Thiruvarangan Ramaraj CS525 Graphics & Scientific Visualization Spring 2007, Presentation I, February 28 th 2007, 14:10 15:00. Topic (Research Paper):

Size: px
Start display at page:

Download "Thiruvarangan Ramaraj CS525 Graphics & Scientific Visualization Spring 2007, Presentation I, February 28 th 2007, 14:10 15:00. Topic (Research Paper):"

Transcription

1 Thiruvarangan Ramaraj CS525 Graphics & Scientific Visualization Spring 2007, Presentation I, February 28 th 2007, 14:10 15:00 Topic (Research Paper): Jinxian Chai and Jessica K. Hodgins, Performance Animation from Low-dimensional Control Signals. In ACM Transactions on Graphics (Proceedings of SIGGRAPH 2005).

2 Table of contents: 0. Introduction 1. System Overview 2. Motion Performance 2.1 Skeleton Calibration 2.2 Marker Calibration 3. Online local modeling 3.1 Nearest Neighbor Construction 4. Online Motion Synthesis 5. Results 6. Conclusion

3 0. Introduction: This paper studies real-time animation and control of three-dimensional human motions using low-cost and non-intrusive devices. This project introduces an approach to performance animation that employs video cameras and a small set of retro-reflective markers so that a user can create a simple low-cost and easy-to-use system at home. The low-dimensional control signals from the user's performance are supplemented by a database of pre-recorded human motion. During run time, the system learns a series of local models from a set of motion capture examples that are a close match to the marker locations captured by the cameras. These local models are then used to reconstruct the motion of the user as a full-body animation. They demonstrate the power and flexibility of this approach by having users control six behaviors in real time without significant latency: walking, running, hopping, jumping, boxing, and Kendo (Japanese sword art). The reconstructed motion is based on a single large human motion database. The resulting animation captures the individual style of the user's motion through spatialtemporal interpolation of the data. Finally, they assess the quality of the reconstructed motion by comparing against ground truth data simultaneously captured with a full marker set in a commercial motion capture system. Figure 1: Users wearing a few retro-reflective markers control the full-body motion of avatars by acting out the motion in front of two synchronized cameras. Examples From left to right: walking, boxing, and Kendo (Japanese sword art).

4 1. System Overview: First they perform a series of off-line captures to create a large and heterogeneous human motion database using an optical motion capture system with twelve 120 Hz Mx-40 cameras. This database contains ten full-body behaviors: boxing (71597 frames), walking ( frames), running (18523 frames), jumping (40303 frames), hopping (18952 frames), locomotion transitions (36251 frames), dancing (18002 frames), basketball (12484 frames), climbing on playground equipment (51947 frames), and Kendo (59600 frames). They used 41 markers, an adaptation of the Helen Hayes marker set. Also four extra markers are used on the bamboo sword for Kendo. Figure (2): System Overview Each motion in the database has a skeleton and each motion sequence contains trajectories for the absolute position and orientation of the root node (pelvis) as well as relative joint angles of 18 joints. The set of motion capture data in the database is denoted as {q n n = 1 N}, where q n is the joint angle representation of a specific pose in the database. The control signals are denoted by c t and z t denotes the position and the orientation of the user. The online motion control problem is to synthesize the current human body pose q t based on the current low-dimensional control signals, c t, motion capture data in the database, {q 1,..q N }, and the synthesized poses in the previous frames, [ q 1,.., q t_1 ]. There are three major components in this system 1. Motion performance (Real Time Control Signal Capture) 2. Online local modeling (Real Time Local Pose Modeling) 3. Online motion synthesis

5 2. Motion Performance: Motion performance describes real time control signal capture. They provide an algorithm to extract the control marker locations from the video cameras. The input devices they use in this project are Pulnix video cameras, which have 640* 480 image resolution and a frame rate of 60 fps. The users wear a small set of retro reflective markers to perform in front of the video cameras. To illuminate the markers photography light is used near each camera. Figure (3): Control Marker Locations and its correspondence Figure 3 (a) represents the image from the left camera and figure 3 (b) represents the image from the right camera. Figure 3 (c) shows the detected marker positions in the left image and figure 3 (d) shows the detected marker locations in the right image and the epipolar lines of the markers detected from the left image. For every marker location in the left image, the matching marker location in the right image is located on its corresponding epipolar lines. So basically here a correspondence is established between the marker locations using epipolar geometry and color similarity constraints. The epipolar geometry basically explains the relationship that exists between two images.

6 In this process they use subject calibration the system interface is robust to users of different size. The two steps involved are Skeleton calibration and Marker Calibration. 2.1 Skeleton Calibration: The Skeleton calibration step is used to estimate the user's skeleton model from the 3D locations of a few markers. They place the markers on the left hand, left elbow, left foot, left knee, and each shoulder and also two markers are placed on the front of the waist. The user assumes T poses and captures the 3D locations of the markers. These locations are not sufficient enough to compute the whole detailed skeleton model, therefore with the help of these measured 3D marker locations they interpolate a database of detailed skeleton models from a variety of subjects. Then they place markers on the right limb and model the right side of the skeleton model in a similar fashion. This step is done exactly once by the user. 2.2 Marker Calibration: The second step is Marker Calibration, to determine the location of the control markers used in the interface relative to the inboard joint. First, the location of the markers in the world coordinate frame are calculated, with this information and user's skeleton model and using forward kinematics the 3D positions of the inboard joints relative to the world coordinate frame is computed. Forward kinematics is a method used for animating models in computer graphics. The 3D location of the control marker c n corresponding to the motion capture data in the database is given by the formula f is the forward kinematics animation function, q n is the current frame in the database, s is the users skeleton model, v l is the location of the control markers relative to the inboard joint and z 0 is the default root position.

7 3. Online local modeling: In this process to synthesize the current pose q t, they search the motion capture database for examples that are close to the current control signals c t and the recently synthesized poses in the previous frames [ q 1,.,q t_1 ]. These examples are used as training data to learn a simple linear model via Principal Component Analysis (PCA). PCA is a technique for simplifying a data set by reducing multidimensional data sets to lower dimensions for analysis. To find the closet examples of the current pose the system uses the current control signal from the interface and the synthesized poses in the previous two terms. Since the runtime computational cost depends on the efficiency of the nearest neighbor search process, a data structure called nearest neighbor graph is implemented, and an algorithm that accelerates the nearest neighbor search by utilizing the marker control signals. 3.1 Nearest Neighbor Construction: The neighbor graph is constructed with each pose in a human body representing a node and the pose similarity representing an edge. The nodes come from the human motion data base q n. The i th node and the j th node have an edge only if they satisfy the following condition d represents the largest L 1 distance between two consecutive poses in the database, fm and fc are the camera frame rates used for the motion capture and the control interface respectively, and ε is a specified search radius for nearest neighbors. In this experiment they set d to be 1.75 degrees per joint angle and ε to be 3 degrees per joint angle.

8 Figure (4): 2D example of the fast nearest neighbor search using two dimensions of the neighbor graph for the boxing database Figure (a) shows the data points in the database, in figure (b) the circle represents the previous pose, q t_1, and the square represents the current pose, q t.at run time, we use the neighbors of the previous frame (blue points) {q t_1k k = 1,.,K} and a precomputed neighbor graph to find the neighbors of {q t_1k k = 1,.,K} in the neighbor graph (red points). The algorithm then searches only the red and blue points to find the nearest neighbors of the current query point. Finally figure (c) represents the green points which are the nearest neighbors computed using this algorithm. The nearest neighbor search is independent of the size of the human motion capture database 4. Online motion Synthesis: This section focuses on reconstructing the joint angle values [q 1,.,q t ] from the low dimensional control signals obtained from the vision-based interface [c 1,..,c t ] using the local linear model. During run time the control signals are transformed to full body human motions frame by frame. The online motion synthesis deals with optimizing an objective function that reflects a- priori likelihood, control signals and the smoothness of the motion. They introduce three energy terms for this reason. A human pose prior E prior measures the likelihood of the current pose using the motion capture database. This term ensures that the synthesized motion satisfies the probabilistic distribution of human motions in the database, the control term E control, measures the deviation of the marker locations in the reconstructed motion from the control inputs obtained from the vision based interface, and the smoothness term E smoothness that minimizes velocity changes in the synthesized motion.

9 5. Results: The effectiveness of this algorithm is tested on different behaviors and different users using a large and heterogeneous human motion database and the quality of the synthesized motions is evaluated by comparing them with motion capture data recorded with a full marker set. The systems performance scales well with the size of the database. The online motion synthesis using the local models is different than the other lazy learning approaches because here they synthesize the motion in a low dimensional continuous control signals. They provide a comparison of this method with two other popular learning methods, the Nearest Neighbor Synthesis and the locally weighted regression. The results are shown in video form; it can be seen in the following link 6. Conclusions: In this paper they present an approach for performance animation that uses a series of local models created from a large and heterogeneous human motion database to reconstruct full-body human motion from low-dimensional control signals. Also it demonstrates the power and flexibility of this approach with different users wearing a small set of markers and controlling a variety of behaviors in real time by performing in front of one or two video cameras. The results they obtained are comparable in quality to those obtained from a commercial motion capture system. One main advantage is this performance animation system is far less expensive. References: Jinxian Chai and Jessica K. Hodgins, Performance Animation from Low-dimensional Control Signals. In ACM Transactions on Graphics (Proceedings of SIGGRAPH 2005). Yamane, K., and Kuffner, J.J., and Hodgins, J.K 2004 Synthesizing Animations of Human manipulation tasks. In ACM Transactions on Graphics. 23(3):

Data-driven Approaches to Simulation (Motion Capture)

Data-driven Approaches to Simulation (Motion Capture) 1 Data-driven Approaches to Simulation (Motion Capture) Ting-Chun Sun tingchun.sun@usc.edu Preface The lecture slides [1] are made by Jessica Hodgins [2], who is a professor in Computer Science Department

More information

Motion Synthesis and Editing. Yisheng Chen

Motion Synthesis and Editing. Yisheng Chen Motion Synthesis and Editing Yisheng Chen Overview Data driven motion synthesis automatically generate motion from a motion capture database, offline or interactive User inputs Large, high-dimensional

More information

CS-184: Computer Graphics

CS-184: Computer Graphics CS-184: Computer Graphics Lecture #19: Motion Capture!!! Prof. James O Brien! University of California, Berkeley!! V2015-S-18-1.0 Today 1 18-MoCap.key - April 8, 2015 Motion Capture 2 2 18-MoCap.key -

More information

Motion Interpretation and Synthesis by ICA

Motion Interpretation and Synthesis by ICA Motion Interpretation and Synthesis by ICA Renqiang Min Department of Computer Science, University of Toronto, 1 King s College Road, Toronto, ON M5S3G4, Canada Abstract. It is known that high-dimensional

More information

To Do. Advanced Computer Graphics. The Story So Far. Course Outline. Rendering (Creating, shading images from geometry, lighting, materials)

To Do. Advanced Computer Graphics. The Story So Far. Course Outline. Rendering (Creating, shading images from geometry, lighting, materials) Advanced Computer Graphics CSE 190 [Spring 2015], Lecture 16 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir To Do Assignment 3 milestone due May 29 Should already be well on way Contact us for difficulties

More information

THE capability to precisely synthesize online fullbody

THE capability to precisely synthesize online fullbody 1180 JOURNAL OF MULTIMEDIA, VOL. 9, NO. 10, OCTOBER 2014 Sparse Constrained Motion Synthesis Using Local Regression Models Huajun Liu a, Fuxi Zhu a a School of Computer, Wuhan University, Wuhan 430072,

More information

Computer Animation and Visualisation. Lecture 3. Motion capture and physically-based animation of characters

Computer Animation and Visualisation. Lecture 3. Motion capture and physically-based animation of characters Computer Animation and Visualisation Lecture 3. Motion capture and physically-based animation of characters Character Animation There are three methods Create them manually Use real human / animal motions

More information

Motion Control with Strokes

Motion Control with Strokes Motion Control with Strokes Masaki Oshita Kyushu Institute of Technology oshita@ces.kyutech.ac.jp Figure 1: Examples of stroke-based motion control. Input strokes (above) and generated motions (below).

More information

Style-based Inverse Kinematics

Style-based Inverse Kinematics Style-based Inverse Kinematics Keith Grochow, Steven L. Martin, Aaron Hertzmann, Zoran Popovic SIGGRAPH 04 Presentation by Peter Hess 1 Inverse Kinematics (1) Goal: Compute a human body pose from a set

More information

Exploiting Spatial-temporal Constraints for Interactive Animation Control

Exploiting Spatial-temporal Constraints for Interactive Animation Control Exploiting Spatial-temporal Constraints for Interactive Animation Control Jinxiang Chai CMU-RI-TR-06-49 Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Robotics

More information

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation Last Time? Animation, Motion Capture, & Inverse Kinematics Navier-Stokes Equations Conservation of Momentum & Mass Incompressible Flow Today How do we animate? Keyframing Procedural Animation Physically-Based

More information

Last Time? Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation

Last Time? Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation Last Time? Inverse Kinematics Navier-Stokes Equations Conservation of Momentum & Mass Incompressible Flow Today How do we animate? Keyframing Procedural Animation Physically-Based Animation Forward and

More information

Course Outline. Advanced Computer Graphics. Animation. The Story So Far. Animation. To Do

Course Outline. Advanced Computer Graphics. Animation. The Story So Far. Animation. To Do Advanced Computer Graphics CSE 163 [Spring 2017], Lecture 18 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir 3D Graphics Pipeline Modeling (Creating 3D Geometry) Course Outline Rendering (Creating, shading

More information

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation Last Time? Animation, Motion Capture, & Inverse Kinematics Navier-Stokes Equations Conservation of Momentum & Mass Incompressible Flow Today How do we animate? Keyframing Procedural Animation Physically-Based

More information

Graph-based High Level Motion Segmentation using Normalized Cuts

Graph-based High Level Motion Segmentation using Normalized Cuts Graph-based High Level Motion Segmentation using Normalized Cuts Sungju Yun, Anjin Park and Keechul Jung Abstract Motion capture devices have been utilized in producing several contents, such as movies

More information

Learnt Inverse Kinematics for Animation Synthesis

Learnt Inverse Kinematics for Animation Synthesis VVG (5) (Editors) Inverse Kinematics for Animation Synthesis Anonymous Abstract Existing work on animation synthesis can be roughly split into two approaches, those that combine segments of motion capture

More information

Human Motion Synthesis by Motion Manifold Learning and Motion Primitive Segmentation

Human Motion Synthesis by Motion Manifold Learning and Motion Primitive Segmentation Human Motion Synthesis by Motion Manifold Learning and Motion Primitive Segmentation Chan-Su Lee and Ahmed Elgammal Rutgers University, Piscataway, NJ, USA {chansu, elgammal}@cs.rutgers.edu Abstract. We

More information

Animation Charts. What is in the Animation Charts Package? Flying Cycle. Throw Side View. Jump. Side View. Sequence Layout

Animation Charts. What is in the Animation Charts Package? Flying Cycle. Throw Side View. Jump. Side View. Sequence Layout Toon Boom Animation provides several animation charts designed to help you animate different characters. The Animation Chart Package contains main actions and animation such as, walking, flying, weight

More information

Animating Non-Human Characters using Human Motion Capture Data

Animating Non-Human Characters using Human Motion Capture Data Animating Non-Human Characters using Human Motion Capture Data Laurel Bancroft 1 and Jessica Hodgins 2 1 College of Fine Arts, Carngie Mellon University, lbancrof@andrew.cmu.edu 2 Computer Science, Carnegie

More information

Articulated Structure from Motion through Ellipsoid Fitting

Articulated Structure from Motion through Ellipsoid Fitting Int'l Conf. IP, Comp. Vision, and Pattern Recognition IPCV'15 179 Articulated Structure from Motion through Ellipsoid Fitting Peter Boyi Zhang, and Yeung Sam Hung Department of Electrical and Electronic

More information

CS 231. Motion Capture Data I. The Pipeline. Bodenheimer et al

CS 231. Motion Capture Data I. The Pipeline. Bodenheimer et al CS 231 Motion Capture Data I The Pipeline Bodenheimer et al 1 Marker Magnetic Optical Marker placement On limbs vs joints neither is ideal Over tight clothing or thin skin In repeatable 'landmarks' Using

More information

Motion Texture. Harriet Pashley Advisor: Yanxi Liu Ph.D. Student: James Hays. 1. Introduction

Motion Texture. Harriet Pashley Advisor: Yanxi Liu Ph.D. Student: James Hays. 1. Introduction Motion Texture Harriet Pashley Advisor: Yanxi Liu Ph.D. Student: James Hays 1. Introduction Motion capture data is often used in movies and video games because it is able to realistically depict human

More information

Applications. Systems. Motion capture pipeline. Biomechanical analysis. Graphics research

Applications. Systems. Motion capture pipeline. Biomechanical analysis. Graphics research Motion capture Applications Systems Motion capture pipeline Biomechanical analysis Graphics research Applications Computer animation Biomechanics Robotics Cinema Video games Anthropology What is captured?

More information

Full Body Tracking Using an Agent-based Architecture

Full Body Tracking Using an Agent-based Architecture Full Body Tracking Using an Agent-based Architecture Bing Fang, Liguang Xie, Pak-Kiu Chung, Yong Cao, Francis Quek Center for Human Computer Interaction Virginia Polytechnic Institute and State University

More information

INFOMCANIM Computer Animation Motion Synthesis. Christyowidiasmoro (Chris)

INFOMCANIM Computer Animation Motion Synthesis. Christyowidiasmoro (Chris) INFOMCANIM Computer Animation Motion Synthesis Christyowidiasmoro (Chris) Why Motion Synthesis? We don t have the specific motion / animation We don t have the skeleton and motion for specific characters

More information

Modeling 3D Human Poses from Uncalibrated Monocular Images

Modeling 3D Human Poses from Uncalibrated Monocular Images Modeling 3D Human Poses from Uncalibrated Monocular Images Xiaolin K. Wei Texas A&M University xwei@cse.tamu.edu Jinxiang Chai Texas A&M University jchai@cse.tamu.edu Abstract This paper introduces an

More information

Learning Deformations of Human Arm Movement to Adapt to Environmental Constraints

Learning Deformations of Human Arm Movement to Adapt to Environmental Constraints Learning Deformations of Human Arm Movement to Adapt to Environmental Constraints Stephan Al-Zubi and Gerald Sommer Cognitive Systems, Christian Albrechts University, Kiel, Germany Abstract. We propose

More information

Generating Different Realistic Humanoid Motion

Generating Different Realistic Humanoid Motion Generating Different Realistic Humanoid Motion Zhenbo Li,2,3, Yu Deng,2,3, and Hua Li,2,3 Key Lab. of Computer System and Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing

More information

CS-184: Computer Graphics. Today

CS-184: Computer Graphics. Today CS-184: Computer Graphics Lecture #20: Motion Capture Prof. James O Brien University of California, Berkeley V2005-F20-1.0 Today Motion Capture 2 Motion Capture Record motion from physical objects Use

More information

Overview on Mocap Data Compression

Overview on Mocap Data Compression Overview on Mocap Data Compression May-chen Kuo, Pei-Ying Chiang and C.-C. Jay Kuo University of Southern California, Los Angeles, CA 90089-2564, USA E-mail: cckuo@sipi.usc.edu Abstract The motion capture

More information

Motion Capture & Simulation

Motion Capture & Simulation Motion Capture & Simulation Motion Capture Character Reconstructions Joint Angles Need 3 points to compute a rigid body coordinate frame 1 st point gives 3D translation, 2 nd point gives 2 angles, 3 rd

More information

Inverse Kinematics Programming Assignment

Inverse Kinematics Programming Assignment Inverse Kinematics Programming Assignment CS 448D: Character Animation Due: Wednesday, April 29 th 11:59PM 1 Logistics In this programming assignment, you will implement a simple inverse kinematics solver

More information

What have we leaned so far?

What have we leaned so far? What have we leaned so far? Camera structure Eye structure Project 1: High Dynamic Range Imaging What have we learned so far? Image Filtering Image Warping Camera Projection Model Project 2: Panoramic

More information

Articulated Characters

Articulated Characters Articulated Characters Skeleton A skeleton is a framework of rigid body bones connected by articulated joints Used as an (invisible?) armature to position and orient geometry (usually surface triangles)

More information

Construction Progress Management and Interior Work Analysis Using Kinect 3D Image Sensors

Construction Progress Management and Interior Work Analysis Using Kinect 3D Image Sensors 33 rd International Symposium on Automation and Robotics in Construction (ISARC 2016) Construction Progress Management and Interior Work Analysis Using Kinect 3D Image Sensors Kosei Ishida 1 1 School of

More information

Overview. Animation is a big topic We will concentrate on character animation as is used in many games today. humans, animals, monsters, robots, etc.

Overview. Animation is a big topic We will concentrate on character animation as is used in many games today. humans, animals, monsters, robots, etc. ANIMATION Overview Animation is a big topic We will concentrate on character animation as is used in many games today humans, animals, monsters, robots, etc. Character Representation A character is represented

More information

Interpolation and extrapolation of motion capture data

Interpolation and extrapolation of motion capture data Interpolation and extrapolation of motion capture data Kiyoshi Hoshino Biological Cybernetics Lab, University of the Ryukyus and PRESTO-SORST, Japan Science and Technology Corporation Nishihara, Okinawa

More information

Human Motion Database with a Binary Tree and Node Transition Graphs

Human Motion Database with a Binary Tree and Node Transition Graphs Human Motion Database with a Binary Tree and Node Transition Graphs Katsu Yamane Disney Research, Pittsburgh kyamane@disneyresearch.com Yoshifumi Yamaguchi Dept. of Mechano-Informatics University of Tokyo

More information

Epitomic Analysis of Human Motion

Epitomic Analysis of Human Motion Epitomic Analysis of Human Motion Wooyoung Kim James M. Rehg Department of Computer Science Georgia Institute of Technology Atlanta, GA 30332 {wooyoung, rehg}@cc.gatech.edu Abstract Epitomic analysis is

More information

A Nonlinear Manifold Learning Framework for Real-time Motion Estimation using Low-cost Sensors

A Nonlinear Manifold Learning Framework for Real-time Motion Estimation using Low-cost Sensors A Nonlinear Manifold Learning Framework for Real-time Motion Estimation using Low-cost Sensors Liguang Xie, Bing Fang, Yong Cao, Francis Quek Center for Human Computer Interaction Virginia Polytechnic

More information

CSE452 Computer Graphics

CSE452 Computer Graphics CSE452 Computer Graphics Lecture 19: From Morphing To Animation Capturing and Animating Skin Deformation in Human Motion, Park and Hodgins, SIGGRAPH 2006 CSE452 Lecture 19: From Morphing to Animation 1

More information

Motion Retrieval. Motion Capture Data. Motion Capture Data. Motion Capture Data. Motion Capture Data. Motion Capture Data

Motion Retrieval. Motion Capture Data. Motion Capture Data. Motion Capture Data. Motion Capture Data. Motion Capture Data Lecture Information Retrieval for Music and Motion Meinard Müller and Andreas Baak Summer Term 2008 Motion Capture Data Digital 3D representations of motions Computer animation Sports Gait analysis 2 Motion

More information

Kinematics & Motion Capture

Kinematics & Motion Capture Lecture 27: Kinematics & Motion Capture Computer Graphics and Imaging UC Berkeley CS184/284A, Spring 2017 Forward Kinematics (Slides with James O Brien) Forward Kinematics Articulated skeleton Topology

More information

Animation Charts 3. What is in the Animation Charts 3 Package? Horse Gallop Cycle Side View

Animation Charts 3. What is in the Animation Charts 3 Package? Horse Gallop Cycle Side View Animation Charts 3 Toon Boom Animation provides several animation charts designed to help the user animate different characters. The Animation Charts 3 package contains main actions and animation such

More information

Animation Charts 4. What is in the Animation Charts 4 Package?

Animation Charts 4. What is in the Animation Charts 4 Package? Toon Boom Animation provides several animation charts designed to help the user animate different actions. The package contains fx animation such as; a smoke cycle, a bubble bursting, and an electric arc.

More information

Homework 2 Questions? Animation, Motion Capture, & Inverse Kinematics. Velocity Interpolation. Handing Free Surface with MAC

Homework 2 Questions? Animation, Motion Capture, & Inverse Kinematics. Velocity Interpolation. Handing Free Surface with MAC Homework 2 Questions? Animation, Motion Capture, & Inverse Kinematics Velocity Interpolation Original image from Foster & Metaxas, 1996 In 2D: For each axis, find the 4 closest face velocity samples: Self-intersecting

More information

SCAPE: Shape Completion and Animation of People

SCAPE: Shape Completion and Animation of People SCAPE: Shape Completion and Animation of People By Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim Rodgers, James Davis From SIGGRAPH 2005 Presentation for CS468 by Emilio Antúnez

More information

3D Motion Retrieval for Martial Arts

3D Motion Retrieval for Martial Arts Tamsui Oxford Journal of Mathematical Sciences 20(2) (2004) 327-337 Aletheia University 3D Motion Retrieval for Martial Arts Department of Computer and Information Sciences, Aletheia University Tamsui,

More information

Keyframing an IK Skeleton Maya 2012

Keyframing an IK Skeleton Maya 2012 2002-2012 Michael O'Rourke Keyframing an IK Skeleton Maya 2012 (This tutorial assumes you have done the Creating an Inverse Kinematic Skeleton tutorial in this set) Concepts Once you have built an Inverse

More information

Motion Capture and 3D Animation

Motion Capture and 3D Animation Motion Capture and 3D Animation Prof. Marcos Fernández Instituto de Robotica UVEG Marcos.Fernandez@uv.es Motion Capture recording of motion for immediate or delayed analysis or playback - David J. Sturman

More information

Human body animation. Computer Animation. Human Body Animation. Skeletal Animation

Human body animation. Computer Animation. Human Body Animation. Skeletal Animation Computer Animation Aitor Rovira March 2010 Human body animation Based on slides by Marco Gillies Human Body Animation Skeletal Animation Skeletal Animation (FK, IK) Motion Capture Motion Editing (retargeting,

More information

Synthesizing Human Motion From Intuitive Constraints

Synthesizing Human Motion From Intuitive Constraints University of Pennsylvania ScholarlyCommons Center for Human Modeling and Simulation Department of Computer & Information Science 6-10-2008 Synthesizing Human Motion From Intuitive Constraints Alla Safonova

More information

MOTION capture is a technique and a process that

MOTION capture is a technique and a process that JOURNAL OF L A TEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2008 1 Automatic estimation of skeletal motion from optical motion capture data xxx, Member, IEEE, Abstract Utilization of motion capture techniques

More information

Research Subject. Dynamics Computation and Behavior Capture of Human Figures (Nakamura Group)

Research Subject. Dynamics Computation and Behavior Capture of Human Figures (Nakamura Group) Research Subject Dynamics Computation and Behavior Capture of Human Figures (Nakamura Group) (1) Goal and summary Introduction Humanoid has less actuators than its movable degrees of freedom (DOF) which

More information

How does the magic happen?

How does the magic happen? CHARACTER ANIMATION Dr. Andreas Aristidou Image taken from https://marionettestudio.com/ How does the magic happen? 1 Overview Introduction to Character Animation Character Rigging Setup the skeletal system

More information

Announcements: Quiz. Animation, Motion Capture, & Inverse Kinematics. Last Time? Today: How do we Animate? Keyframing. Procedural Animation

Announcements: Quiz. Animation, Motion Capture, & Inverse Kinematics. Last Time? Today: How do we Animate? Keyframing. Procedural Animation Announcements: Quiz Animation, Motion Capture, & Inverse Kinematics On Friday (3/1), in class One 8.5x11 sheet of notes allowed Sample quiz (from a previous year) on website Focus on reading comprehension

More information

Character Animation 1

Character Animation 1 Character Animation 1 Overview Animation is a big topic We will concentrate on character animation as is used in many games today humans, animals, monsters, robots, etc. Character Representation A character

More information

Animation Charts 4. What is in the Animation Charts 4 Package?

Animation Charts 4. What is in the Animation Charts 4 Package? Animation Charts 4 Toon Boom Animation provides several animation charts designed to help the user animate different actions. The Animation Charts 4 package contains fx animation such as; a smoke cycle,

More information

Automatic Hand-Over Animation using Principle Component Analysis

Automatic Hand-Over Animation using Principle Component Analysis Automatic Hand-Over Animation using Principle Component Analysis Nkenge Wheatland Sophie Jörg Victor Zordan UC Riverside Clemson University UC Riverside Abstract This paper introduces a method for producing

More information

Introduction to Computer Graphics. Animation (1) May 19, 2016 Kenshi Takayama

Introduction to Computer Graphics. Animation (1) May 19, 2016 Kenshi Takayama Introduction to Computer Graphics Animation (1) May 19, 2016 Kenshi Takayama Skeleton-based animation Simple Intuitive Low comp. cost https://www.youtube.com/watch?v=dsonab58qva 2 Representing a pose using

More information

A novel approach to motion tracking with wearable sensors based on Probabilistic Graphical Models

A novel approach to motion tracking with wearable sensors based on Probabilistic Graphical Models A novel approach to motion tracking with wearable sensors based on Probabilistic Graphical Models Emanuele Ruffaldi Lorenzo Peppoloni Alessandro Filippeschi Carlo Alberto Avizzano 2014 IEEE International

More information

15-462: Computer Graphics. Jessica Hodgins and Alla Safonova

15-462: Computer Graphics. Jessica Hodgins and Alla Safonova 15-462: Computer Graphics Jessica Hodgins and Alla Safonova Introduction Administrivia Who are we? What is computer graphics? A few case studies Administration Web page www.cs.cmu.edu/~jkh/462_s07 Linked

More information

Learning Silhouette Features for Control of Human Motion

Learning Silhouette Features for Control of Human Motion Learning Silhouette Features for Control of Human Motion Liu Ren 1, Gregory Shakhnarovich 2, Jessica K. Hodgins 1 Hanspeter Pfister 3, Paul A. Viola 4 July 2004 CMU-CS-04-165 School of Computer Science

More information

Synthesizing Object Receiving Motions of Humanoid Robots with Human Motion Database

Synthesizing Object Receiving Motions of Humanoid Robots with Human Motion Database 2013 IEEE International Conference on Robotics and Automation (ICRA) Karlsruhe, Germany, May 6-10, 2013 Synthesizing Object Receiving Motions of Humanoid Robots with Human Motion Database Katsu Yamane

More information

Markerless human motion capture through visual hull and articulated ICP

Markerless human motion capture through visual hull and articulated ICP Markerless human motion capture through visual hull and articulated ICP Lars Mündermann lmuender@stanford.edu Stefano Corazza Stanford, CA 93405 stefanoc@stanford.edu Thomas. P. Andriacchi Bone and Joint

More information

Realtime Style Transfer for Unlabeled Heterogeneous Human Motion

Realtime Style Transfer for Unlabeled Heterogeneous Human Motion Realtime Style Transfer for Unlabeled Heterogeneous Human Motion 1 Institute Shihong Xia1 Congyi Wang1 Jinxiang Chai2 2 of Computing Technology, CAS Texas A&M University Jessica Hodgins3 3 Carnegie Mellon

More information

Motion capture: An evaluation of Kinect V2 body tracking for upper limb motion analysis

Motion capture: An evaluation of Kinect V2 body tracking for upper limb motion analysis Motion capture: An evaluation of Kinect V2 body tracking for upper limb motion analysis Silvio Giancola 1, Andrea Corti 1, Franco Molteni 2, Remo Sala 1 1 Vision Bricks Laboratory, Mechanical Departement,

More information

Physically Based Character Animation

Physically Based Character Animation 15-464/15-664 Technical Animation April 2, 2013 Physically Based Character Animation Katsu Yamane Disney Research, Pittsburgh kyamane@disneyresearch.com Physically Based Character Animation Use physics

More information

Interactive Control of Avatars Animated with Human Motion Data

Interactive Control of Avatars Animated with Human Motion Data Interactive Control of vatars nimated with Human Motion Data Jehee Lee Carnegie Mellon University Jinxiang Chai Carnegie Mellon University Jessica K. Hodgins Carnegie Mellon University Paul S.. Reitsma

More information

Accurate 3D Face and Body Modeling from a Single Fixed Kinect

Accurate 3D Face and Body Modeling from a Single Fixed Kinect Accurate 3D Face and Body Modeling from a Single Fixed Kinect Ruizhe Wang*, Matthias Hernandez*, Jongmoo Choi, Gérard Medioni Computer Vision Lab, IRIS University of Southern California Abstract In this

More information

3D Human Motion Analysis and Manifolds

3D Human Motion Analysis and Manifolds D E P A R T M E N T O F C O M P U T E R S C I E N C E U N I V E R S I T Y O F C O P E N H A G E N 3D Human Motion Analysis and Manifolds Kim Steenstrup Pedersen DIKU Image group and E-Science center Motivation

More information

Adding Hand Motion to the Motion Capture Based Character Animation

Adding Hand Motion to the Motion Capture Based Character Animation Adding Hand Motion to the Motion Capture Based Character Animation Ge Jin and James Hahn Computer Science Department, George Washington University, Washington DC 20052 {jinge, hahn}@gwu.edu Abstract. Most

More information

Character Animation. Presented by: Pam Chow

Character Animation. Presented by: Pam Chow Character Animation Presented by: Pam Chow Overview Animation is a big topic We will concentrate on character animation as is used in many games today humans, animals, monsters, robots, etc. PLAZMO AND

More information

CS 231. Basics of Computer Animation

CS 231. Basics of Computer Animation CS 231 Basics of Computer Animation Animation Techniques Keyframing Motion capture Physics models Keyframe animation Highest degree of control, also difficult Interpolation affects end result Timing must

More information

Animation. Itinerary. What is Animation? What is Animation? Animation Methods. Modeling vs. Animation Computer Graphics Lecture 22

Animation. Itinerary. What is Animation? What is Animation? Animation Methods. Modeling vs. Animation Computer Graphics Lecture 22 15-462 Computer Graphics Lecture 22 Animation April 22, 2003 M. Ian Graham Carnegie Mellon University What is Animation? Making things move What is Animation? Consider a model with n parameters Polygon

More information

CMSC 425: Lecture 10 Skeletal Animation and Skinning

CMSC 425: Lecture 10 Skeletal Animation and Skinning CMSC 425: Lecture 10 Skeletal Animation and Skinning Reading: Chapt 11 of Gregory, Game Engine Architecture. Recap: Last time we introduced the principal elements of skeletal models and discussed forward

More information

Algorithm for Arm Position Reconstruction from Optical Motion Capture Data with Noisy or Missing Data

Algorithm for Arm Position Reconstruction from Optical Motion Capture Data with Noisy or Missing Data Algorithm for Arm Position Reconstruction from Optical Motion Capture Data with Noisy or Missing Data Meredith Moore Neuroscience and Computer Science Drake University Des Moines, IA, 50311 Meredith.Moore@drake.edu

More information

Term Project Final Report for CPSC526 Statistical Models of Poses Using Inverse Kinematics

Term Project Final Report for CPSC526 Statistical Models of Poses Using Inverse Kinematics Term Project Final Report for CPSC526 Statistical Models of Poses Using Inverse Kinematics Department of Computer Science The University of British Columbia duanx@cs.ubc.ca, lili1987@cs.ubc.ca Abstract

More information

Optimal motion trajectories. Physically based motion transformation. Realistic character animation with control. Highly dynamic motion

Optimal motion trajectories. Physically based motion transformation. Realistic character animation with control. Highly dynamic motion Realistic character animation with control Optimal motion trajectories Physically based motion transformation, Popovi! and Witkin Synthesis of complex dynamic character motion from simple animation, Liu

More information

Animation. Itinerary Computer Graphics Lecture 22

Animation. Itinerary Computer Graphics Lecture 22 15-462 Computer Graphics Lecture 22 Animation April 22, 2003 M. Ian Graham Carnegie Mellon University Itinerary Review Basic Animation Keyed Animation Motion Capture Physically-Based Animation Behavioral

More information

Animation, Motion Capture, & Inverse Kinematics. Announcements: Quiz

Animation, Motion Capture, & Inverse Kinematics. Announcements: Quiz Animation, Motion Capture, & Inverse Kinematics Announcements: Quiz On Tuesday (3/10), in class One 8.5x11 sheet of notes allowed Sample quiz (from a previous year) on website Focus on reading comprehension

More information

3D model-based human modeling and tracking

3D model-based human modeling and tracking 3D model-based human modeling and tracking André Gagalowicz Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex E-Mail : Andre.Gagalowicz@inria.fr FORMER APPROACH 2 Golf-Stream

More information

SM2231 :: 3D Animation I :: Basic. Rigging

SM2231 :: 3D Animation I :: Basic. Rigging SM2231 :: 3D Animation I :: Basic Rigging Object arrangements Hierarchical Hierarchical Separate parts arranged in a hierarchy can be animated without a skeleton Flat Flat Flat hierarchy is usually preferred,

More information

Motion Capture User Manual

Motion Capture User Manual ART-Human Motion Capture User Manual Version 2.0 Advanced Realtime Tracking GmbH July 2013 Table of Contents 1 Introduction... 1 1.1 What is ART-Human?... 1 1.2 Features... 1 1.3 New in Version 2.0...

More information

Motion Track: Visualizing Variations of Human Motion Data

Motion Track: Visualizing Variations of Human Motion Data Motion Track: Visualizing Variations of Human Motion Data Yueqi Hu Shuangyuan Wu Shihong Xia Jinghua Fu Wei Chen ABSTRACT This paper proposes a novel visualization approach, which can depict the variations

More information

Part I: HumanEva-I dataset and evaluation metrics

Part I: HumanEva-I dataset and evaluation metrics Part I: HumanEva-I dataset and evaluation metrics Leonid Sigal Michael J. Black Department of Computer Science Brown University http://www.cs.brown.edu/people/ls/ http://vision.cs.brown.edu/humaneva/ Motivation

More information

Human Motion Reconstruction by Direct Control of Marker Trajectories

Human Motion Reconstruction by Direct Control of Marker Trajectories Human Motion Reconstruction by Direct Control of Marker Trajectories Emel Demircan, Luis Sentis, Vincent De Sapio and Oussama Khatib Artificial Intelligence Laboratory, Stanford University, Stanford, CA

More information

Interactive Control of Avatars Animated with Human Motion Data

Interactive Control of Avatars Animated with Human Motion Data Interactive Control of vatars nimated with Human Motion Data Jehee Lee Carnegie Mellon University Jessica K. Hodgins Carnegie Mellon University Jinxiang Chai Carnegie Mellon University Nancy S. Pollard

More information

Human 3D Motion Computation from a Varying Number of Cameras

Human 3D Motion Computation from a Varying Number of Cameras Human 3D Motion Computation from a Varying Number of Cameras Magnus Burenius, Josephine Sullivan, Stefan Carlsson, and Kjartan Halvorsen KTH CSC/CVAP, S-100 44 Stockholm, Sweden http://www.csc.kth.se/cvap

More information

Full-Body Behavioral Path Planning in Cluttered Environments

Full-Body Behavioral Path Planning in Cluttered Environments In Proceedings of the ACM SIGGRAPH Conference on Motion in Games (MIG), 2016. This is the manuscript of the authors. Full-Body Behavioral Path Planning in Cluttered Environments Alain Juarez-Perez University

More information

Lecture 19: Depth Cameras. Visual Computing Systems CMU , Fall 2013

Lecture 19: Depth Cameras. Visual Computing Systems CMU , Fall 2013 Lecture 19: Depth Cameras Visual Computing Systems Continuing theme: computational photography Cameras capture light, then extensive processing produces the desired image Today: - Capturing scene depth

More information

Finding Rules of Attractive Human Poses Using Decision Tree and Generating Novel Attractive Poses

Finding Rules of Attractive Human Poses Using Decision Tree and Generating Novel Attractive Poses Finding Rules of Attractive Human Poses Using Decision Tree and Generating Novel Attractive Poses Masaki Oshita Kyushu Institute of Technology 680-4 Kawazu Iizuka, Fukuoka, 820-8502, Japan oshita@ces.kyutech.ac.jp

More information

CS 231. Inverse Kinematics Intro to Motion Capture. 3D characters. Representation. 1) Skeleton Origin (root) Joint centers/ bones lengths

CS 231. Inverse Kinematics Intro to Motion Capture. 3D characters. Representation. 1) Skeleton Origin (root) Joint centers/ bones lengths CS Inverse Kinematics Intro to Motion Capture Representation D characters ) Skeleton Origin (root) Joint centers/ bones lengths ) Keyframes Pos/Rot Root (x) Joint Angles (q) Kinematics study of static

More information

Moving Beyond Ragdolls:

Moving Beyond Ragdolls: Moving Beyond Ragdolls: Generating Versatile Human Behaviors by Combining Motion Capture and Controlled Physical Simulation by Michael Mandel Carnegie Mellon University / Apple Computer mmandel@gmail.com

More information

Motion Capture. Motion Capture in Movies. Motion Capture in Games

Motion Capture. Motion Capture in Movies. Motion Capture in Games Motion Capture Motion Capture in Movies 2 Motion Capture in Games 3 4 Magnetic Capture Systems Tethered Sensitive to metal Low frequency (60Hz) Mechanical Capture Systems Any environment Measures joint

More information

Motion Graphs for Character Animation

Motion Graphs for Character Animation Parag Chaudhuri Indian Institute of Technology Bombay Research Promotion Workshop on Introduction to Graph and Geometric Algorithms Thapar University Patiala October 30, 2010 Outline Introduction The Need

More information

A Retrieval Method for Human Mocap Data Based on Biomimetic Pattern Recognition

A Retrieval Method for Human Mocap Data Based on Biomimetic Pattern Recognition UDC 004.65, DOI: 10.98/CSIS1001099W A Retrieval Method for Human Mocap Data Based on Biomimetic Pattern Recognition Xiaopeng Wei 1, Boxiang Xiao 1, and Qiang Zhang 1 1 Key Laboratory of Advanced Design

More information

A 12-DOF Analytic Inverse Kinematics Solver for Human Motion Control

A 12-DOF Analytic Inverse Kinematics Solver for Human Motion Control Journal of Information & Computational Science 1: 1 (2004) 137 141 Available at http://www.joics.com A 12-DOF Analytic Inverse Kinematics Solver for Human Motion Control Xiaomao Wu, Lizhuang Ma, Zhihua

More information

Animation. CS 465 Lecture 22

Animation. CS 465 Lecture 22 Animation CS 465 Lecture 22 Animation Industry production process leading up to animation What animation is How animation works (very generally) Artistic process of animation Further topics in how it works

More information

MOTION CAPTURE DATA PROCESSING - MOTION EDITING / RETARGETING - MOTION CONTROL / GRAPH - INVERSE KINEMATIC. Alexandre Meyer Master Informatique

MOTION CAPTURE DATA PROCESSING - MOTION EDITING / RETARGETING - MOTION CONTROL / GRAPH - INVERSE KINEMATIC. Alexandre Meyer Master Informatique 1 MOTION CAPTURE DATA PROCESSING - MOTION EDITING / RETARGETING - MOTION CONTROL / GRAPH - INVERSE KINEMATIC Alexandre Meyer Master Informatique Overview: Motion data processing In this course Motion editing

More information