Deriving Uniform Polyhedra. Wythoff s Construction

Size: px
Start display at page:

Download "Deriving Uniform Polyhedra. Wythoff s Construction"

Transcription

1 Deriving Uniform Polyhedra with Wythoff s Construction Don Romano UCD Discrete Math Seminar 30 August 2010

2 Outline of this talk Fundamentals of uniform polyhedra Definitions and properties Convex solids Regular polyhedra Nonconvex solids Early research Systematic approach for deriving uniform polyhedra Spherical tessellations Wythoff s Construction The complete enumeration

3 Definitions and a few properties Def. A polyhedron is a finite set of polygons such that every side of each belongs to just one other, with the restriction that no subset has the same property Def. A uniform polyhedron is made up of regular polygons and its vertices are transitive Vertex transitivity means there is an isometry (rotation, reflection) that takes any vertex to any other All vertices are congruent and lie on a sphere There are 75 uniform polyhedra 18 convex, 57 nonconvex and an infinite set of prismatoids

4 Exhibit at London Museum of Science

5 Budzelaar Collection

6 Pawlikowski Collection

7 Convex Uniform Polyhedra 5 Platonic Solids Faces are regular polygons of only one kind Symmetry groups form basis for all uniform polyhedra Tetrahedral, Octahedral, Icosahedral Known since antiquity Euclid s Elements 13 Archimedean Solids Faces can be of more than one kind (2 or 3) Can be derived from Platonics by simple operations of truncation, rectification, and cantellation Two enantiomorphic pairs (snubs) First enumeration by J. Kepler (ca. 1600) 2 infinite sets of convex prisms and antiprisms Dihedral symmetry

8 Platonic and Archimedean Solids

9 Regular Polyhedra Def. A regular polyhedron is made up of only one kind of regular polygon and vertices are congruent The 5 Platonic solids are regular 4 Kepler-Poinsot solids are regular and nonconvex 2 have star faces, 2 have star vertices Derived by stellating or faceting Platonics Wayside shrines at which one should worship on the way to higher things Peter McMullen

10 Nonconvex Uniform Polyhedra Can be derived by faceting Archimedean solids Star polygons can be inscribed in faces Removing one kind of polygon face and inserting others Isomeghethic: same edge set Many uniform polyhedra discovered between Edmund Hess (2) Johann Pitsch (18) Albert Badoureau (37) Max Brückner Vielecke und Vielflache (1900) Isogonal-isohedra a.k.a. noble polyhedra

11 Brückner s Noble Polyhedra and many more...

12 Spherical Tessellations Spherical triangles are bounded by segments of great circles The sum of the angles of a spherical triangle are greater than 180 and less than 540 Area of spherical triangle A = r² E, where E is the spherical excess, that is, the sum of the angles minus 180 Only four ways to cover the sphere (once) with congruent spherical triangles

13 Möbius Triangles Let the angles of a spherical triangle be π/p, π/q, π/r where p, q, r are integers The area of the spherical triangle [(1/p + 1/q + 1/r) -1] π must be positive Hence, 1/p + 1/q + 1/r > 1. Only possibilities for p, q, r are 2, 3, 4, 5 with the restriction that 4 and 5 cannot occur together These lead to the four fundamental spherical triangles which are known as Möbius Triangles: (2,3 3), (2,3,4), (2,3,5), (2,2,r) Repeated reflections in sides of triangles will tile a sphere exactly once

14 The Four Fundamental Spherical Tilings (2,3 3) (2,3,4) (2,3,5) (2,2,r)

15 Tetrahedral Symmetry g = 24

16 Octahedral Symmetry g = 48

17 Icosahedral Symmetry g = 120

18 Dihedral Symmetry g = 4n

19 Schwarz Triangles Karl Schwarz (1873) Proposed and solved problem of finding all spherical triangles which lead, by repeated reflections in their sides, to a set of congruent triangles covering the sphere a finite number of times Extension of Möbius triangles where p, q, r are rational, but not necessarily integral Still have 1/p + 1/q + 1/r > 1 (positive area) Admissible values for p, q, r are 2, 3, 3/2, 4, 4/3, 5, 5/2, 5/3, 5/4 with restriction that numerators 4 and 5 cannot occur together Some triplets are reducible Some do not cover the sphere a finite number of times 44 distinct Schwarz triangles and 2 others of infinite variety The density, d, of a Schwarz triangle is the number of times sphere is covered

20 Schwarz triangles are composed of fundamental Möbius triangles π/5 π/5 π/5 π/5 π/5 π/2 π/3 π/2 Schwarz triangle (5/2 2 5) density = 3 Schwarz triangle (5/2 2 3) density = 7

21 Schwarz Triangles examples (2, 3, 5) Angles are π/2, π/3, π/5 d = 1 (3, 5, 5/3) Angles are π/3, π/5, 3π/5 d = 4

22 Complete list of Schwarz triangles sorted by density Symmetry Groups 5 Tetrahedral 7 Octahedral 32 Icosahedral 2 Dihedral Density Schwarz triangle 1 (2 3 3), (2 3 4), (2 3 5), (2 2 n) d (2 2 n/d) 2 (3/2 3 3), (3/2 4 4), (3/2 5 5), (5/2 3 3) 3 (2 3/2 3), (2 5/2 5) 4 (3 4/3 4), (3 5/3 5) 5 (2 3/2 3/2), (2 3/2 4) 6 (3/2 3/2 3/2), (5/2 5/2 5/2), (3/2 3 5), (5/4 5 5) 7 (2 3 4/3), (2 3 5/2) 8 (3/2 5/2 5) 9 (2 5/3 5) 10 (3 5/3 5/2), (3 5/4 5) 11 (2 3/2 4/3), (2 3/2 5) 13 (2 3 5/3) 14 (3/2 4/3 4/3), (3/2 5/2 5/2), (3 3 5/4) 16 (3 5/4 5/2) 17 (2 3/2 5/2) 18 (3/2 3 5/3), (5/3 5/3 5/2) 19 (2 3 5/4) 21 (2 5/4 5/2) 22 (3/2 3/2 5/2) 23 (2 3/2 5/3) 26 (3/2 5/3 5/3) 27 (2 5/4 5/3) 29 (2 3/2 5/4) 32 (3/2 5/4 5/3) 34 (3/2 3/2 5/4) 38 (3/2 5/4 5/4) 42 (5/4 5/4 5/4)

23 Wythoff s Construction Kaleidoscopic construction by tiling the sphere with a Schwarz triangles along with a specific point in the triangle Willem Wythoff (1907) applied this method to 4-dimensional problems A point is chosen in Schwarz triangle Repeated reflections of triangles produce multiple instances of that point around sphere If suitable points are chosen, they will generate the vertices of a uniform polyhedron

24 Wythoff point placements Points can be chosen in four ways, each with its own Wythoff Symbol p q r Point is at a vertex P of triangle PQR p q r Point is on side of PQ such that it bisects the angle at R p q r Point is at the incenter of triangle PQR (intersection of angle bisectors) p q r Point is the Fermat point and alternating triangles are used

25 Vertex positions for polyhedron with Wythoff symbol Polyhedron with Wythoff symbol 2 3 5

26 Vertex positions for polyhedron with Wythoff symbol Polyhedron with Wythoff symbol 2 3 5

27 Vertex positions for polyhedron with Wythoff symbol Polyhedron with Wythoff symbol 2 3 5

28 The Fermat point Spherical triangles alternately black and white

29 Vertex positions for polyhedron with Wythoff symbol Polyhedron with Wythoff symbol 2 3 5

30 Wythoff Symbol p qr Quasi-regular (16 polyhedrons) Vertex configuration {q, r, q, r,... q, r} Regular if r = 2 or q = r pq r Semi-regular (33 polyhedrons) Vertex configuration {p, 2r, q, 2r} pqr Even-faced (14 polyhedrons) Vertex configuration {2p, 2q, 2r} pqr Snub (11 polyhedrons) Vertex configuration {3, p, 3, q, 3, r}

31 Non-Wythoffian Polyhedron Great Dirhombicosidodecahedron Discovered by J.C.P. Miller Miller s Monster Found by combining both enantiomorphs of 3 5/3 5/2 Only uniform polyhedron with 8 faces surrounding each vertex Largest number of faces (124) and edges (240) Euler characteristic Χ = - 56 Has 60 diametral squares that can be considered snub faces Existence indicated no general reason for restriction to triangles as snub faces Vertex figure

32 Enumeration and Proof of Completeness H.S.M. Coxeter, M. S. Longuet-Higgins, J.C.P Miller Uniform Polyhedra, Philosophical Transactions of the Royal Society of London, 1954 Complete enumeration of the 75 Conjectured that list was complete S.P. Sopov Proof of the Completeness of the Enumeration of Uniform Polyhedra, Ukrain. Geom. Sbornik, 1970 J. Skilling The Complete Set of Uniform Polyhedra, Philosophical Transactions of the Royal Society of London, 1975 Computer search examined all possible polygon configurations for the basic symmetry groups Skilling s Figure was found by relaxing definition of uniform polyhedron to allow more than two faces at an edge Donald Coxeter John Skilling

33 Skillings Figure

34 Facial Intersections (Think inside the box!) 3/2 3/2 5/2 {3} (1) Polyhedral density = 38 Individual surface segments = 3,000

35 Facial Intersections 3/2 3/2 5/2 {3} (4) Geometry is a skill of the eyes and hands as well as the mind. - J. Pederson

36 Caution: Facial Intersections may be hazardous to your mental health! 3/2 3/2 5/2 {5/2} (3)

37 A novice tackles Miller s Monster (ca. 1973)

38 Uniform polytopes exist in higher dimensions!

Skeletal Polyhedra, Polygonal Complexes, and Nets

Skeletal Polyhedra, Polygonal Complexes, and Nets Skeletal Polyhedra, Polygonal Complexes, and Nets Egon Schulte Northeastern University Rogla 2014 Polyhedra With the passage of time, many changes in point of view about polyhedral structures and their

More information

Uniform Polyhedra. Roman E. Maeder. Published in The Mathematica Journal, 3(4), 1993.

Uniform Polyhedra. Roman E. Maeder. Published in The Mathematica Journal, 3(4), 1993. Uniform Polyhedra Roman E. Maeder Published in The Mathematica Journal, 3(4), 1993. Uniform polyhedra consist of regular faces and congruent vertices. Allowing for nonconvex faces and vertex figures, there

More information

Polyhedra, Complexes, Nets, and Symmetry

Polyhedra, Complexes, Nets, and Symmetry Polyhedra, Complexes, Nets, and Symmetry Egon Schulte Northeastern University, Boston Ateneo Workshop, May 2017 Polyhedra Ancient history (Greeks), closely tied to symmetry. With the passage of time, many

More information

3.D. The Platonic solids

3.D. The Platonic solids 3.D. The Platonic solids The purpose of this addendum to the course notes is to provide more information about regular solid figures, which played an important role in Greek mathematics and philosophy.

More information

STELLATION OF POLYHEDRA, AND COMPUTER IMPLEMENTATION

STELLATION OF POLYHEDRA, AND COMPUTER IMPLEMENTATION STELLATION OF POLYHEDRA, AND COMPUTER IMPLEMENTATION CHRISTOPHER J. HENRICH Abstract. The construction and display of graphic representations of stellated polyhedra requires a painstaking and close analysis

More information

Definitions. Topology/Geometry of Geodesics. Joseph D. Clinton. SNEC June Magnus J. Wenninger

Definitions. Topology/Geometry of Geodesics. Joseph D. Clinton. SNEC June Magnus J. Wenninger Topology/Geometry of Geodesics Joseph D. Clinton SNEC-04 28-29 June 2003 Magnus J. Wenninger Introduction Definitions Topology Goldberg s polyhedra Classes of Geodesic polyhedra Triangular tessellations

More information

Euler-Cayley Formula for Unusual Polyhedra

Euler-Cayley Formula for Unusual Polyhedra Bridges Finland Conference Proceedings Euler-Cayley Formula for Unusual Polyhedra Dirk Huylebrouck Faculty for Architecture, KU Leuven Hoogstraat 51 9000 Gent, Belgium E-mail: dirk.huylebrouck@kuleuven.be

More information

Joint Mathematics Meetings 2014

Joint Mathematics Meetings 2014 Joint Mathematics Meetings 2014 Patterns with Color Symmetry on Triply Periodic Polyhedra Douglas Dunham University of Minnesota Duluth Duluth, Minnesota USA Outline Background Triply periodic polyhedra

More information

Local Mesh Operators: Extrusions Revisited

Local Mesh Operators: Extrusions Revisited Local Mesh Operators: Extrusions Revisited Eric Landreneau Computer Science Department Abstract Vinod Srinivasan Visualization Sciences Program Texas A&M University Ergun Akleman Visualization Sciences

More information

We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance.

We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance. Solid geometry We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance. First, note that everything we have proven for the

More information

Notes on Spherical Geometry

Notes on Spherical Geometry Notes on Spherical Geometry Abhijit Champanerkar College of Staten Island & The Graduate Center, CUNY Spring 2018 1. Vectors and planes in R 3 To review vector, dot and cross products, lines and planes

More information

One simple example is that of a cube. Each face is a square (=regular quadrilateral) and each vertex is connected to exactly three squares.

One simple example is that of a cube. Each face is a square (=regular quadrilateral) and each vertex is connected to exactly three squares. Berkeley Math Circle Intermediate I, 1/23, 1/20, 2/6 Presenter: Elysée Wilson-Egolf Topic: Polygons, Polyhedra, Polytope Series Part 1 Polygon Angle Formula Let s start simple. How do we find the sum of

More information

Math 366 Lecture Notes Section 11.4 Geometry in Three Dimensions

Math 366 Lecture Notes Section 11.4 Geometry in Three Dimensions Math 366 Lecture Notes Section 11.4 Geometry in Three Dimensions Simple Closed Surfaces A simple closed surface has exactly one interior, no holes, and is hollow. A sphere is the set of all points at a

More information

168 Butterflies on a Polyhedron of Genus 3

168 Butterflies on a Polyhedron of Genus 3 168 Butterflies on a Polyhedron of Genus 3 Douglas Dunham Department of Computer Science University of Minnesota, Duluth Duluth, MN 55812-2496, USA E-mail: ddunham@d.umn.edu Web Site: http://www.d.umn.edu/

More information

Question. Why is the third shape not convex?

Question. Why is the third shape not convex? 1. CONVEX POLYGONS Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D. Convex 6 gon Another convex 6 gon Not convex Question. Why is the third

More information

The radius for a regular polygon is the same as the radius of the circumscribed circle.

The radius for a regular polygon is the same as the radius of the circumscribed circle. Perimeter and Area The perimeter and area of geometric shapes are basic properties that we need to know. The more complex a shape is, the more complex the process can be in finding its perimeter and area.

More information

Abstract Construction Projects and the Imagination

Abstract Construction Projects and the Imagination Abstract Construction Projects and the Imagination Hands-on projects for understanding abstract mathematical concepts through the use of polyhedral models and planar designs The 3-dimensional projects

More information

1. CONVEX POLYGONS. Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D.

1. CONVEX POLYGONS. Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D. 1. CONVEX POLYGONS Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D. Convex 6 gon Another convex 6 gon Not convex Question. Why is the third

More information

Regular Polyhedra of Index Two, I

Regular Polyhedra of Index Two, I Regular Polyhedra of Index Two, I Anthony M. Cutler Northeastern University Boston, MA 02115, USA arxiv:1005.4911v1 [math.mg] 26 May 2010 and Egon Schulte Northeastern University Boston, MA 02115, USA

More information

Obtaining the H and T Honeycomb from a Cross-Section of the 16-cell Honeycomb

Obtaining the H and T Honeycomb from a Cross-Section of the 16-cell Honeycomb Bridges 2017 Conference Proceedings Obtaining the H and T Honeycomb from a Cross-Section of the 16-cell Honeycomb Hideki Tsuiki Graduate School of Human and Environmental Studies, Kyoto University Yoshida-Nihonmatsu,

More information

Patterns on Triply Periodic Uniform Polyhedra

Patterns on Triply Periodic Uniform Polyhedra Patterns on Triply Periodic Uniform Polyhedra Douglas Dunham Department of Computer Science University of Minnesota, Duluth Duluth, MN 55812-3036, USA E-mail: ddunham@d.umn.edu Web Site: http://www.d.umn.edu/

More information

Geometry Vocabulary Math Fundamentals Reference Sheet Page 1

Geometry Vocabulary Math Fundamentals Reference Sheet Page 1 Math Fundamentals Reference Sheet Page 1 Acute Angle An angle whose measure is between 0 and 90 Acute Triangle A that has all acute Adjacent Alternate Interior Angle Two coplanar with a common vertex and

More information

arxiv: v1 [math.co] 7 Oct 2012

arxiv: v1 [math.co] 7 Oct 2012 TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000 000 S 0002-9947(XX)0000-0 REGULAR POLYGONAL COMPLEXES IN SPACE, II DANIEL PELLICER AND EGON SCHULTE arxiv:1210.2061v1 [math.co]

More information

Ideas beyond Number. Teacher s guide to Activity worksheets

Ideas beyond Number. Teacher s guide to Activity worksheets Ideas beyond Number Teacher s guide to Activity worksheets Intended outcomes: Students will: extend their knowledge of geometrical objects, both 2D and 3D develop their skills in geometrical reasoning

More information

Zipper Unfoldings of Polyhedral Complexes

Zipper Unfoldings of Polyhedral Complexes Zipper Unfoldings of Polyhedral Complexes Erik D. Demaine Martin L. Demaine Anna Lubiw Arlo Shallit Jonah L. Shallit Abstract We explore which polyhedra and polyhedral complexes can be formed by folding

More information

Polyhedra. Kavitha d/o Krishnan

Polyhedra. Kavitha d/o Krishnan Polyhedra Kavitha d/o Krishnan Supervisor: Associate Professor Helmer Aslaksen Department of Mathematics National University of Singapore Semester I 2001/2002 Abstract Introduction The report focuses on

More information

of Nebraska - Lincoln

of Nebraska - Lincoln University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-2008 Archimedean Solids Anna Anderson University of

More information

Patterned Triply Periodic Polyhedra

Patterned Triply Periodic Polyhedra Patterned Triply Periodic Polyhedra Douglas Dunham Department of Computer Science University of Minnesota, Duluth Duluth, MN 55812-3036, USA E-mail: ddunham@d.umn.edu Web Site: http://www.d.umn.edu/ ddunham/

More information

Polyhedra with Spherical Faces and Quasi-Fuchsian Fractals

Polyhedra with Spherical Faces and Quasi-Fuchsian Fractals Topology and Computer 2017 Polyhedra with Spherical Faces and Quasi-Fuchsian Fractals Kento Nakamura Graduate School of Advanced Mathematical Science, Meiji University Sphairahedron sphaira- (= spherical)

More information

Vertex-Transitive Polyhedra of Higher Genus, I

Vertex-Transitive Polyhedra of Higher Genus, I Vertex-Transitive Polyhedra of Higher Genus, I Undine Leopold arxiv:1502.07497v1 [math.mg] 26 Feb 2015 Since Grünbaum and Shephard s investigation of self-intersection-free polyhedra with positive genus

More information

7. The Gauss-Bonnet theorem

7. The Gauss-Bonnet theorem 7. The Gauss-Bonnet theorem 7.1 Hyperbolic polygons In Euclidean geometry, an n-sided polygon is a subset of the Euclidean plane bounded by n straight lines. Thus the edges of a Euclidean polygon are formed

More information

Answer Key: Three-Dimensional Cross Sections

Answer Key: Three-Dimensional Cross Sections Geometry A Unit Answer Key: Three-Dimensional Cross Sections Name Date Objectives In this lesson, you will: visualize three-dimensional objects from different perspectives be able to create a projection

More information

1 Descartes' Analogy

1 Descartes' Analogy Ellipse Line Paraboloid Parabola Descartes' Analogy www.magicmathworks.org/geomlab Hyperbola Hyperboloid Hyperbolic paraboloid Sphere Cone Cylinder Circle The total angle defect for a polygon is 360 ;

More information

Platonic Solids. Jennie Sköld. January 21, Karlstad University. Symmetries: Groups Algebras and Tensor Calculus FYAD08

Platonic Solids. Jennie Sköld. January 21, Karlstad University. Symmetries: Groups Algebras and Tensor Calculus FYAD08 Platonic Solids Jennie Sköld January 21, 2015 Symmetries: Groups Algebras and Tensor Calculus FYAD08 Karlstad University 1 Contents 1 What are Platonic Solids? 3 2 Symmetries in 3-Space 5 2.1 Isometries

More information

"New" uniform polyhedra

New uniform polyhedra Discrete Geometry: In Honor of W. Kuperberg's 60th Birthday Monographs and Textbooks in Pure and Applied Mathematics, vol. 253. Marcel Dekker, New York, 2003. Pp. 331 350. Branko Grünbaum: "New" uniform

More information

Alice through Looking Glass after Looking Glass: The Mathematics of Mirrors and Kaleidoscopes

Alice through Looking Glass after Looking Glass: The Mathematics of Mirrors and Kaleidoscopes Alice through Looking Glass after Looking Glass: The Mathematics of Mirrors and Kaleidoscopes Roe Goodman Rutgers Math Department U Seminar May 1, 2008 The Magic Mirrors of Alice Alice Through Looking

More information

1 Appendix to notes 2, on Hyperbolic geometry:

1 Appendix to notes 2, on Hyperbolic geometry: 1230, notes 3 1 Appendix to notes 2, on Hyperbolic geometry: The axioms of hyperbolic geometry are axioms 1-4 of Euclid, plus an alternative to axiom 5: Axiom 5-h: Given a line l and a point p not on l,

More information

Grade VIII. Mathematics Geometry Notes. #GrowWithGreen

Grade VIII. Mathematics Geometry Notes. #GrowWithGreen Grade VIII Mathematics Geometry Notes #GrowWithGreen Polygons can be classified according to their number of sides (or vertices). The sum of all the interior angles of an n -sided polygon is given by,

More information

CERTAIN FORMS OF THE ICOSAHEDRON AND A METHOD FOR DERIVING AND DESIGNATING HIGHER POLYHEDRA. North High School, Worcester, Massachusetts,

CERTAIN FORMS OF THE ICOSAHEDRON AND A METHOD FOR DERIVING AND DESIGNATING HIGHER POLYHEDRA. North High School, Worcester, Massachusetts, CERTAIN FORMS OF THE ICOSAHEDRON AND A METHOD FOR DERIVING AND DESIGNATING HIGHER POLYHEDRA BY ALBERT HARRY WHEELER, North High School, Worcester, Massachusetts, U.S.A. The Five Regular Solids have afforded

More information

REGULAR TILINGS. Hints: There are only three regular tilings.

REGULAR TILINGS. Hints: There are only three regular tilings. REGULAR TILINGS Description: A regular tiling is a tiling of the plane consisting of multiple copies of a single regular polygon, meeting edge to edge. How many can you construct? Comments: While these

More information

18 SYMMETRY OF POLYTOPES AND POLYHEDRA

18 SYMMETRY OF POLYTOPES AND POLYHEDRA 18 SYMMETRY OF POLYTOPES AND POLYHEDRA Egon Schulte INTRODUCTION Symmetry of geometric figures is among the most frequently recurring themes in science. The present chapter discusses symmetry of discrete

More information

Introduction to Coxeter Groups

Introduction to Coxeter Groups OSU April 25, 2011 http://www.math.ohio-state.edu/ mdavis/ 1 Geometric reflection groups Some history Properties 2 Some history Properties Dihedral groups A dihedral gp is any gp which is generated by

More information

Triangles and Squares David Eppstein, ICS Theory Group, April 20, 2001

Triangles and Squares David Eppstein, ICS Theory Group, April 20, 2001 Triangles and Squares David Eppstein, ICS Theory Group, April 20, 2001 Which unit-side-length convex polygons can be formed by packing together unit squares and unit equilateral triangles? For instance

More information

(1) Page #2 26 Even. (2) Page 596 #1 14. (3) Page #15 25 ; FF #26 and 28. (4) Page 603 #1 18. (5) Page #19 26

(1) Page #2 26 Even. (2) Page 596 #1 14. (3) Page #15 25 ; FF #26 and 28. (4) Page 603 #1 18. (5) Page #19 26 Geometry/Trigonometry Unit 10: Surface Area and Volume of Solids Notes Name: Date: Period: # (1) Page 590 591 #2 26 Even (2) Page 596 #1 14 (3) Page 596 597 #15 25 ; FF #26 and 28 (4) Page 603 #1 18 (5)

More information

Skeletal Geometric Complexes and Their Symmetries

Skeletal Geometric Complexes and Their Symmetries Skeletal Geometric Complexes and Their Symmetries arxiv:1610.02619v1 [math.mg] 9 Oct 2016 Egon Schulte Department of Mathematics Northeastern University, Boston, MA 02115, USA and Asia Ivić Weiss Department

More information

On a Triply Periodic Polyhedral Surface Whose Vertices are Weierstrass Points

On a Triply Periodic Polyhedral Surface Whose Vertices are Weierstrass Points Arnold Math J. DOI 10.1007/s40598-017-0067-9 RESEARCH CONTRIBUTION On a Triply Periodic Polyhedral Surface Whose Vertices are Weierstrass Points Dami Lee 1 Received: 3 May 2016 / Revised: 12 March 2017

More information

Week 7 Convex Hulls in 3D

Week 7 Convex Hulls in 3D 1 Week 7 Convex Hulls in 3D 2 Polyhedra A polyhedron is the natural generalization of a 2D polygon to 3D 3 Closed Polyhedral Surface A closed polyhedral surface is a finite set of interior disjoint polygons

More information

Lecture 19: Introduction To Topology

Lecture 19: Introduction To Topology Chris Tralie, Duke University 3/24/2016 Announcements Group Assignment 2 Due Wednesday 3/30 First project milestone Friday 4/8/2016 Welcome to unit 3! Table of Contents The Euler Characteristic Spherical

More information

NUMERICAL MODELS OF THE FIFTY-NINE ICOSAHEDRA

NUMERICAL MODELS OF THE FIFTY-NINE ICOSAHEDRA NUMERICAL MODELS OF THE FIFTY-NINE ICOSAHEDRA JEFF MARSH Johannes Kepler s first published work, The Secret of the Universe: On the Marvelous Proportion of the Celestial Spheres, and on the true and particular

More information

A Study of the Rigidity of Regular Polytopes

A Study of the Rigidity of Regular Polytopes A Study of the Rigidity of Regular Polytopes A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Helene

More information

ISOHEDRA WITH NONCONVEX FACES

ISOHEDRA WITH NONCONVEX FACES ISOHEDRA WITH NONCONVEX FACES Branko Grünbaum *) and G. C. Shephard An isohedron is a 3-dimensional polyhedron all faces of which are equivalent under symmetries of the polyhedron. Many well known polyhedra

More information

arxiv: v1 [math.co] 15 Apr 2018

arxiv: v1 [math.co] 15 Apr 2018 REGULAR POLYGON SURFACES IAN M. ALEVY arxiv:1804.05452v1 [math.co] 15 Apr 2018 Abstract. A regular polygon surface M is a surface graph (Σ, Γ) together with a continuous map ψ from Σ into Euclidean 3-space

More information

arxiv: v3 [math.mg] 4 Feb 2016

arxiv: v3 [math.mg] 4 Feb 2016 A Classification of Non-Compact Coxeter Polytopes with n + Facets and One Non-Simple Vertex Mike Roberts Liverpool University michael.roberts@liverpool.ac.uk arxiv:.8v [math.mg] Feb Abstract In this paper

More information

Course Number: Course Title: Geometry

Course Number: Course Title: Geometry Course Number: 1206310 Course Title: Geometry RELATED GLOSSARY TERM DEFINITIONS (89) Altitude The perpendicular distance from the top of a geometric figure to its opposite side. Angle Two rays or two line

More information

Polyhedron. A polyhedron is simply a three-dimensional solid which consists of a collection of polygons, joined at their edges.

Polyhedron. A polyhedron is simply a three-dimensional solid which consists of a collection of polygons, joined at their edges. Polyhedron A polyhedron is simply a three-dimensional solid which consists of a collection of polygons, joined at their edges. A polyhedron is said to be regular if its faces and vertex figures are regular

More information

Section 9.4. Volume and Surface Area. Copyright 2013, 2010, 2007, Pearson, Education, Inc.

Section 9.4. Volume and Surface Area. Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 9.4 Volume and Surface Area What You Will Learn Volume Surface Area 9.4-2 Volume Volume is the measure of the capacity of a three-dimensional figure. It is the amount of material you can put inside

More information

Examples of Groups: Coxeter Groups

Examples of Groups: Coxeter Groups Examples of Groups: Coxeter Groups OSU May 31, 2008 http://www.math.ohio-state.edu/ mdavis/ 1 Geometric reflection groups Some history Properties 2 Coxeter systems The cell complex Σ Variation for Artin

More information

Convex Hulls (3D) O Rourke, Chapter 4

Convex Hulls (3D) O Rourke, Chapter 4 Convex Hulls (3D) O Rourke, Chapter 4 Outline Polyhedra Polytopes Euler Characteristic (Oriented) Mesh Representation Polyhedra Definition: A polyhedron is a solid region in 3D space whose boundary is

More information

Helical Petrie Polygons

Helical Petrie Polygons Bridges Finland Conference Proceedings Helical Petrie Polygons Paul Gailiunas 25 Hedley Terrace, Gosforth Newcastle, NE3 1DP, England email: paulgailiunas@yahoo.co.uk Abstract A Petrie polygon of a polyhedron

More information

Ideas beyond Number. Activity worksheets

Ideas beyond Number. Activity worksheets Ideas beyond Number Activity worksheets Activity sheet 1 Regular polygons and tesselation Which regular polygons tessellate? Square tiling is all around us, but are there any others? Questions 1. What

More information

ON THE ARCHIMEDEAN OR SEMIREGULAR POLYHEDRA

ON THE ARCHIMEDEAN OR SEMIREGULAR POLYHEDRA ON THE ARCHIMEDEAN OR SEMIREGULAR POLYHEDRA arxiv:math/0505488v1 [math.gt] 4 May 005 Mark B. Villarino Depto. de Matemática, Universidad de Costa Rica, 060 San José, Costa Rica May 11, 005 Abstract We

More information

COMBINATORIAL GEOMETRY

COMBINATORIAL GEOMETRY 4 TH CLASS STARTER 9/23/14 3 RD CLASS STARTER 9/16/14 If you re allowed to make only a single, planar (flat) cut in order to slice a cube of cheese into two pieces, what shapes can the resulting faces

More information

Proceedings - AutoCarto Columbus, Ohio, USA - September 16-18, Alan Saalfeld

Proceedings - AutoCarto Columbus, Ohio, USA - September 16-18, Alan Saalfeld Voronoi Methods for Spatial Selection Alan Saalfeld ABSTRACT: We define measures of "being evenly distributed" for any finite set of points on a sphere and show how to choose point subsets of arbitrary

More information

COMPUTER DESIGN OF REPEATING HYPERBOLIC PATTERNS

COMPUTER DESIGN OF REPEATING HYPERBOLIC PATTERNS COMPUTER DESIGN OF REPEATING HYPERBOLIC PATTERNS Douglas Dunham University of Minnesota Duluth Department of Computer Science 1114 Kirby Drive Duluth, Minnesota 55812-2496 USA ddunham@d.umn.edu Abstract:

More information

Researches on polyhedra, Part I A.-L. Cauchy

Researches on polyhedra, Part I A.-L. Cauchy Researches on polyhedra, Part I A.-L. Cauchy Translated into English by Guy Inchbald, 2006 from the original: A.-L. Cauchy, Recherches sur les polyèdres. Première partie, Journal de l École Polytechnique,

More information

Course: Geometry Year: Teacher(s): various

Course: Geometry Year: Teacher(s): various Course: Geometry Year: 2015-2016 Teacher(s): various Unit 1: Coordinates and Transformations Standards Essential Questions Enduring Understandings G-CO.1. Know 1) How is coordinate Geometric precise definitions

More information

Math 311. Polyhedra Name: A Candel CSUN Math

Math 311. Polyhedra Name: A Candel CSUN Math 1. A polygon may be described as a finite region of the plane enclosed by a finite number of segments, arranged in such a way that (a) exactly two segments meets at every vertex, and (b) it is possible

More information

Math 451: Euclidean and Non-Euclidean Geometry MWF 3pm, Gasson 204 Homework 8 Solutions

Math 451: Euclidean and Non-Euclidean Geometry MWF 3pm, Gasson 204 Homework 8 Solutions Math 451: Euclidean and Non-Euclidean Geometry MWF 3pm, Gasson 204 Homework 8 Solutions Exercises from Chapter 2: 5.5, 5.10, 5.13, 5.14 Exercises from Chapter 3: 1.2, 1.3, 1.5 Exercise 5.5. Give an example

More information

The Construction of Uniform Polyhedron with the aid of GeoGebra

The Construction of Uniform Polyhedron with the aid of GeoGebra The Construction of Uniform Polyhedron with the aid of GeoGebra JiangPing QiuFaWen 71692686@qq.com 3009827@qq.com gifted Department High-school northeast yucai school northeast yucai school 110179 110179

More information

Outreach Lecture: Polytopes

Outreach Lecture: Polytopes Outreach Lecture: Polytopes Darrell Allgaier (Grove City College), David Perkinson (Reed College), Sarah Ann Stewart (North Central College), John Thurber (Eastern Oregon University) Abstract This is an

More information

Curvature Berkeley Math Circle January 08, 2013

Curvature Berkeley Math Circle January 08, 2013 Curvature Berkeley Math Circle January 08, 2013 Linda Green linda@marinmathcircle.org Parts of this handout are taken from Geometry and the Imagination by John Conway, Peter Doyle, Jane Gilman, and Bill

More information

Glossary of dictionary terms in the AP geometry units

Glossary of dictionary terms in the AP geometry units Glossary of dictionary terms in the AP geometry units affine linear equation: an equation in which both sides are sums of terms that are either a number times y or a number times x or just a number [SlL2-D5]

More information

Geometry Curriculum Map

Geometry Curriculum Map Quadrilaterals 7.1 Interior Angle Sum Theorem 7.2 Exterior Angle Sum Theorem 7.3 Using Interior and Exterior Angles to Solve Problems Define the Angle Sum Theorem. Illustrate interior angles with the Angle

More information

Closed Loops with Antiprisms

Closed Loops with Antiprisms Proceedings of Bridges 2014: Mathematics, Music, Art, Architecture, Culture Closed Loops with Antiprisms Melle Stoel Dacostastraat 18 1053 zc Amsterdam E-mail: mellestoel@gmail.com mellestoel.wordpress.com

More information

Nets and Tiling. Michael O'Keeffe. Introduction to tiling theory and its application to crystal nets

Nets and Tiling. Michael O'Keeffe. Introduction to tiling theory and its application to crystal nets Nets and Tiling Michael O'Keeffe Introduction to tiling theory and its application to crystal nets Start with tiling in two dimensions. Surface of sphere and plane Sphere is two-dimensional. We require

More information

Regular polytopes Notes for talks given at LSBU, November & December 2014 Tony Forbes

Regular polytopes Notes for talks given at LSBU, November & December 2014 Tony Forbes Regular polytopes Notes for talks given at LSBU, November & December 2014 Tony Forbes Flags A flag is a sequence (f 1, f 0,..., f n ) of faces f i of a polytope f n, each incident with the next, with precisely

More information

Uniform edge-c-colorings of the Archimedean Tilings

Uniform edge-c-colorings of the Archimedean Tilings Discrete & Computational Geometry manuscript No. (will be inserted by the editor) Uniform edge-c-colorings of the Archimedean Tilings Laura Asaro John Hyde Melanie Jensen Casey Mann Tyler Schroeder Received:

More information

Geometry Vocabulary. acute angle-an angle measuring less than 90 degrees

Geometry Vocabulary. acute angle-an angle measuring less than 90 degrees Geometry Vocabulary acute angle-an angle measuring less than 90 degrees angle-the turn or bend between two intersecting lines, line segments, rays, or planes angle bisector-an angle bisector is a ray that

More information

Imaginary Cubes Objects with Three Square Projection Images

Imaginary Cubes Objects with Three Square Projection Images Imaginary Cubes Objects with Three Square Projection Images Hideki Tsuiki Graduate School of Human and Environmental Studies, Kyoto University Kyoto, 606-8501, Japan E-mail: tsuiki@i.h.kyoto-u.ac.jp May

More information

Explore Solids

Explore Solids 1212.1 Explore Solids Surface Area and Volume of Solids 12.2 Surface Area of Prisms and Cylinders 12.3 Surface Area of Pyramids and Cones 12.4 Volume of Prisms and Cylinders 12.5 Volume of Pyramids and

More information

REGULAR POLYGON SURFACES

REGULAR POLYGON SURFACES REGULAR POLYGON SURFACES IAN ALEVY Abstract. A regular polygon surface M is a surface graph (Σ, Γ) together with a continuous map ψ from Σ into Euclidean 3-space which maps faces to regular polygons. When

More information

Math 489 Project 1: Explore a Math Problem L. Hogben 1 Possible Topics for Project 1: Explore a Math Problem draft 1/13/03

Math 489 Project 1: Explore a Math Problem L. Hogben 1 Possible Topics for Project 1: Explore a Math Problem draft 1/13/03 Math 489 Project 1: Explore a Math Problem L. Hogben 1 Possible Topics for Project 1: Explore a Math Problem draft 1/13/03 Number Base and Regularity We use base 10. The Babylonians used base 60. Discuss

More information

Prentice Hall CME Project Geometry 2009

Prentice Hall CME Project Geometry 2009 Prentice Hall CME Project Geometry 2009 Geometry C O R R E L A T E D T O from March 2009 Geometry G.1 Points, Lines, Angles and Planes G.1.1 Find the length of line segments in one- or two-dimensional

More information

Patterned Polyhedra: Tiling the Platonic Solids

Patterned Polyhedra: Tiling the Platonic Solids Patterned Polyhedra: Tiling the Platonic Solids B.G. Thomas* and M.A. Hann School of Design, University of Leeds Leeds, LS2 9JT, UK b.g.thomas@leeds.ac.uk Abstract This paper examines a range of geometric

More information

Hyperbolic Semi-Regular Tilings and their Symmetry Properties

Hyperbolic Semi-Regular Tilings and their Symmetry Properties Hyperbolic Semi-Regular Tilings and their Symmetry Properties Ma. Louise Antonette N. De Las Peñas, mlp@mathsci.math.admu.edu.ph Glenn R. Laigo, glaigo@yahoo.com Eden Delight B. Provido, edenprovido@yahoo.com

More information

Curriki Geometry Glossary

Curriki Geometry Glossary Curriki Geometry Glossary The following terms are used throughout the Curriki Geometry projects and represent the core vocabulary and concepts that students should know to meet Common Core State Standards.

More information

Geometry CP. Unit 1 Notes

Geometry CP. Unit 1 Notes Geometry CP Unit 1 Notes 1.1 The Building Blocks of Geometry The three most basic figures of geometry are: Points Shown as dots. No size. Named by capital letters. Are collinear if a single line can contain

More information

Math 210 Manifold III, Spring 2018 Euler Characteristics of Surfaces Hirotaka Tamanoi

Math 210 Manifold III, Spring 2018 Euler Characteristics of Surfaces Hirotaka Tamanoi Math 210 Manifold III, Spring 2018 Euler Characteristics of Surfaces Hirotaka Tamanoi 1. Euler Characteristic of Surfaces Leonhard Euler noticed that the number v of vertices, the number e of edges and

More information

H.Geometry Chapter 7 Definition Sheet

H.Geometry Chapter 7 Definition Sheet Section 7.1 (Part 1) Definition of: - A mapping of points in a figure to points in a resulting figure - Manipulating an original figure to get a new figure - The original figure - The resulting figure

More information

Class Generated Review Sheet for Math 213 Final

Class Generated Review Sheet for Math 213 Final Class Generated Review Sheet for Math 213 Final Key Ideas 9.1 A line segment consists of two point on a plane and all the points in between them. Complementary: The sum of the two angles is 90 degrees

More information

Chapter 1. acute angle (A), (G) An angle whose measure is greater than 0 and less than 90.

Chapter 1. acute angle (A), (G) An angle whose measure is greater than 0 and less than 90. hapter 1 acute angle (), (G) n angle whose measure is greater than 0 and less than 90. adjacent angles (), (G), (2T) Two coplanar angles that share a common vertex and a common side but have no common

More information

1 The Platonic Solids

1 The Platonic Solids 1 The We take the celebration of Dodecahedron Day as an opportunity embark on a discussion of perhaps the best-known and most celebrated of all polyhedra the Platonic solids. Before doing so, however,

More information

Map-colouring with Polydron

Map-colouring with Polydron Map-colouring with Polydron The 4 Colour Map Theorem says that you never need more than 4 colours to colour a map so that regions with the same colour don t touch. You have to count the region round the

More information

Prentice Hall Mathematics Geometry, Foundations Series 2011

Prentice Hall Mathematics Geometry, Foundations Series 2011 Prentice Hall Mathematics Geometry, Foundations Series 2011 Geometry C O R R E L A T E D T O from March 2009 Geometry G.1 Points, Lines, Angles and Planes G.1.1 Find the length of line segments in one-

More information

Example: The following is an example of a polyhedron. Fill the blanks with the appropriate answer. Vertices:

Example: The following is an example of a polyhedron. Fill the blanks with the appropriate answer. Vertices: 11.1: Space Figures and Cross Sections Polyhedron: solid that is bounded by polygons Faces: polygons that enclose a polyhedron Edge: line segment that faces meet and form Vertex: point or corner where

More information

A Study of the Shortest Perimeter Polyhedron

A Study of the Shortest Perimeter Polyhedron Rose-Hulman Undergraduate Mathematics Journal Volume 18 Issue Article 3 A Study of the Shortest Perimeter Polyhedron Kaitlyn Burk Lee University, kburk000@leeu.edu Adam Carty Lee University Austin Wheeler

More information

ACTUALLY DOING IT : an Introduction to Polyhedral Computation

ACTUALLY DOING IT : an Introduction to Polyhedral Computation ACTUALLY DOING IT : an Introduction to Polyhedral Computation Jesús A. De Loera Department of Mathematics Univ. of California, Davis http://www.math.ucdavis.edu/ deloera/ 1 What is a Convex Polytope? 2

More information

POLYTOPES. Grünbaum and Shephard [40] remarked that there were three developments which foreshadowed the modern theory of convex polytopes.

POLYTOPES. Grünbaum and Shephard [40] remarked that there were three developments which foreshadowed the modern theory of convex polytopes. POLYTOPES MARGARET A. READDY 1. Lecture I: Introduction to Polytopes and Face Enumeration Grünbaum and Shephard [40] remarked that there were three developments which foreshadowed the modern theory of

More information

Mrs. Daniel s Geometry Vocab List

Mrs. Daniel s Geometry Vocab List Mrs. Daniel s Geometry Vocab List Geometry Definition: a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. Reflectional Symmetry

More information

Polyhedra inscribed in a hyperboloid & AdS geometry. anti-de Sitter geometry.

Polyhedra inscribed in a hyperboloid & AdS geometry. anti-de Sitter geometry. Polyhedra inscribed in a hyperboloid and anti-de Sitter geometry. Jeffrey Danciger 1 Sara Maloni 2 Jean-Marc Schlenker 3 1 University of Texas at Austin 2 Brown University 3 University of Luxembourg AMS

More information