves are symmetric, single-peaked,

More information

IT 403 Practice Problems (1-2) Answers

IT 403 Practice Problems (1-2) Answers IT 403 Practice Problems (1-2) Answers #1. Using Tukey's Hinges method ('Inclusionary'), what is Q3 for this dataset? 2 3 5 7 11 13 17 a. 7 b. 11 c. 12 d. 15 c (12) #2. How do quartiles and percentiles

More information

Key: 5 9 represents a team with 59 wins. (c) The Kansas City Royals and Cleveland Indians, who both won 65 games.

Key: 5 9 represents a team with 59 wins. (c) The Kansas City Royals and Cleveland Indians, who both won 65 games. AP statistics Chapter 2 Notes Name Modeling Distributions of Data Per Date 2.1A Distribution of a variable is the a variable takes and it takes that value. When working with quantitative data we can calculate

More information

Section 10.4 Normal Distributions

Section 10.4 Normal Distributions Section 10.4 Normal Distributions Random Variables Suppose a bank is interested in improving its services to customers. The manager decides to begin by finding the amount of time tellers spend on each

More information

Sections 4.3 and 4.4

Sections 4.3 and 4.4 Sections 4.3 and 4.4 Timothy Hanson Department of Statistics, University of South Carolina Stat 205: Elementary Statistics for the Biological and Life Sciences 1 / 32 4.3 Areas under normal densities Every

More information

BIOL Gradation of a histogram (a) into the normal curve (b)

BIOL Gradation of a histogram (a) into the normal curve (b) (التوزيع الطبيعي ( Distribution Normal (Gaussian) One of the most important distributions in statistics is a continuous distribution called the normal distribution or Gaussian distribution. Consider the

More information

Prepare a stem-and-leaf graph for the following data. In your final display, you should arrange the leaves for each stem in increasing order.

Prepare a stem-and-leaf graph for the following data. In your final display, you should arrange the leaves for each stem in increasing order. Chapter 2 2.1 Descriptive Statistics A stem-and-leaf graph, also called a stemplot, allows for a nice overview of quantitative data without losing information on individual observations. It can be a good

More information

CHAPTER 2: Describing Location in a Distribution

CHAPTER 2: Describing Location in a Distribution CHAPTER 2: Describing Location in a Distribution 2.1 Goals: 1. Compute and use z-scores given the mean and sd 2. Compute and use the p th percentile of an observation 3. Intro to density curves 4. More

More information

The Normal Distribution

The Normal Distribution Chapter 6 The Normal Distribution Continuous random variables are used to approximate probabilities where there are many possibilities or an infinite number of possibilities on a given trial. One of the

More information

Unit 7 Statistics. AFM Mrs. Valentine. 7.1 Samples and Surveys

Unit 7 Statistics. AFM Mrs. Valentine. 7.1 Samples and Surveys Unit 7 Statistics AFM Mrs. Valentine 7.1 Samples and Surveys v Obj.: I will understand the different methods of sampling and studying data. I will be able to determine the type used in an example, and

More information

6-1 THE STANDARD NORMAL DISTRIBUTION

6-1 THE STANDARD NORMAL DISTRIBUTION 6-1 THE STANDARD NORMAL DISTRIBUTION The major focus of this chapter is the concept of a normal probability distribution, but we begin with a uniform distribution so that we can see the following two very

More information

Chapter 6 Normal Probability Distributions

Chapter 6 Normal Probability Distributions Chapter 6 Normal Probability Distributions 6-1 Review and Preview 6-2 The Standard Normal Distribution 6-3 Applications of Normal Distributions 6-4 Sampling Distributions and Estimators 6-5 The Central

More information

Chapter 2: The Normal Distributions

Chapter 2: The Normal Distributions Chapter 2: The Normal Distributions Measures of Relative Standing & Density Curves Z-scores (Measures of Relative Standing) Suppose there is one spot left in the University of Michigan class of 2014 and

More information

Chapter 1. Looking at Data-Distribution

Chapter 1. Looking at Data-Distribution Chapter 1. Looking at Data-Distribution Statistics is the scientific discipline that provides methods to draw right conclusions: 1)Collecting the data 2)Describing the data 3)Drawing the conclusions Raw

More information

Averages and Variation

Averages and Variation Averages and Variation 3 Copyright Cengage Learning. All rights reserved. 3.1-1 Section 3.1 Measures of Central Tendency: Mode, Median, and Mean Copyright Cengage Learning. All rights reserved. 3.1-2 Focus

More information

STP 226 ELEMENTARY STATISTICS NOTES PART 2 - DESCRIPTIVE STATISTICS CHAPTER 3 DESCRIPTIVE MEASURES

STP 226 ELEMENTARY STATISTICS NOTES PART 2 - DESCRIPTIVE STATISTICS CHAPTER 3 DESCRIPTIVE MEASURES STP 6 ELEMENTARY STATISTICS NOTES PART - DESCRIPTIVE STATISTICS CHAPTER 3 DESCRIPTIVE MEASURES Chapter covered organizing data into tables, and summarizing data with graphical displays. We will now use

More information

10.4 Measures of Central Tendency and Variation

10.4 Measures of Central Tendency and Variation 10.4 Measures of Central Tendency and Variation Mode-->The number that occurs most frequently; there can be more than one mode ; if each number appears equally often, then there is no mode at all. (mode

More information

10.4 Measures of Central Tendency and Variation

10.4 Measures of Central Tendency and Variation 10.4 Measures of Central Tendency and Variation Mode-->The number that occurs most frequently; there can be more than one mode ; if each number appears equally often, then there is no mode at all. (mode

More information

Ms Nurazrin Jupri. Frequency Distributions

Ms Nurazrin Jupri. Frequency Distributions Frequency Distributions Frequency Distributions After collecting data, the first task for a researcher is to organize and simplify the data so that it is possible to get a general overview of the results.

More information

Section 2.2 Normal Distributions

Section 2.2 Normal Distributions Section 2.2 Mrs. Daniel AP Statistics We abbreviate the Normal distribution with mean µ and standard deviation σ as N(µ,σ). Any particular Normal distribution is completely specified by two numbers: its

More information

Lecture Slides. Elementary Statistics Twelfth Edition. by Mario F. Triola. and the Triola Statistics Series. Section 6.2-1

Lecture Slides. Elementary Statistics Twelfth Edition. by Mario F. Triola. and the Triola Statistics Series. Section 6.2-1 Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series by Mario F. Triola Section 6.2-1 Chapter 6 Normal Probability Distributions 6-1 Review and Preview 6-2 The Standard

More information

Chapter 6: Continuous Random Variables & the Normal Distribution. 6.1 Continuous Probability Distribution

Chapter 6: Continuous Random Variables & the Normal Distribution. 6.1 Continuous Probability Distribution Chapter 6: Continuous Random Variables & the Normal Distribution 6.1 Continuous Probability Distribution and the Normal Probability Distribution 6.2 Standardizing a Normal Distribution 6.3 Applications

More information

Vocabulary. 5-number summary Rule. Area principle. Bar chart. Boxplot. Categorical data condition. Categorical variable.

Vocabulary. 5-number summary Rule. Area principle. Bar chart. Boxplot. Categorical data condition. Categorical variable. 5-number summary 68-95-99.7 Rule Area principle Bar chart Bimodal Boxplot Case Categorical data Categorical variable Center Changing center and spread Conditional distribution Context Contingency table

More information

Lecture 6: Chapter 6 Summary

Lecture 6: Chapter 6 Summary 1 Lecture 6: Chapter 6 Summary Z-score: Is the distance of each data value from the mean in standard deviation Standardizes data values Standardization changes the mean and the standard deviation: o Z

More information

4.3 The Normal Distribution

4.3 The Normal Distribution 4.3 The Normal Distribution Objectives. Definition of normal distribution. Standard normal distribution. Specialties of the graph of the standard normal distribution. Percentiles of the standard normal

More information

Distributions of random variables

Distributions of random variables Chapter 3 Distributions of random variables 31 Normal distribution Among all the distributions we see in practice, one is overwhelmingly the most common The symmetric, unimodal, bell curve is ubiquitous

More information

Chapter 6: DESCRIPTIVE STATISTICS

Chapter 6: DESCRIPTIVE STATISTICS Chapter 6: DESCRIPTIVE STATISTICS Random Sampling Numerical Summaries Stem-n-Leaf plots Histograms, and Box plots Time Sequence Plots Normal Probability Plots Sections 6-1 to 6-5, and 6-7 Random Sampling

More information

Introduction to the Practice of Statistics Fifth Edition Moore, McCabe

Introduction to the Practice of Statistics Fifth Edition Moore, McCabe Introduction to the Practice of Statistics Fifth Edition Moore, McCabe Section 1.3 Homework Answers Assignment 5 1.80 If you ask a computer to generate "random numbers between 0 and 1, you uniform will

More information

STA Rev. F Learning Objectives. Learning Objectives (Cont.) Module 3 Descriptive Measures

STA Rev. F Learning Objectives. Learning Objectives (Cont.) Module 3 Descriptive Measures STA 2023 Module 3 Descriptive Measures Learning Objectives Upon completing this module, you should be able to: 1. Explain the purpose of a measure of center. 2. Obtain and interpret the mean, median, and

More information

Chapter 3 - Displaying and Summarizing Quantitative Data

Chapter 3 - Displaying and Summarizing Quantitative Data Chapter 3 - Displaying and Summarizing Quantitative Data 3.1 Graphs for Quantitative Data (LABEL GRAPHS) August 25, 2014 Histogram (p. 44) - Graph that uses bars to represent different frequencies or relative

More information

CHAPTER 3: Data Description

CHAPTER 3: Data Description CHAPTER 3: Data Description You ve tabulated and made pretty pictures. Now what numbers do you use to summarize your data? Ch3: Data Description Santorico Page 68 You ll find a link on our website to a

More information

Chapter 5. Normal. Normal Curve. the Normal. Curve Examples. Standard Units Standard Units Examples. for Data

Chapter 5. Normal. Normal Curve. the Normal. Curve Examples. Standard Units Standard Units Examples. for Data curve Approximation Part II Descriptive Statistics The Approximation Approximation The famous normal curve can often be used as an 'ideal' histogram, to which histograms for data can be compared. Its equation

More information

Ch6: The Normal Distribution

Ch6: The Normal Distribution Ch6: The Normal Distribution Introduction Review: A continuous random variable can assume any value between two endpoints. Many continuous random variables have an approximately normal distribution, which

More information

Chapter 2: Statistical Models for Distributions

Chapter 2: Statistical Models for Distributions Chapter 2: Statistical Models for Distributions 2.2 Normal Distributions In Chapter 2 of YMS, we learn that distributions of data can be approximated by a mathematical model known as a density curve. In

More information

Chapter 6 The Standard Deviation as Ruler and the Normal Model

Chapter 6 The Standard Deviation as Ruler and the Normal Model ST 305 Chapter 6 Reiland The Standard Deviation as Ruler and the Normal Model Chapter Objectives: At the end of this chapter you should be able to: 1) describe how adding or subtracting the same value

More information

How individual data points are positioned within a data set.

How individual data points are positioned within a data set. Section 3.4 Measures of Position Percentiles How individual data points are positioned within a data set. P k is the value such that k% of a data set is less than or equal to P k. For example if we said

More information

Math 120 Introduction to Statistics Mr. Toner s Lecture Notes 3.1 Measures of Central Tendency

Math 120 Introduction to Statistics Mr. Toner s Lecture Notes 3.1 Measures of Central Tendency Math 1 Introduction to Statistics Mr. Toner s Lecture Notes 3.1 Measures of Central Tendency lowest value + highest value midrange The word average: is very ambiguous and can actually refer to the mean,

More information

7.2. The Standard Normal Distribution

7.2. The Standard Normal Distribution 7.2 The Standard Normal Distribution Standard Normal The standard normal curve is the one with mean μ = 0 and standard deviation σ = 1 We have related the general normal random variable to the standard

More information

Normal Data ID1050 Quantitative & Qualitative Reasoning

Normal Data ID1050 Quantitative & Qualitative Reasoning Normal Data ID1050 Quantitative & Qualitative Reasoning Histogram for Different Sample Sizes For a small sample, the choice of class (group) size dramatically affects how the histogram appears. Say we

More information

Distributions of Continuous Data

Distributions of Continuous Data C H A P T ER Distributions of Continuous Data New cars and trucks sold in the United States average about 28 highway miles per gallon (mpg) in 2010, up from about 24 mpg in 2004. Some of the improvement

More information

The first few questions on this worksheet will deal with measures of central tendency. These data types tell us where the center of the data set lies.

The first few questions on this worksheet will deal with measures of central tendency. These data types tell us where the center of the data set lies. Instructions: You are given the following data below these instructions. Your client (Courtney) wants you to statistically analyze the data to help her reach conclusions about how well she is teaching.

More information

No. of blue jelly beans No. of bags

No. of blue jelly beans No. of bags Math 167 Ch5 Review 1 (c) Janice Epstein CHAPTER 5 EXPLORING DATA DISTRIBUTIONS A sample of jelly bean bags is chosen and the number of blue jelly beans in each bag is counted. The results are shown in

More information

2.1 Objectives. Math Chapter 2. Chapter 2. Variable. Categorical Variable EXPLORING DATA WITH GRAPHS AND NUMERICAL SUMMARIES

2.1 Objectives. Math Chapter 2. Chapter 2. Variable. Categorical Variable EXPLORING DATA WITH GRAPHS AND NUMERICAL SUMMARIES EXPLORING DATA WITH GRAPHS AND NUMERICAL SUMMARIES Chapter 2 2.1 Objectives 2.1 What Are the Types of Data? www.managementscientist.org 1. Know the definitions of a. Variable b. Categorical versus quantitative

More information

Name: Date: Period: Chapter 2. Section 1: Describing Location in a Distribution

Name: Date: Period: Chapter 2. Section 1: Describing Location in a Distribution Name: Date: Period: Chapter 2 Section 1: Describing Location in a Distribution Suppose you earned an 86 on a statistics quiz. The question is: should you be satisfied with this score? What if it is the

More information

Measures of Position

Measures of Position Measures of Position In this section, we will learn to use fractiles. Fractiles are numbers that partition, or divide, an ordered data set into equal parts (each part has the same number of data entries).

More information

MAT 110 WORKSHOP. Updated Fall 2018

MAT 110 WORKSHOP. Updated Fall 2018 MAT 110 WORKSHOP Updated Fall 2018 UNIT 3: STATISTICS Introduction Choosing a Sample Simple Random Sample: a set of individuals from the population chosen in a way that every individual has an equal chance

More information

The standard deviation 1 n

The standard deviation 1 n The standard deviation 1 SD = (xj x) n 2 The SD gives a measure of how the data are clustered around the mean. If the SD is larger, then the data are more spread out we are more likely to find data that

More information

Chapter2 Description of samples and populations. 2.1 Introduction.

Chapter2 Description of samples and populations. 2.1 Introduction. Chapter2 Description of samples and populations. 2.1 Introduction. Statistics=science of analyzing data. Information collected (data) is gathered in terms of variables (characteristics of a subject that

More information

Math 14 Lecture Notes Ch. 6.1

Math 14 Lecture Notes Ch. 6.1 6.1 Normal Distribution What is normal? a 10-year old boy that is 4' tall? 5' tall? 6' tall? a 25-year old woman with a shoe size of 5? 7? 9? an adult alligator that weighs 200 pounds? 500 pounds? 800

More information

Chapter 2 Describing, Exploring, and Comparing Data

Chapter 2 Describing, Exploring, and Comparing Data Slide 1 Chapter 2 Describing, Exploring, and Comparing Data Slide 2 2-1 Overview 2-2 Frequency Distributions 2-3 Visualizing Data 2-4 Measures of Center 2-5 Measures of Variation 2-6 Measures of Relative

More information

Stat 528 (Autumn 2008) Density Curves and the Normal Distribution. Measures of center and spread. Features of the normal distribution

Stat 528 (Autumn 2008) Density Curves and the Normal Distribution. Measures of center and spread. Features of the normal distribution Stat 528 (Autumn 2008) Density Curves and the Normal Distribution Reading: Section 1.3 Density curves An example: GRE scores Measures of center and spread The normal distribution Features of the normal

More information

Chapter 2: The Normal Distribution

Chapter 2: The Normal Distribution Chapter 2: The Normal Distribution 2.1 Density Curves and the Normal Distributions 2.2 Standard Normal Calculations 1 2 Histogram for Strength of Yarn Bobbins 15.60 16.10 16.60 17.10 17.60 18.10 18.60

More information

CHAPTER 2 DESCRIPTIVE STATISTICS

CHAPTER 2 DESCRIPTIVE STATISTICS CHAPTER 2 DESCRIPTIVE STATISTICS 1. Stem-and-Leaf Graphs, Line Graphs, and Bar Graphs The distribution of data is how the data is spread or distributed over the range of the data values. This is one of

More information

1. The Normal Distribution, continued

1. The Normal Distribution, continued Math 1125-Introductory Statistics Lecture 16 10/9/06 1. The Normal Distribution, continued Recall that the standard normal distribution is symmetric about z = 0, so the area to the right of zero is 0.5000.

More information

Section 1.2. Displaying Quantitative Data with Graphs. Mrs. Daniel AP Stats 8/22/2013. Dotplots. How to Make a Dotplot. Mrs. Daniel AP Statistics

Section 1.2. Displaying Quantitative Data with Graphs. Mrs. Daniel AP Stats 8/22/2013. Dotplots. How to Make a Dotplot. Mrs. Daniel AP Statistics Section. Displaying Quantitative Data with Graphs Mrs. Daniel AP Statistics Section. Displaying Quantitative Data with Graphs After this section, you should be able to CONSTRUCT and INTERPRET dotplots,

More information

Probability and Statistics. Copyright Cengage Learning. All rights reserved.

Probability and Statistics. Copyright Cengage Learning. All rights reserved. Probability and Statistics Copyright Cengage Learning. All rights reserved. 14.6 Descriptive Statistics (Graphical) Copyright Cengage Learning. All rights reserved. Objectives Data in Categories Histograms

More information

a. divided by the. 1) Always round!! a) Even if class width comes out to a, go up one.

a. divided by the. 1) Always round!! a) Even if class width comes out to a, go up one. Probability and Statistics Chapter 2 Notes I Section 2-1 A Steps to Constructing Frequency Distributions 1 Determine number of (may be given to you) a Should be between and classes 2 Find the Range a The

More information

3.5 Applying the Normal Distribution: Z-Scores

3.5 Applying the Normal Distribution: Z-Scores 3.5 Applying the Normal Distribution: Z-Scores In the previous section, you learned about the normal curve and the normal distribution. You know that the area under any normal curve is 1, and that 68%

More information

UNIT 1A EXPLORING UNIVARIATE DATA

UNIT 1A EXPLORING UNIVARIATE DATA A.P. STATISTICS E. Villarreal Lincoln HS Math Department UNIT 1A EXPLORING UNIVARIATE DATA LESSON 1: TYPES OF DATA Here is a list of important terms that we must understand as we begin our study of statistics

More information

Frequency Distributions

Frequency Distributions Displaying Data Frequency Distributions After collecting data, the first task for a researcher is to organize and summarize the data so that it is possible to get a general overview of the results. Remember,

More information

2.1: Frequency Distributions and Their Graphs

2.1: Frequency Distributions and Their Graphs 2.1: Frequency Distributions and Their Graphs Frequency Distribution - way to display data that has many entries - table that shows classes or intervals of data entries and the number of entries in each

More information

AND NUMERICAL SUMMARIES. Chapter 2

AND NUMERICAL SUMMARIES. Chapter 2 EXPLORING DATA WITH GRAPHS AND NUMERICAL SUMMARIES Chapter 2 2.1 What Are the Types of Data? 2.1 Objectives www.managementscientist.org 1. Know the definitions of a. Variable b. Categorical versus quantitative

More information

Probability & Statistics Chapter 6. Normal Distribution

Probability & Statistics Chapter 6. Normal Distribution I. Graphs of Normal Probability Distributions Normal Distribution Studied by French mathematician Abraham de Moivre and German mathematician Carl Friedrich Gauss. Gauss work was so important that the normal

More information

The Normal Distribution

The Normal Distribution 14-4 OBJECTIVES Use the normal distribution curve. The Normal Distribution TESTING The class of 1996 was the first class to take the adjusted Scholastic Assessment Test. The test was adjusted so that the

More information

So..to be able to make comparisons possible, we need to compare them with their respective distributions.

So..to be able to make comparisons possible, we need to compare them with their respective distributions. Unit 3 ~ Modeling Distributions of Data 1 ***Section 2.1*** Measures of Relative Standing and Density Curves (ex) Suppose that a professional soccer team has the money to sign one additional player and

More information

Student Learning Objectives

Student Learning Objectives Student Learning Objectives A. Understand that the overall shape of a distribution of a large number of observations can be summarized by a smooth curve called a density curve. B. Know that an area under

More information

Chapter 6. The Normal Distribution. McGraw-Hill, Bluman, 7 th ed., Chapter 6 1

Chapter 6. The Normal Distribution. McGraw-Hill, Bluman, 7 th ed., Chapter 6 1 Chapter 6 The Normal Distribution McGraw-Hill, Bluman, 7 th ed., Chapter 6 1 Bluman, Chapter 6 2 Chapter 6 Overview Introduction 6-1 Normal Distributions 6-2 Applications of the Normal Distribution 6-3

More information

Lecture Slides. Elementary Statistics Twelfth Edition. by Mario F. Triola. and the Triola Statistics Series. Section 2.1- #

Lecture Slides. Elementary Statistics Twelfth Edition. by Mario F. Triola. and the Triola Statistics Series. Section 2.1- # Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series by Mario F. Triola Chapter 2 Summarizing and Graphing Data 2-1 Review and Preview 2-2 Frequency Distributions 2-3 Histograms

More information

CHAPTER 2: SAMPLING AND DATA

CHAPTER 2: SAMPLING AND DATA CHAPTER 2: SAMPLING AND DATA This presentation is based on material and graphs from Open Stax and is copyrighted by Open Stax and Georgia Highlands College. OUTLINE 2.1 Stem-and-Leaf Graphs (Stemplots),

More information

23.2 Normal Distributions

23.2 Normal Distributions 1_ Locker LESSON 23.2 Normal Distributions Common Core Math Standards The student is expected to: S-ID.4 Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate

More information

L E A R N I N G O B JE C T I V E S

L E A R N I N G O B JE C T I V E S 2.2 Measures of Central Location L E A R N I N G O B JE C T I V E S 1. To learn the concept of the center of a data set. 2. To learn the meaning of each of three measures of the center of a data set the

More information

Example 1. Find the x value that has a left tail area of.1131 P ( x <??? ) =. 1131

Example 1. Find the x value that has a left tail area of.1131 P ( x <??? ) =. 1131 Section 6 4D: Finding a Value of x with a Given tail arae Label the shaded area for both graphs. Find the value for z and label the z axis. Find the value for x for the given area under the normal curve

More information

Ch3 E lement Elemen ar tary Descriptive Descriptiv Statistics

Ch3 E lement Elemen ar tary Descriptive Descriptiv Statistics Ch3 Elementary Descriptive Statistics Section 3.1: Elementary Graphical Treatment of Data Before doing ANYTHING with data: Understand the question. An approximate answer to the exact question is always

More information

Chapter 3 Analyzing Normal Quantitative Data

Chapter 3 Analyzing Normal Quantitative Data Chapter 3 Analyzing Normal Quantitative Data Introduction: In chapters 1 and 2, we focused on analyzing categorical data and exploring relationships between categorical data sets. We will now be doing

More information

MATH NATION SECTION 9 H.M.H. RESOURCES

MATH NATION SECTION 9 H.M.H. RESOURCES MATH NATION SECTION 9 H.M.H. RESOURCES SPECIAL NOTE: These resources were assembled to assist in student readiness for their upcoming Algebra 1 EOC. Although these resources have been compiled for your

More information

Acquisition Description Exploration Examination Understanding what data is collected. Characterizing properties of data.

Acquisition Description Exploration Examination Understanding what data is collected. Characterizing properties of data. Summary Statistics Acquisition Description Exploration Examination what data is collected Characterizing properties of data. Exploring the data distribution(s). Identifying data quality problems. Selecting

More information

CHAPTER 2: DESCRIPTIVE STATISTICS Lecture Notes for Introductory Statistics 1. Daphne Skipper, Augusta University (2016)

CHAPTER 2: DESCRIPTIVE STATISTICS Lecture Notes for Introductory Statistics 1. Daphne Skipper, Augusta University (2016) CHAPTER 2: DESCRIPTIVE STATISTICS Lecture Notes for Introductory Statistics 1 Daphne Skipper, Augusta University (2016) 1. Stem-and-Leaf Graphs, Line Graphs, and Bar Graphs The distribution of data is

More information

1.3 Graphical Summaries of Data

1.3 Graphical Summaries of Data Arkansas Tech University MATH 3513: Applied Statistics I Dr. Marcel B. Finan 1.3 Graphical Summaries of Data In the previous section we discussed numerical summaries of either a sample or a data. In this

More information

Learner Expectations UNIT 1: GRAPICAL AND NUMERIC REPRESENTATIONS OF DATA. Sept. Fathom Lab: Distributions and Best Methods of Display

Learner Expectations UNIT 1: GRAPICAL AND NUMERIC REPRESENTATIONS OF DATA. Sept. Fathom Lab: Distributions and Best Methods of Display CURRICULUM MAP TEMPLATE Priority Standards = Approximately 70% Supporting Standards = Approximately 20% Additional Standards = Approximately 10% HONORS PROBABILITY AND STATISTICS Essential Questions &

More information

AP Statistics. Study Guide

AP Statistics. Study Guide Measuring Relative Standing Standardized Values and z-scores AP Statistics Percentiles Rank the data lowest to highest. Counting up from the lowest value to the select data point we discover the percentile

More information

height VUD x = x 1 + x x N N 2 + (x 2 x) 2 + (x N x) 2. N

height VUD x = x 1 + x x N N 2 + (x 2 x) 2 + (x N x) 2. N Math 3: CSM Tutorial: Probability, Statistics, and Navels Fall 2 In this worksheet, we look at navel ratios, means, standard deviations, relative frequency density histograms, and probability density functions.

More information