Mesh data structures. Abstract. 1 Introduction. 2 Method. 2.1 Implement the half edge mesh LIU TNM

Size: px
Start display at page:

Download "Mesh data structures. Abstract. 1 Introduction. 2 Method. 2.1 Implement the half edge mesh LIU TNM"

Transcription

1 Mesh data structures Fredrik Salomonsson LIU TNM Abstract When dealing with meshes containing large amount of triangles or quadrilaterals one need to have some kind structure of the data to speed up normal calculation for vertices, area and volume calculation, efficient way of finding neighbor vertices and faces for a certain vertex. Therefore the simple data structure for a mesh (containing only faces and vertices) does not suffice, and a more efficient data structure is needed. In this lab report I am going to talk about how to implement the half edge data structure for a more efficient way of handling searching for adjacent vertices and faces. Also to achieve a stable smoothing using mean curvature. 1 Introduction In this lab report I am going to talk about how to implement half edge data structure, use it to implement efficient and fast search for neighboring faces and vertices. Also using the neighboring search to calculate vertex normals, total area of the mesh, volume of the mesh, classify the genus of the mesh, calculate mean and Gaussian curvature and use the mean curvature for a more stable smoothing. 2 Method All the functions described below can be found in the file HalfEdgeMesh.cpp if nothing else is said. And I will switch to we instead of I, since it was me and my lab partner who implemented the different assignment, so that I will not confuse anybody. 2.1 Implement the half edge mesh To solve this assignment we first added the three vertices in the AddFace function to the function Addertex, which returned indices to where in the vertex list the vertices were placed. After the vertices were added to the vertex list we needed to create edges for the half edge data structure, we used the already implemented function AddHalfEdgePair that takes two vertex indices and return two indices for the inner and outer edge that it created for the vertex pair. We called the function for each vertex pair in a counter clock wise (CCW) order. The inner edge indices were then used to connect the inner ring of edges. Each edge has a pointer to the next edge and to its previous edge, these pointers where assign with the next edge and the previous edge in a CCW order. After that we create a face for the edges, since the half edge only required that the face only knows one edge of the triangle and from that it can reach the other edges by the edge s next and previous pointer, we only needed to add one edge to the face. We chose to add the first edge but any of the three edges will do because they all belong to the same edgeloop. The face was then pushed on the face vector, mface, using the function push_back. The face index was retrieved from the Face

2 vector for use in the function FaceNormal, that does a cross product between two of the face edges and normalize the result, to calculate the face normal for the face. The last thing before the half edge mesh was finished were to connect the inner edges to the face, this was only a simple operation of assigning the face to the inner edge face pointer. 2.2 Implement neighbor access To find neighbor faces and neighbor vertices are quite similar to each other when using half edge mesh. Every vertex contains a pointer to an edge and the edge contains a pointer to the connecting vertex and face; this can be used to efficiently find both neighbor faces and vertices. And therefore only one of the algorithms will be explain in detail. 2. Add that edge s vertex to the vector of neighbor vertices 3. Jump to next edge and go to its pair and jump to its next edge. 4. Check to see if the vertex that belongs to that edge is not equal to the first position in the vector of neighbor vertices. If it is not then go to 2, if it is equal to the first position then it means that the algorithm has found all the neighboring vertices. The find faces function is quite similar to the find vertex neighbors; the main difference is that we store the faces connecting to the edges instead of the vertices. 2.3 Calculate vertex normals In order to get smoother shading for the meshes we can use vertex shading, but for that the mesh needs to have a normal at each vertex instead of just having them on each face. In this assignment we implemented just this, by using the method called mean weighted equally (MWE) to calculate the vertex normal at each vertex, see equation 1. MWE is defined as the normalized summation of the adjacent face normals, meaning that that the vertex normal is the average of the 1- ring neighborhood (N1) face normals. Figure 1: the finding the 1-ring neighborhood of vertex v0 N vi = n j N 1 (i) n fj (1) To find the neighbors for the vertex we used the EdgeIterator class for iterating through the edges. The following is how the algorithm works 1. Get the edge connected to the vertex, v0 in figure 1. Jump to the next edge connecting to the vertex. To find the neighborhood face normals we used the already implemented function FindNeighborFaces, section Calculate surface area of a mesh We solve this assignment using the fact that any integral can be approximated by a A s = da A(f i ) S i S (2)

3 Riemann sum, explained in [1]. Because of that the area of a mesh can be approximated by the sum of the areas of each individual face of the mesh. The area of each face was calculated by taking the half magnitude of the cross product between two edges in the triangle, ½ (v2-v1)x(v3-v1). 2.5 Calculate volume of a mesh In [1] they used the divergence theorem to relate the surface and the volume integral, equation 3. Same as in the area integral, the surface integral of the volume can be approximated by a Riemann sum over all faces, where the f i denote the i:th face of the mesh. 3 = S F(f i ) i S F dτ = F n da n f i A(f i ) (6) S F n da = F dτ (3) By choosing a vector field, F with constant divergence, that is F = c, the volume integral becomes a constant c times the olume, equation 4. This shows that the volume can be calculated using this integral, and with the divergence theorem shown in equation 3, it link the volume integral to the surface integral. F dτ = c dτ = c dτ = c (4) To calculate the constant c they chose the vector field to be (x,y,z) and the divergence will be equal to three. F = x, y, z = x x + y y + z z = 3 (5) In [1] they chose to have the centroid of the triangle to represent the vector field, but any point on the face will work. i S 3 = (v 1 + v 2 + v 3 ) fi 3 n f i A(f i ) (7) We implemented the equation 7 in the assignment to calculate the volume in the function olume. Simply by calling the function FindNeighborFace to get the 1-ring neighborhood faces. Iterate through all of them, taking the scalar product of the triangle centroid of the face and the face s normal. Multiply it by the face s area and sum them all together. When the iteration was finish we divided the sum with three before returning the volume. 2.6 Implement and visualize curvature In this assignment we copy the curvature function from the SimpleMesh to the HalfEdgeMesh. That had implemented the Gaussian curvature, equation 8 with voronoi area, see equation 13,

4 K = 1 A (2π j N 1 (i) When the K is positive meaning that the angles are less than 2π the surface will be non-smooth, if the value is equal to zero the surface will be a plane. And for a value less than zero the surface will be smooth. 2.7 Classify the genus of a mesh To classify the genus of a mesh we used the Euler-Poincaré formula With denoting number of vertices, E number of edges, F number of faces, L number of loops in the mesh, S number of shells and G is genus. In [1] they mention that in a mesh consist of triangles the number of loops equals number of faces, which simplify the Euler- Poincaré formula and the loop counting a lot. And with this assignment we only work with one shell And with some rearranging we ended up with this formula to calculate the genus of a mesh We simply checked the size of the vertex, face and the edge vector to get the number of faces, vertices and edges in that mesh, one thing keep in mind is that the half edge mesh has inner and outer edges, to get the right number of edges we divided the number of edges we got from the edge vector by two, then we calculated the genus of the mesh. θ j ) (8) E + F L F 2 S G = 0 (9) E + F 2 1 G = 0 (10) G = E + 2 F 2 (11) 2.8 Calculate mean curvature and do smoothing In the function ertexcurvature, we replaced the Gaussian curvature with the mean curvature 1 4A j N 1 (i) Hn = (cot α j + cot β j )(v i v j ) (12) The area A is the total area of the 1-ring neighborhood, in our case the total area were calculated using a voronoi area 1 8 j N 1 (i) A v = (cot α j + cot β j ) (v i v j ) 2 (13) We were also interested to distinguish between if the curvature is convex or concave and this maps to the positive and negative of the magnitude, since the normal has the magnitude one we will get the curvature, H by taking the magnitude of Hn, this is what we return. And to smooth the surface we simply need to move in the opposite direction of the normal times the mean curvature. To move the vertex in the opposite direction of the normal we used an explicit forward Euler integration X t+1 = X Hndt (14)

5 H is the curvature, X is the vertex position and n is its normal. Why we subtract the curvature instead of adding it to the vertex position is that we want a stable and smooth visualization and if we had added the curvature the sharper parts would become sharper and the smoother parts would have become smoother, now we got a more even smooth over the mesh. And if we iterate further and moving the vertices along the normals the cow will eventually become a sphere of some kind since the curvature will smooth every sharp detail on the mesh. 4 Conclusion In table 1 the area of the approximation gets closer to the numeric calculated value when the triangles size decrease which implying that the calculation is converging when the triangles size goes to zeros as the Riemann sum predicts. This can also be seen in the approximated volume. The difference in loading speed between a simple mesh with relative high triangle count and the same mesh loaded using half edge are a tremendous difference. The half edge takes a few seconds to load, and the simple mesh takes a couple of minutes to load. This is due to in the half edge data structure each vertex can reach its 1-ring neighborhood quite efficient, but the simple mesh has no information about the adjacent vertices and have to do an exhaustive search through the whole face list, comparing each vertex in the face with itself. And this has to be done for calculating normals, area and volume. Sphere radius Figure 2: A cow with vertex shading on, with smooth estimating using mean curvature. Calculated area Approximated area Result The half edge data structure is a powerful tool to speed up calculations and searching in a mesh. By using the Riemann sum to approximate both the total area and the volume of meshes as seen in table 1, as approximated area and volume, shows that they are close to the real area and volume, which shows that it is a good approximation. Calculated volume Approximated volume Table 1, containing the approximated and numerical calculated area and volume for three different spheres The mean curvature also gave a stable smooth as seen in figure 2.

6 Grade Since we implemented all assignments that was required for grade 5 and I have shown that I understood the theory behind them, I deserve grade 5 for this lab assignment Refrences [1] Gunnar Johansson, Ola Nilsson and Andreas Söderström. Mesh data structures

THE HALF-EDGE DATA STRUCTURE MODELING AND ANIMATION

THE HALF-EDGE DATA STRUCTURE MODELING AND ANIMATION THE HALF-EDGE DATA STRUCTURE MODELING AND ANIMATION Dan Englesson danen344@student.liu.se Sunday 12th April, 2011 Abstract In this lab assignment which was done in the course TNM079, Modeling and animation,

More information

CS 177 Homework 1. Julian Panetta. October 22, We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F:

CS 177 Homework 1. Julian Panetta. October 22, We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F: CS 177 Homework 1 Julian Panetta October, 009 1 Euler Characteristic 1.1 Polyhedral Formula We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F: V E + F = 1 First,

More information

Lectures in Discrete Differential Geometry 3 Discrete Surfaces

Lectures in Discrete Differential Geometry 3 Discrete Surfaces Lectures in Discrete Differential Geometry 3 Discrete Surfaces Etienne Vouga March 19, 2014 1 Triangle Meshes We will now study discrete surfaces and build up a parallel theory of curvature that mimics

More information

Chapter 23. Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian

Chapter 23. Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian Chapter 23 Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian Reflection and Refraction at a Plane Surface The light radiate from a point object in all directions The light reflected from a plane

More information

CSE 554 Lecture 6: Fairing and Simplification

CSE 554 Lecture 6: Fairing and Simplification CSE 554 Lecture 6: Fairing and Simplification Fall 2012 CSE554 Fairing and simplification Slide 1 Review Iso-contours in grayscale images and volumes Piece-wise linear representations Polylines (2D) and

More information

MA 323 Geometric Modelling Course Notes: Day 36 Subdivision Surfaces

MA 323 Geometric Modelling Course Notes: Day 36 Subdivision Surfaces MA 323 Geometric Modelling Course Notes: Day 36 Subdivision Surfaces David L. Finn Today, we continue our discussion of subdivision surfaces, by first looking in more detail at the midpoint method and

More information

The Law of Reflection

The Law of Reflection If the surface off which the light is reflected is smooth, then the light undergoes specular reflection (parallel rays will all be reflected in the same directions). If, on the other hand, the surface

More information

Polar Coordinates. 2, π and ( )

Polar Coordinates. 2, π and ( ) Polar Coordinates Up to this point we ve dealt exclusively with the Cartesian (or Rectangular, or x-y) coordinate system. However, as we will see, this is not always the easiest coordinate system to work

More information

Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 24 Solid Modelling

Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 24 Solid Modelling Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 24 Solid Modelling Welcome to the lectures on computer graphics. We have

More information

How shapes are represented in 3D Graphics. Aims and objectives By the end of the lecture you will be able to describe

How shapes are represented in 3D Graphics. Aims and objectives By the end of the lecture you will be able to describe Today s lecture Today we will learn about The mathematics of 3D space vectors How shapes are represented in 3D Graphics Modelling shapes as polygons Aims and objectives By the end of the lecture you will

More information

Angles of Polygons. Essential Question What is the sum of the measures of the interior angles of a polygon?

Angles of Polygons. Essential Question What is the sum of the measures of the interior angles of a polygon? 7.1 Angles of Polygons Essential Question What is the sum of the measures of the interior angles of a polygon? The Sum of the Angle Measures of a Polygon Work with a partner. Use dynamic geometry software.

More information

CS 468 (Spring 2013) Discrete Differential Geometry

CS 468 (Spring 2013) Discrete Differential Geometry CS 468 (Spring 2013) Discrete Differential Geometry 1 Math Review Lecture 14 15 May 2013 Discrete Exterior Calculus Lecturer: Justin Solomon Scribe: Cassidy Saenz Before we dive into Discrete Exterior

More information

Voronoi Diagrams and Delaunay Triangulations. O Rourke, Chapter 5

Voronoi Diagrams and Delaunay Triangulations. O Rourke, Chapter 5 Voronoi Diagrams and Delaunay Triangulations O Rourke, Chapter 5 Outline Preliminaries Properties and Applications Computing the Delaunay Triangulation Preliminaries Given a function f: R 2 R, the tangent

More information

Basics of Computational Geometry

Basics of Computational Geometry Basics of Computational Geometry Nadeem Mohsin October 12, 2013 1 Contents This handout covers the basic concepts of computational geometry. Rather than exhaustively covering all the algorithms, it deals

More information

(Discrete) Differential Geometry

(Discrete) Differential Geometry (Discrete) Differential Geometry Motivation Understand the structure of the surface Properties: smoothness, curviness, important directions How to modify the surface to change these properties What properties

More information

Reflection and Mirrors

Reflection and Mirrors Reflection and Mirrors 1 The Law of Reflection The angle of incidence equals the angle of reflection. 2 The Law of Reflection When light strikes a surface it is reflected. The light ray striking the surface

More information

7. The Gauss-Bonnet theorem

7. The Gauss-Bonnet theorem 7. The Gauss-Bonnet theorem 7.1 Hyperbolic polygons In Euclidean geometry, an n-sided polygon is a subset of the Euclidean plane bounded by n straight lines. Thus the edges of a Euclidean polygon are formed

More information

Convex Hulls (3D) O Rourke, Chapter 4

Convex Hulls (3D) O Rourke, Chapter 4 Convex Hulls (3D) O Rourke, Chapter 4 Outline Polyhedra Polytopes Euler Characteristic (Oriented) Mesh Representation Polyhedra Definition: A polyhedron is a solid region in 3D space whose boundary is

More information

Study Guide for Test 2

Study Guide for Test 2 Study Guide for Test Math 6: Calculus October, 7. Overview Non-graphing calculators will be allowed. You will need to know the following:. Set Pieces 9 4.. Trigonometric Substitutions (Section 7.).. Partial

More information

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder]

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Preliminaries Recall: Given a smooth function f:r R, the function

More information

Computational Geometry. Geometry Cross Product Convex Hull Problem Sweep Line Algorithm

Computational Geometry. Geometry Cross Product Convex Hull Problem Sweep Line Algorithm GEOMETRY COMP 321 McGill University These slides are mainly compiled from the following resources. - Professor Jaehyun Park slides CS 97SI - Top-coder tutorials. - Programming Challenges books. Computational

More information

Surface Mesh Generation

Surface Mesh Generation Surface Mesh Generation J.-F. Remacle Université catholique de Louvain September 22, 2011 0 3D Model For the description of the mesh generation process, let us consider the CAD model of a propeller presented

More information

Geometric Modeling Assignment 3: Discrete Differential Quantities

Geometric Modeling Assignment 3: Discrete Differential Quantities Geometric Modeling Assignment : Discrete Differential Quantities Acknowledgements: Julian Panetta, Olga Diamanti Assignment (Optional) Topic: Discrete Differential Quantities with libigl Vertex Normals,

More information

Geometry Definitions and Theorems. Chapter 9. Definitions and Important Terms & Facts

Geometry Definitions and Theorems. Chapter 9. Definitions and Important Terms & Facts Geometry Definitions and Theorems Chapter 9 Definitions and Important Terms & Facts A circle is the set of points in a plane at a given distance from a given point in that plane. The given point is the

More information

Lecture Notes (Reflection & Mirrors)

Lecture Notes (Reflection & Mirrors) Lecture Notes (Reflection & Mirrors) Intro: - plane mirrors are flat, smooth surfaces from which light is reflected by regular reflection - light rays are reflected with equal angles of incidence and reflection

More information

Recovering Primitives in 3D CAD meshes

Recovering Primitives in 3D CAD meshes Recovering Primitives in 3D CAD / R.Bénière 1/17 Recovering Primitives in 3D CAD meshes Roseline Bénière G. Subsol, G. Gesquière, F. Le Breton and W. Puech LIRMM, Montpellier, France C4W, Montpellier,

More information

Generalized barycentric coordinates

Generalized barycentric coordinates Generalized barycentric coordinates Michael S. Floater August 20, 2012 In this lecture, we review the definitions and properties of barycentric coordinates on triangles, and study generalizations to convex,

More information

CS3621 Midterm Solution (Fall 2005) 150 points

CS3621 Midterm Solution (Fall 2005) 150 points CS362 Midterm Solution Fall 25. Geometric Transformation CS362 Midterm Solution (Fall 25) 5 points (a) [5 points] Find the 2D transformation matrix for the reflection about the y-axis transformation (i.e.,

More information

Math 6, Unit 8 Notes: Geometric Relationships

Math 6, Unit 8 Notes: Geometric Relationships Math 6, Unit 8 Notes: Geometric Relationships Points, Lines and Planes; Line Segments and Rays As we begin any new topic, we have to familiarize ourselves with the language and notation to be successful.

More information

Warm-Up Exercises. 1. If the measures of two angles of a triangle are 19º and 80º, find the measure of the third angle. ANSWER 81º

Warm-Up Exercises. 1. If the measures of two angles of a triangle are 19º and 80º, find the measure of the third angle. ANSWER 81º Warm-Up Exercises 1. If the measures of two angles of a triangle are 19º and 80º, find the measure of the third angle. 81º 2. Solve (x 2)180 = 1980. 13 Warm-Up Exercises 3. Find the value of x. 126 EXAMPLE

More information

Curvature Berkeley Math Circle January 08, 2013

Curvature Berkeley Math Circle January 08, 2013 Curvature Berkeley Math Circle January 08, 2013 Linda Green linda@marinmathcircle.org Parts of this handout are taken from Geometry and the Imagination by John Conway, Peter Doyle, Jane Gilman, and Bill

More information

Chapter 23. Geometrical Optics: Mirrors and Lenses and other Instruments

Chapter 23. Geometrical Optics: Mirrors and Lenses and other Instruments Chapter 23 Geometrical Optics: Mirrors and Lenses and other Instruments HITT1 A small underwater pool light is 1 m below the surface of a swimming pool. What is the radius of the circle of light on the

More information

: Mesh Processing. Chapter 2

: Mesh Processing. Chapter 2 600.657: Mesh Processing Chapter 2 Data Structures Polygon/Triangle Soup Indexed Polygon/Triangle Set Winged-Edge Half-Edge Directed-Edge List of faces Polygon Soup Each face represented independently

More information

General Physics II. Mirrors & Lenses

General Physics II. Mirrors & Lenses General Physics II Mirrors & Lenses Nothing New! For the next several lectures we will be studying geometrical optics. You already know the fundamentals of what is going on!!! Reflection: θ 1 = θ r incident

More information

Optics II. Reflection and Mirrors

Optics II. Reflection and Mirrors Optics II Reflection and Mirrors Geometric Optics Using a Ray Approximation Light travels in a straight-line path in a homogeneous medium until it encounters a boundary between two different media The

More information

Area rectangles & parallelograms

Area rectangles & parallelograms Area rectangles & parallelograms Rectangles One way to describe the size of a room is by naming its dimensions. So a room that measures 12 ft. by 10 ft. could be described by saying its a 12 by 10 foot

More information

Review of Trigonometry

Review of Trigonometry Worksheet 8 Properties of Trigonometric Functions Section Review of Trigonometry This section reviews some of the material covered in Worksheets 8, and The reader should be familiar with the trig ratios,

More information

Parameterization with Manifolds

Parameterization with Manifolds Parameterization with Manifolds Manifold What they are Why they re difficult to use When a mesh isn t good enough Problem areas besides surface models A simple manifold Sphere, torus, plane, etc. Using

More information

1 Trigonometry. Copyright Cengage Learning. All rights reserved.

1 Trigonometry. Copyright Cengage Learning. All rights reserved. 1 Trigonometry Copyright Cengage Learning. All rights reserved. 1.1 Radian and Degree Measure Copyright Cengage Learning. All rights reserved. Objectives Describe angles. Use radian measure. Use degree

More information

Linear algebra deals with matrixes: two-dimensional arrays of values. Here s a matrix: [ x + 5y + 7z 9x + 3y + 11z

Linear algebra deals with matrixes: two-dimensional arrays of values. Here s a matrix: [ x + 5y + 7z 9x + 3y + 11z Basic Linear Algebra Linear algebra deals with matrixes: two-dimensional arrays of values. Here s a matrix: [ 1 5 ] 7 9 3 11 Often matrices are used to describe in a simpler way a series of linear equations.

More information

Math 308, Section 101 Solutions to Study Questions for Final Exam (Thursday, December 16, 2004)

Math 308, Section 101 Solutions to Study Questions for Final Exam (Thursday, December 16, 2004) NEUTRAL GEOMETRY Math 308, Section 0 Solutions to Study Questions for Final Exam (Thursday, December 6, 00) I. Given a triangle AEF, let M be the midpoint of the segment EF. Choose a point D on the ray

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics 23.1 The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization,

More information

Select the best answer. Bubble the corresponding choice on your scantron. Team 13. Geometry

Select the best answer. Bubble the corresponding choice on your scantron. Team 13. Geometry Team Geometry . What is the sum of the interior angles of an equilateral triangle? a. 60 b. 90 c. 80 d. 60. The sine of angle A is. What is the cosine of angle A? 6 4 6 a. b. c.. A parallelogram has all

More information

Computer Aided Engineering Design Prof. Anupam Saxena Department of Mechanical Engineering Indian Institute of Technology, Kanpur.

Computer Aided Engineering Design Prof. Anupam Saxena Department of Mechanical Engineering Indian Institute of Technology, Kanpur. (Refer Slide Time: 00:28) Computer Aided Engineering Design Prof. Anupam Saxena Department of Mechanical Engineering Indian Institute of Technology, Kanpur Lecture - 6 Hello, this is lecture number 6 of

More information

Geometry of Flat Surfaces

Geometry of Flat Surfaces Geometry of Flat Surfaces Marcelo iana IMPA - Rio de Janeiro Xi an Jiaotong University 2005 Geometry of Flat Surfaces p.1/43 Some (non-flat) surfaces Sphere (g = 0) Torus (g = 1) Bitorus (g = 2) Geometry

More information

Section 2 Flat Mirrors. Distinguish between specular and diffuse reflection of light. Apply the law of reflection for flat mirrors.

Section 2 Flat Mirrors. Distinguish between specular and diffuse reflection of light. Apply the law of reflection for flat mirrors. Section 2 Flat Mirrors Objectives Distinguish between specular and diffuse reflection of light. Apply the law of reflection for flat mirrors. Describe the nature of images formed by flat mirrors. Section

More information

Chapter 34. Images. In this chapter we define and classify images, and then classify several basic ways in which they can be produced.

Chapter 34. Images. In this chapter we define and classify images, and then classify several basic ways in which they can be produced. Chapter 34 Images One of the most important uses of the basic laws governing light is the production of images. Images are critical to a variety of fields and industries ranging from entertainment, security,

More information

Estimating normal vectors and curvatures by centroid weights

Estimating normal vectors and curvatures by centroid weights Computer Aided Geometric Design 21 (2004) 447 458 www.elsevier.com/locate/cagd Estimating normal vectors and curvatures by centroid weights Sheng-Gwo Chen, Jyh-Yang Wu Department of Mathematics, National

More information

Propagation and Reflection of Light

Propagation and Reflection of Light Al-Saudia Virtual Academy Online tuition Pakistan Online Tutor Pakistan Propagation and Reflection of Light Q1. Define reflection of light. State the laws of reflection. Ans: REFLECTION OF LIGHT: When

More information

SPECIAL TECHNIQUES-II

SPECIAL TECHNIQUES-II SPECIAL TECHNIQUES-II Lecture 19: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Method of Images for a spherical conductor Example :A dipole near aconducting sphere The

More information

A TESSELLATION FOR ALGEBRAIC SURFACES IN CP 3

A TESSELLATION FOR ALGEBRAIC SURFACES IN CP 3 A TESSELLATION FOR ALGEBRAIC SURFACES IN CP 3 ANDREW J. HANSON AND JI-PING SHA In this paper we present a systematic and explicit algorithm for tessellating the algebraic surfaces (real 4-manifolds) F

More information

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality Planar Graphs In the first half of this book, we consider mostly planar graphs and their geometric representations, mostly in the plane. We start with a survey of basic results on planar graphs. This chapter

More information

CS 468 (Spring 2013) Discrete Differential Geometry

CS 468 (Spring 2013) Discrete Differential Geometry Lecturer: Adrian Butscher, Justin Solomon Scribe: Adrian Buganza-Tepole CS 468 (Spring 2013) Discrete Differential Geometry Lecture 19: Conformal Geometry Conformal maps In previous lectures we have explored

More information

Grade VIII. Mathematics Geometry Notes. #GrowWithGreen

Grade VIII. Mathematics Geometry Notes. #GrowWithGreen Grade VIII Mathematics Geometry Notes #GrowWithGreen Polygons can be classified according to their number of sides (or vertices). The sum of all the interior angles of an n -sided polygon is given by,

More information

Trigonometry Review Day 1

Trigonometry Review Day 1 Name Trigonometry Review Day 1 Algebra II Rotations and Angle Terminology II Terminal y I Positive angles rotate in a counterclockwise direction. Reference Ray Negative angles rotate in a clockwise direction.

More information

Reflection & Mirrors

Reflection & Mirrors Reflection & Mirrors Geometric Optics Using a Ray Approximation Light travels in a straight-line path in a homogeneous medium until it encounters a boundary between two different media A ray of light is

More information

Geodesics in heat: A new approach to computing distance

Geodesics in heat: A new approach to computing distance Geodesics in heat: A new approach to computing distance based on heat flow Diana Papyan Faculty of Informatics - Technische Universität München Abstract In this report we are going to introduce new method

More information

CLEP Pre-Calculus. Section 1: Time 30 Minutes 50 Questions. 1. According to the tables for f(x) and g(x) below, what is the value of [f + g]( 1)?

CLEP Pre-Calculus. Section 1: Time 30 Minutes 50 Questions. 1. According to the tables for f(x) and g(x) below, what is the value of [f + g]( 1)? CLEP Pre-Calculus Section : Time 0 Minutes 50 Questions For each question below, choose the best answer from the choices given. An online graphing calculator (non-cas) is allowed to be used for this section..

More information

Bands: A Physical Data Structure to Represent Both Orientable and Non-Orientable 2-Manifold Meshes

Bands: A Physical Data Structure to Represent Both Orientable and Non-Orientable 2-Manifold Meshes Bands: A Physical Data Structure to Represent Both Orientable and Non-Orientable 2-Manifold Meshes Abstract This paper presents a physical data structure to represent both orientable and non-orientable

More information

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved.

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved. 10 Conics, Parametric Equations, and Polar Coordinates Copyright Cengage Learning. All rights reserved. 10.5 Area and Arc Length in Polar Coordinates Copyright Cengage Learning. All rights reserved. Objectives

More information

Pre-Algebra, Unit 10: Measurement, Area, and Volume Notes

Pre-Algebra, Unit 10: Measurement, Area, and Volume Notes Pre-Algebra, Unit 0: Measurement, Area, and Volume Notes Triangles, Quadrilaterals, and Polygons Objective: (4.6) The student will classify polygons. Take this opportunity to review vocabulary and previous

More information

Geometry: Semester 2 Practice Final Unofficial Worked Out Solutions by Earl Whitney

Geometry: Semester 2 Practice Final Unofficial Worked Out Solutions by Earl Whitney Geometry: Semester 2 Practice Final Unofficial Worked Out Solutions by Earl Whitney 1. Wrapping a string around a trash can measures the circumference of the trash can. Assuming the trash can is circular,

More information

Physics 11. Unit 8 Geometric Optics Part 1

Physics 11. Unit 8 Geometric Optics Part 1 Physics 11 Unit 8 Geometric Optics Part 1 1.Review of waves In the previous section, we have investigated the nature and behaviors of waves in general. We know that all waves possess the following characteristics:

More information

From the SelectedWorks of Harish Chandra Rajpoot H.C. Rajpoot. Harish Chandra Rajpoot Rajpoot, HCR. Summer April 6, 2015

From the SelectedWorks of Harish Chandra Rajpoot H.C. Rajpoot. Harish Chandra Rajpoot Rajpoot, HCR. Summer April 6, 2015 From the SelectedWorks of Harish Chandra Rajpoot H.C. Rajpoot Summer April 6, 2015 Mathematical Analysis of Uniform Polyhedron Trapezohedron having 2n congruent right kite faces, 4n edges & 2n+2 vertices

More information

Lecture Outlines Chapter 26

Lecture Outlines Chapter 26 Lecture Outlines Chapter 26 11/18/2013 2 Chapter 26 Geometrical Optics Objectives: After completing this module, you should be able to: Explain and discuss with diagrams, reflection and refraction of light

More information

Total. Math 2130 Practice Final (Spring 2017) (1) (2) (3) (4) (5) (6) (7) (8)

Total. Math 2130 Practice Final (Spring 2017) (1) (2) (3) (4) (5) (6) (7) (8) Math 130 Practice Final (Spring 017) Before the exam: Do not write anything on this page. Do not open the exam. Turn off your cell phone. Make sure your books, notes, and electronics are not visible during

More information

Light: Geometric Optics (Chapter 23)

Light: Geometric Optics (Chapter 23) Light: Geometric Optics (Chapter 23) Units of Chapter 23 The Ray Model of Light Reflection; Image Formed by a Plane Mirror Formation of Images by Spherical Index of Refraction Refraction: Snell s Law 1

More information

DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU /858B Fall 2017

DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU /858B Fall 2017 DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU 15-458/858B Fall 2017 LECTURE 10: DISCRETE CURVATURE DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU 15-458/858B

More information

Pre-Algebra Notes Unit 10: Geometric Figures & Their Properties; Volume

Pre-Algebra Notes Unit 10: Geometric Figures & Their Properties; Volume Pre-Algebra Notes Unit 0: Geometric Figures & Their Properties; Volume Triangles, Quadrilaterals, and Polygons Syllabus Objectives: (4.6) The student will validate conclusions about geometric figures and

More information

coding of various parts showing different features, the possibility of rotation or of hiding covering parts of the object's surface to gain an insight

coding of various parts showing different features, the possibility of rotation or of hiding covering parts of the object's surface to gain an insight Three-Dimensional Object Reconstruction from Layered Spatial Data Michael Dangl and Robert Sablatnig Vienna University of Technology, Institute of Computer Aided Automation, Pattern Recognition and Image

More information

274 Curves on Surfaces, Lecture 5

274 Curves on Surfaces, Lecture 5 274 Curves on Surfaces, Lecture 5 Dylan Thurston Notes by Qiaochu Yuan Fall 2012 5 Ideal polygons Previously we discussed three models of the hyperbolic plane: the Poincaré disk, the upper half-plane,

More information

Lecture 5 CLASSIFICATION OF SURFACES

Lecture 5 CLASSIFICATION OF SURFACES Lecture 5 CLASSIFICATION OF SURFACES In this lecture, we present the topological classification of surfaces. This will be done by a combinatorial argument imitating Morse theory and will make use of the

More information

SNAP Centre Workshop. Introduction to Trigonometry

SNAP Centre Workshop. Introduction to Trigonometry SNAP Centre Workshop Introduction to Trigonometry 62 Right Triangle Review A right triangle is any triangle that contains a 90 degree angle. There are six pieces of information we can know about a given

More information

Appendix E. Plane Geometry

Appendix E. Plane Geometry Appendix E Plane Geometry A. Circle A circle is defined as a closed plane curve every point of which is equidistant from a fixed point within the curve. Figure E-1. Circle components. 1. Pi In mathematics,

More information

Name Date. FINAL EXAM STUDY GUIDE Pre-Algebra Course 3

Name Date. FINAL EXAM STUDY GUIDE Pre-Algebra Course 3 Name Date FINAL EXAM STUDY GUIDE Pre-Algebra Course 3 The following is an outline of key elements that should have been mastered during the course of the year (Grade 8 Green Book Course 3). Use it wisely

More information

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved.

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved. 10 Conics, Parametric Equations, and Polar Coordinates Copyright Cengage Learning. All rights reserved. 10.5 Area and Arc Length in Polar Coordinates Copyright Cengage Learning. All rights reserved. Objectives

More information

Light and Mirrors MIRRORS

Light and Mirrors MIRRORS Light and Mirrors MIRRORS 1 Polarized Sunglasses- How do they work? light waves vibrate in more than one plane light waves can be made to vibrate in a single plane by use of polarizing filters. 2 polarizing

More information

34.2: Two Types of Image

34.2: Two Types of Image Chapter 34 Images 34.2: Two Types of Image For you to see an object, your eye intercepts some of the light rays spreading from the object and then redirect them onto the retina at the rear of the eye.

More information

GAUSS-BONNET FOR DISCRETE SURFACES

GAUSS-BONNET FOR DISCRETE SURFACES GAUSS-BONNET FOR DISCRETE SURFACES SOHINI UPADHYAY Abstract. Gauss-Bonnet is a deep result in differential geometry that illustrates a fundamental relationship between the curvature of a surface and its

More information

Parameterization of triangular meshes

Parameterization of triangular meshes Parameterization of triangular meshes Michael S. Floater November 10, 2009 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to

More information

Chapter Seventeen. Gauss and Green. We shall do this by computing the surface integral over each of the six sides of B and adding the results.

Chapter Seventeen. Gauss and Green. We shall do this by computing the surface integral over each of the six sides of B and adding the results. Chapter Seventeen Gauss and Green 7 Gauss's Theorem Let B be the bo, or rectangular parallelepiped, given by B {(, y, z):, y y y, z z z } 0 0 0 ; and let S be the surface of B with the orientation that

More information

SOME PROPERTIES OF TRIGONOMETRIC FUNCTIONS. 5! x7 7! + = 6! + = 4! x6

SOME PROPERTIES OF TRIGONOMETRIC FUNCTIONS. 5! x7 7! + = 6! + = 4! x6 SOME PROPERTIES OF TRIGONOMETRIC FUNCTIONS PO-LAM YUNG We defined earlier the sine cosine by the following series: sin x = x x3 3! + x5 5! x7 7! + = k=0 cos x = 1 x! + x4 4! x6 6! + = k=0 ( 1) k x k+1

More information

Physics 1C Lecture 26A. Beginning of Chapter 26

Physics 1C Lecture 26A. Beginning of Chapter 26 Physics 1C Lecture 26A Beginning of Chapter 26 Mirrors and Lenses! As we have noted before, light rays can be diverted by optical systems to fool your eye into thinking an object is somewhere that it is

More information

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo 05 - Surfaces Acknowledgements: Olga Sorkine-Hornung Reminder Curves Turning Number Theorem Continuous world Discrete world k: Curvature is scale dependent is scale-independent Discrete Curvature Integrated

More information

2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into

2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into 2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into the viewport of the current application window. A pixel

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Homework - Solutions 3 2 Homework 2 - Solutions 3 3 Homework 3 - Solutions 9 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus

More information

Parallel Transport on the Torus

Parallel Transport on the Torus MLI Home Mathematics The Torus Parallel Transport Parallel Transport on the Torus Because it really is all about the torus, baby After reading about the torus s curvature, shape operator, and geodesics,

More information

Surfaces: notes on Geometry & Topology

Surfaces: notes on Geometry & Topology Surfaces: notes on Geometry & Topology 1 Surfaces A 2-dimensional region of 3D space A portion of space having length and breadth but no thickness 2 Defining Surfaces Analytically... Parametric surfaces

More information

Background for Surface Integration

Background for Surface Integration Background for urface Integration 1 urface Integrals We have seen in previous work how to define and compute line integrals in R 2. You should remember the basic surface integrals that we will need to

More information

AP Physics: Curved Mirrors and Lenses

AP Physics: Curved Mirrors and Lenses The Ray Model of Light Light often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but is very useful for geometric

More information

Video: The Mirror. Unit #3 - Optics. Geometric Optics. A) The Law of Reflection. applications Mirrors.

Video: The Mirror. Unit #3 - Optics. Geometric Optics. A) The Law of Reflection. applications Mirrors. Video: The Mirror http://vimeo.com/6212004 Unit #3 - Optics 11.1 - Mirrors Geometric Optics the science of how light reflects and bends optical device is any technology that uses light A) The Law of Reflection

More information

Shape Modeling and Geometry Processing

Shape Modeling and Geometry Processing 252-0538-00L, Spring 2018 Shape Modeling and Geometry Processing Discrete Differential Geometry Differential Geometry Motivation Formalize geometric properties of shapes Roi Poranne # 2 Differential Geometry

More information

Chapter 4: Trigonometry

Chapter 4: Trigonometry Chapter 4: Trigonometry Section 4-1: Radian and Degree Measure INTRODUCTION An angle is determined by rotating a ray about its endpoint. The starting position of the ray is the of the angle, and the position

More information

Study Guide and Review

Study Guide and Review Choose the term that best matches the statement or phrase. a square of a whole number A perfect square is a square of a whole number. a triangle with no congruent sides A scalene triangle has no congruent

More information

Nicholas J. Giordano. Chapter 24. Geometrical Optics. Marilyn Akins, PhD Broome Community College

Nicholas J. Giordano.   Chapter 24. Geometrical Optics. Marilyn Akins, PhD Broome Community College Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 24 Geometrical Optics Marilyn Akins, PhD Broome Community College Optics The study of light is called optics Some highlights in the history

More information

Flat Surfaces, Teichmueller Discs, Veech Groups, and the Veech Tessellation

Flat Surfaces, Teichmueller Discs, Veech Groups, and the Veech Tessellation Flat Surfaces, Teichmueller Discs, Veech Groups, and the Veech Tessellation S. Allen Broughton - Rose-Hulman Institute of Technology Chris Judge - Indiana University AMS Regional Meeting at Pennsylvania

More information

12:40-2:40 3:00-4:00 PM

12:40-2:40 3:00-4:00 PM Physics 294H l Professor: Joey Huston l email:huston@msu.edu l office: BPS3230 l Homework will be with Mastering Physics (and an average of 1 hand-written problem per week) Help-room hours: 12:40-2:40

More information

CS 523: Computer Graphics, Spring Shape Modeling. Differential Geometry of Surfaces

CS 523: Computer Graphics, Spring Shape Modeling. Differential Geometry of Surfaces CS 523: Computer Graphics, Spring 2011 Shape Modeling Differential Geometry of Surfaces Andrew Nealen, Rutgers, 2011 2/22/2011 Differential Geometry of Surfaces Continuous and Discrete Motivation Smoothness

More information

Length and Area. Charles Delman. April 20, 2010

Length and Area. Charles Delman. April 20, 2010 Length and Area Charles Delman April 20, 2010 What is the length? Unit Solution Unit 5 (linear) units What is the length? Unit Solution Unit 5 2 = 2 1 2 (linear) units What is the perimeter of the shaded

More information

Lecture Notes (Geometric Optics)

Lecture Notes (Geometric Optics) Lecture Notes (Geometric Optics) Intro: - plane mirrors are flat, smooth surfaces from which light is reflected by regular reflection - light rays are reflected with equal angles of incidence and reflection

More information