Tutorial 9 - Fast Marching Methods

Size: px
Start display at page:

Download "Tutorial 9 - Fast Marching Methods"

Transcription

1 Numerical Geometry of Images Tutorial 9 Fast Marching Methods c 2012

2 Why measure distances? Shape analysis Image analysis Registration Morphology Navigation And many other uses.. There are many (mostly 2D) fast Euclidean distance transforms - see the site links for more examples.

3 How to measure distances? Given a domain Ω (for a moment assume that Ω R 2 ) and a set of source points X 0, for each point x Ω, measure its distance from X 0, T (x). Formally, the problem boils down to solving the eikonal equation (from Greek εικων= image). Ω T (x, y) = 1, T (X 0 ) = 0.

4 In optics and acoustics this equation describes the propagation of electromagnetic or pressure waves through some (non-homogenous) medium. It is responsible for the fact that the light (sound) traverses the shortest path between two points (Fermat s principle) and as consequence it describes light refraction and Snell s law.

5 Fermat s principle - a simple example..

6 Fermat s principle - a not-so-simple example..

7 The Fast Marching algorithm Imagine that Ω is a uniformly distributed forest. At time T = 0, a bad guy sets fire simultaneously in all the source points X 0. The fire front advances outwards from these initial points. Firemen register the time T (x) at which the fire arrives to the location x. Once a point is touched by the fire, the trees burn out and the front never visits again the locations where it had already passed. The fast marching algorithm is a numerical tool, which simulates the described scenario.

8 The Fast Marching algorithm A few observations when computing a solution to the Eikonal equation: Our boundary is also our zero level set - the set of source points. This uses one property of distances. The construction of the solution should be made monotonous, going from closer points to farther points - we are validating the triangle inequality on several stencils. This is another property of distances. The third property of distances (symmetry) is implicitly assumed.

9 The equation, as a solution to the minimum distance problem, is well defined in terms of narrow band around a level set.

10 The Fast Marching algorithm Initialization 1. Set T (X 0 ) = 0 and mark the points from X 0 as Black. 2. Set the rest of the points T (Ω \ X 0 ) = and mark them X 0 as Green. Iteration 1. Green points adjacent to Black points become Red. 2. Red points are updated, i.e. their T is estimated from the arrival times of the neighboring Black points. 3. The Red point with the smallest T becomes Black. 4. The process reiterates until all points are Black.

11 Note that a point is updated only by adjacent points (4-neighbor adjacency) with smaller value of T, and we demand that the new T value is larger than that of the updating points. A Black point has the T value smaller than that of all non-black points. Therefore, once a point becomes Black, it need not be updated anymore. This can also be thought of in terms of updating an upper and a lower bound until they (almost) meet. The maximum number of point updates is the number of neighbors on the grid, which is O(N).

12

13 The update step T 1 T 3 =? T 2 When we say update x 3 from x 1, x 2, we mean: Given two points x 1, x 2 with known front arrival times T 1, T 2, estimate the arrival time T 3 to the point x 3.

14 Assume that the front is planar (a good approximation for T h), i.e. propagating from some plane ˆn x + p = 0. The points x i are distant T i from the plane. The knowledge of T 1, T 2 allows to determine the parameters of the plane ˆn, p. (note: there are algorithms which do not assume a planar wavefront).

15 Assume w.l.o.g. that x 1 = (0, 0), x 2 = ( 2h, 0), x 3 = ( h, 2 h) x 3 x 1 x 2

16 We have: T 1 = ˆn x 1 + p = p T 2 = ˆn x 2 + p = 2hn x + T 1 from where n x = T 2 T 1 2h n y = ± 1 nx 2 = ± 1 2h 2 (T 2h 1 T 2 ) 2.

17 Since x 3 is above x 1 and x 2 w.r.t. the y-axis, the solution n y = 1 2h 2 (T 2h 1 T 2 ) 2 corresponds to the source, from which the front arrives to x 3 before it arrives to x 1 and x 2, yielding T 3 < T 1, T 2. We discard this solution. T 3 = ˆn x 3 + p = 2 2 hn x hn y + T 1 = 1 2 (T 2 T 1 ) h 2 (T 2 T 1 ) 2 + T 1 = 1 2 (T 2 + T 1 ) h 2 (T 2 T 1 ) 2 (T 1 + T 2 + ) 2h 2 (T 2 T 1 ) 2. = 1 2

18 If T 1 T 2 > h, the wavefront propagation direction n comes outside of the triangle x 1 x 2 x 3 and arrives to x 3 before arriving to x 1 or x 2. This can be see from the algebra. Assume T 1 > T 2 and T 1 > T 2 + h, T 3 = 1 2 (T 1 + T 2 ± ) 2h 2 (T 2 T 1 ) 2 < 1 2 (T 1 + T 2 + h) < 1 2 (2T 2 + 2h) = T 2 + h < T 1. In this case, we have no choice but to update x 3 according to T 3 = min{t 1, T 2 } + h.

19 Extension to the weighted Euclidean case When the wavefront has non-uniform propagation velocity V (x, y), a weighted distance map is computed by solving the eikonal equation or V (x, y) T (x, y) = 1 T (x, y) = F (x, y), where F (x, y) = V 1 (x, y) > 0 is the slowness field.

20 This equation can be reformulated as g T (x, y) = 1, where the front arrival time is measured according to the weighted Euclidean metric, dt = dx 2 + dy 2 F (x, y). In the weighted case, the time gained by traversing the distance h when updating x 3 from the neighboring points x 1, x 2 is not h but hf (x, y). Hence, T 3 = 1 2 (T 1 + T 2 + ) 2F 2 h 2 (T 2 T 1 ) 2, valid for T 1 T 2 hf.

21 Extension to (acute) triangulated manifolds The eikonal equation can be solved on general surfaces, represented as triangulated meshes (polyhedral or piecewise-linear approximation). The algorithm is very similar, yet now each vertex on the mesh is updated from the triangles built upon it. We first deal with triangles with acute angles.

22 E t C h F D H u B G A C θ a h φ G b B D A

23 We are looking for t = EC, where t > u Note: CD = b t u t Using the law of cosines: Using the law of sines: BD 2 = CD 2 + a 2 2aCDcosθ sinϕ CD = sinθ BD

24 Looking at the triangle CBG, we have = setting h in the equation h = asinϕ = a CD BD sinθ acdsinθ CD 2 + a 2 2aCDcosθ t u h = F We obtain: (t u) CD 2 + a 2 2aCDcosθ acdsinθ (t u) CD 2 + a 2 2aCDcosθ ab (t u) t sinθ = F = F

25 CD 2 + a 2 2aCDcosθ ab 1 t sinθ = F ( ) (t u) 2 ( b + a t 2 2a b ( b (t u) t ) 2 + a 2 2a ( b (t u) t (t u) t ) cosθ = Fab 1 t sinθ ) cosθ = F 2 a 2 b 2 1 t 2 sin2 θ

26 (b (t u)) 2 + a 2 t 2 2tab (t u) cosθ = F 2 a 2 b 2 sin 2 θ ( b 2 t 2 2tu + u 2) ( ) +a 2 t 2 2 t 2 tu abcosθ = F 2 a 2 b 2 sin 2 θ ( ) t 2 a 2 + b 2 2abcosθ + t (2uabcosθ 2ub 2) ( ) +b 2 u 2 F 2 a 2 sin 2 θ = 0

27 Note that t > u according to our assumptions, and CD should stay within the segment CA. By changing the direction of h we obtain: acosθ < b (t u) t < a cosθ

28 The discussion so far has been for non-obtuse triangulations. If obtuse triangles exist, they can be split into 2 by adding an extra edge (and 2 virtual triangles) to the triangulation graph (which now becomes non-planar, but still works for our purposes) Obtuse angle and splitting section A Triangulated surface patch A B A B Unfolded triangulated patch

Fast marching methods

Fast marching methods 1 Fast marching methods Lecture 3 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 Metric discretization 2 Approach I:

More information

CHAPTER 4 RAY COMPUTATION. 4.1 Normal Computation

CHAPTER 4 RAY COMPUTATION. 4.1 Normal Computation CHAPTER 4 RAY COMPUTATION Ray computation is the second stage of the ray tracing procedure and is composed of two steps. First, the normal to the current wavefront is computed. Then the intersection of

More information

Three Dimensional Geometry. Linear Programming

Three Dimensional Geometry. Linear Programming Three Dimensional Geometry Linear Programming A plane is determined uniquely if any one of the following is known: The normal to the plane and its distance from the origin is given, i.e. equation of a

More information

specular diffuse reflection.

specular diffuse reflection. Lesson 8 Light and Optics The Nature of Light Properties of Light: Reflection Refraction Interference Diffraction Polarization Dispersion and Prisms Total Internal Reflection Huygens s Principle The Nature

More information

Geometric Modeling. Mesh Decimation. Mesh Decimation. Applications. Copyright 2010 Gotsman, Pauly Page 1. Oversampled 3D scan data

Geometric Modeling. Mesh Decimation. Mesh Decimation. Applications. Copyright 2010 Gotsman, Pauly Page 1. Oversampled 3D scan data Applications Oversampled 3D scan data ~150k triangles ~80k triangles 2 Copyright 2010 Gotsman, Pauly Page 1 Applications Overtessellation: E.g. iso-surface extraction 3 Applications Multi-resolution hierarchies

More information

3.0 Trigonometry Review

3.0 Trigonometry Review 3.0 Trigonometry Review In trigonometry problems, all vertices (corners or angles) of the triangle are labeled with capital letters. The right angle is usually labeled C. Sides are usually labeled with

More information

Lab 2: Snell s Law Geology 202 Earth s Interior

Lab 2: Snell s Law Geology 202 Earth s Interior Introduction: Lab 2: Snell s Law Geology 202 Earth s Interior As we discussed in class, when waves travel from one material to another, they bend or refract according to Snell s Law: = constant (1) This

More information

Let s review the four equations we now call Maxwell s equations. (Gauss s law for magnetism) (Faraday s law)

Let s review the four equations we now call Maxwell s equations. (Gauss s law for magnetism) (Faraday s law) Electromagnetic Waves Let s review the four equations we now call Maxwell s equations. E da= B d A= Q encl ε E B d l = ( ic + ε ) encl (Gauss s law) (Gauss s law for magnetism) dφ µ (Ampere s law) dt dφ

More information

Chapter 33. The Nature of Light and Propagation of Light (lecture 1) Dr. Armen Kocharian

Chapter 33. The Nature of Light and Propagation of Light (lecture 1) Dr. Armen Kocharian Chapter 33 The Nature of Light and Propagation of Light (lecture 1) Dr. Armen Kocharian The Nature of Light Before the beginning of the nineteenth century, light was considered to be a stream of particles

More information

2.0 Trigonometry Review Date: Pythagorean Theorem: where c is always the.

2.0 Trigonometry Review Date: Pythagorean Theorem: where c is always the. 2.0 Trigonometry Review Date: Key Ideas: The three angles in a triangle sum to. Pythagorean Theorem: where c is always the. In trigonometry problems, all vertices (corners or angles) of the triangle are

More information

AQA GCSE Further Maths Topic Areas

AQA GCSE Further Maths Topic Areas AQA GCSE Further Maths Topic Areas This document covers all the specific areas of the AQA GCSE Further Maths course, your job is to review all the topic areas, answering the questions if you feel you need

More information

Chapter 3. Physical phenomena: plane parallel plate. This chapter provides an explanation about how rays of light physically behave when

Chapter 3. Physical phenomena: plane parallel plate. This chapter provides an explanation about how rays of light physically behave when Chapter 3 Physical phenomena: plane parallel plate This chapter provides an explanation about how rays of light physically behave when propagating through different medium (different index of refraction).

More information

Circular Trigonometry Notes April 24/25

Circular Trigonometry Notes April 24/25 Circular Trigonometry Notes April 24/25 First, let s review a little right triangle trigonometry: Imagine a right triangle with one side on the x-axis and one vertex at (0,0). We can write the sin(θ) and

More information

Outline The Refraction of Light Forming Images with a Plane Mirror 26-3 Spherical Mirror 26-4 Ray Tracing and the Mirror Equation

Outline The Refraction of Light Forming Images with a Plane Mirror 26-3 Spherical Mirror 26-4 Ray Tracing and the Mirror Equation Chapter 6 Geometrical Optics Outline 6-1 The Reflection of Light 6- Forming Images with a Plane Mirror 6-3 Spherical Mirror 6-4 Ray Tracing and the Mirror Equation 6-5 The Refraction of Light 6-6 Ray Tracing

More information

The geometry of reflection and refraction Wave conversion and reflection coefficient

The geometry of reflection and refraction Wave conversion and reflection coefficient 7.2.2 Reflection and Refraction The geometry of reflection and refraction Wave conversion and reflection coefficient The geometry of reflection and refraction A wave incident on a boundary separating two

More information

Chapter 24 The Wave Nature of Light

Chapter 24 The Wave Nature of Light Chapter 24 The Wave Nature of Light 24.1 Waves Versus Particles; Huygens Principle and Diffraction Huygens principle: Every point on a wave front acts as a point source; the wavefront as it develops is

More information

Geometrical Optics INTRODUCTION. Wave Fronts and Rays

Geometrical Optics INTRODUCTION. Wave Fronts and Rays Geometrical Optics INTRODUCTION In this experiment, the optical characteristics of mirrors, lenses, and prisms will be studied based on using the following physics definitions and relationships plus simple

More information

Refraction Ch. 29 in your text book

Refraction Ch. 29 in your text book Refraction Ch. 29 in your text book Objectives Students will be able to: 1) Identify incident and refracted angles 2) Explain what the index of refraction tells about a material 3) Calculate the index

More information

Unit 2: Trigonometry. This lesson is not covered in your workbook. It is a review of trigonometry topics from previous courses.

Unit 2: Trigonometry. This lesson is not covered in your workbook. It is a review of trigonometry topics from previous courses. Unit 2: Trigonometry This lesson is not covered in your workbook. It is a review of trigonometry topics from previous courses. Pythagorean Theorem Recall that, for any right angled triangle, the square

More information

Applications. Oversampled 3D scan data. ~150k triangles ~80k triangles

Applications. Oversampled 3D scan data. ~150k triangles ~80k triangles Mesh Simplification Applications Oversampled 3D scan data ~150k triangles ~80k triangles 2 Applications Overtessellation: E.g. iso-surface extraction 3 Applications Multi-resolution hierarchies for efficient

More information

Lesson 5.6: Angles in Standard Position

Lesson 5.6: Angles in Standard Position Lesson 5.6: Angles in Standard Position IM3 - Santowski IM3 - Santowski 1 Fast Five Opening Exercises! Use your TI 84 calculator:! Evaluate sin(50 ) " illustrate with a diagram! Evaluate sin(130 ) " Q

More information

An Efficient Solution to the Eikonal Equation on Parametric Manifolds

An Efficient Solution to the Eikonal Equation on Parametric Manifolds An Efficient Solution to the Eikonal Equation on Parametric Manifolds Alon Spira Ron Kimmel Department of Computer Science Technion Israel Institute of Technology Technion City, Haifa 32000, Israel {salon,ron}@cs.technion.ac.il

More information

Experiment 9. Law of reflection and refraction of light

Experiment 9. Law of reflection and refraction of light Experiment 9. Law of reflection and refraction of light 1. Purpose Invest light passing through two mediums boundary surface in order to understand reflection and refraction of light 2. Principle As shown

More information

Lecture 7 Notes: 07 / 11. Reflection and refraction

Lecture 7 Notes: 07 / 11. Reflection and refraction Lecture 7 Notes: 07 / 11 Reflection and refraction When an electromagnetic wave, such as light, encounters the surface of a medium, some of it is reflected off the surface, while some crosses the boundary

More information

Convex Polygon Generation

Convex Polygon Generation Convex Polygon Generation critterai.org /projects/nmgen_study/polygen.html This page describes the forth stage in building a navigation mesh, the generation of convex polygons from the simple polygons

More information

Lab 10 - GEOMETRICAL OPTICS

Lab 10 - GEOMETRICAL OPTICS L10-1 Name Date Partners OBJECTIVES OVERVIEW Lab 10 - GEOMETRICAL OPTICS To examine Snell s Law. To observe total internal reflection. To understand and use the lens equations. To find the focal length

More information

Properties of Light. 1. The Speed of Light 2. The Propagation of Light 3. Reflection and Refraction 4. Polarization

Properties of Light. 1. The Speed of Light 2. The Propagation of Light 3. Reflection and Refraction 4. Polarization Chapter 33 - Light Properties of Light 1. The Speed of Light 2. The Propagation of Light 3. Reflection and Refraction 4. Polarization MFMcGraw-PHY 2426 Chap33-Light - Revised: 6-24-2012 2 Electromagnetic

More information

3/10/2019. Models of Light. Waves and wave fronts. Wave fronts and rays

3/10/2019. Models of Light. Waves and wave fronts. Wave fronts and rays Models of Light The wave model: Under many circumstances, light exhibits the same behavior as material waves. The study of light as a wave is called wave optics. The ray model: The properties of prisms,

More information

Physics 1C. Lecture 25B. "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton

Physics 1C. Lecture 25B. There are two ways of spreading light: to be the candle or the mirror that reflects it. --Edith Wharton Physics 1C Lecture 25B "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton Refraction of Light When light passes from one medium to another, it is

More information

Huygens and Fermat s s principles (Textbook 4.4, 4.5) Application to reflection & refraction at an interface

Huygens and Fermat s s principles (Textbook 4.4, 4.5) Application to reflection & refraction at an interface Huygens and Fermat s s principles (Textbook 4.4, 4.5) Application to reflection & refraction at an interface 1 Propagation of light: Sources E.g. point source a fundamental source Light is emitted in all

More information

Parameterization with Manifolds

Parameterization with Manifolds Parameterization with Manifolds Manifold What they are Why they re difficult to use When a mesh isn t good enough Problem areas besides surface models A simple manifold Sphere, torus, plane, etc. Using

More information

Physics 202, Lecture 23

Physics 202, Lecture 23 Physics 202, Lecture 23 Today s Topics Lights and Laws of Geometric Optics Nature of Light Reflection and Refraction Law of Reflection Law of Refraction Index of Reflection, Snell s Law Total Internal

More information

Ch. 2 Trigonometry Notes

Ch. 2 Trigonometry Notes First Name: Last Name: Block: Ch. Trigonometry Notes.0 PRE-REQUISITES: SOLVING RIGHT TRIANGLES.1 ANGLES IN STANDARD POSITION 6 Ch..1 HW: p. 83 #1,, 4, 5, 7, 9, 10, 8. - TRIGONOMETRIC FUNCTIONS OF AN ANGLE

More information

Ray optics! 1. Postulates of ray optics! 2. Simple optical components! 3. Graded index optics! 4. Matrix optics!!

Ray optics! 1. Postulates of ray optics! 2. Simple optical components! 3. Graded index optics! 4. Matrix optics!! Ray optics! 1. Postulates of ray optics! 2. Simple optical components! 3. Graded index optics! 4. Matrix optics!! From ray optics to quantum optics! Ray optics! Wave optics! Electromagnetic optics! Quantum

More information

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder]

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Preliminaries Recall: Given a smooth function f:r R, the function

More information

2.710 Optics Spring 09 Solutions to Problem Set #1 Posted Wednesday, Feb. 18, 2009

2.710 Optics Spring 09 Solutions to Problem Set #1 Posted Wednesday, Feb. 18, 2009 MASSACHUSETTS INSTITUTE OF TECHNOLOGY.70 Optics Spring 09 Solutions to Problem Set # Posted Wednesday, Feb. 8, 009 Problem : Spherical waves and energy conservation In class we mentioned that the radiation

More information

Mesh Decimation. Mark Pauly

Mesh Decimation. Mark Pauly Mesh Decimation Mark Pauly Applications Oversampled 3D scan data ~150k triangles ~80k triangles Mark Pauly - ETH Zurich 280 Applications Overtessellation: E.g. iso-surface extraction Mark Pauly - ETH Zurich

More information

: Find the values of the six trigonometric functions for θ. Special Right Triangles:

: Find the values of the six trigonometric functions for θ. Special Right Triangles: ALGEBRA 2 CHAPTER 13 NOTES Section 13-1 Right Triangle Trig Understand and use trigonometric relationships of acute angles in triangles. 12.F.TF.3 CC.9- Determine side lengths of right triangles by using

More information

Intersection of an Oriented Box and a Cone

Intersection of an Oriented Box and a Cone Intersection of an Oriented Box and a Cone David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International

More information

Geometric Optics. The Law of Reflection. Physics Waves & Oscillations 3/20/2016. Spring 2016 Semester Matthew Jones

Geometric Optics. The Law of Reflection. Physics Waves & Oscillations 3/20/2016. Spring 2016 Semester Matthew Jones Physics 42200 Waves & Oscillations Lecture 27 Propagation of Light Hecht, chapter 5 Spring 2016 Semester Matthew Jones Geometric Optics Typical problems in geometric optics: Given an optical system, what

More information

Ray optics! Postulates Optical components GRIN optics Matrix optics

Ray optics! Postulates Optical components GRIN optics Matrix optics Ray optics! Postulates Optical components GRIN optics Matrix optics Ray optics! 1. Postulates of ray optics! 2. Simple optical components! 3. Graded index optics! 4. Matrix optics!! From ray optics to

More information

Lesson 27: Angles in Standard Position

Lesson 27: Angles in Standard Position Lesson 27: Angles in Standard Position PreCalculus - Santowski PreCalculus - Santowski 1 QUIZ Draw the following angles in standard position 50 130 230 320 770-50 2 radians PreCalculus - Santowski 2 Fast

More information

Lecture 14: Refraction

Lecture 14: Refraction Lecture 14: Refraction We know from experience that there are several transparent substances through which light can travel air, water, and glass are three examples When light passes from one such medium

More information

INTRODUCTION REFLECTION AND REFRACTION AT BOUNDARIES. Introduction. Reflection and refraction at boundaries. Reflection at a single surface

INTRODUCTION REFLECTION AND REFRACTION AT BOUNDARIES. Introduction. Reflection and refraction at boundaries. Reflection at a single surface Chapter 8 GEOMETRICAL OPTICS Introduction Reflection and refraction at boundaries. Reflection at a single surface Refraction at a single boundary Dispersion Summary INTRODUCTION It has been shown that

More information

Dijkstra s algorithm, Fast marching & Level sets. Einar Heiberg,

Dijkstra s algorithm, Fast marching & Level sets. Einar Heiberg, Dijkstra s algorithm, Fast marching & Level sets Einar Heiberg, einar@heiberg.se Looking back Medical image segmentation is (usually) selecting a suitable method from a toolbox of available approaches

More information

Reflection & refraction

Reflection & refraction 2015 EdExcel A Level Physics 2015 EdExcel A Level Physics Topic Topic 5 5 Reflection & refraction Reflection revision Reflection is the bouncing of light rays off a surface Reflection from a mirror: Normal

More information

Computing geodesic paths on manifolds

Computing geodesic paths on manifolds Proc. Natl. Acad. Sci. USA Vol. 95, pp. 8431 8435, July 1998 Applied Matematics Computing geodesic pats on manifolds R. Kimmel* and J. A. Setian Department of Matematics and Lawrence Berkeley National

More information

Fiber Optic Communication Systems. Unit-03: Properties of Light. https://sites.google.com/a/faculty.muet.edu.pk/abdullatif

Fiber Optic Communication Systems. Unit-03: Properties of Light. https://sites.google.com/a/faculty.muet.edu.pk/abdullatif Unit-03: Properties of Light https://sites.google.com/a/faculty.muet.edu.pk/abdullatif Department of Telecommunication, MUET UET Jamshoro 1 Refractive index Department of Telecommunication, MUET UET Jamshoro

More information

Ray Optics I. Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex

Ray Optics I. Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex Phys 531 Lecture 8 20 September 2005 Ray Optics I Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex Today shift gears, start applying

More information

You ll use the six trigonometric functions of an angle to do this. In some cases, you will be able to use properties of the = 46

You ll use the six trigonometric functions of an angle to do this. In some cases, you will be able to use properties of the = 46 Math 1330 Section 6.2 Section 7.1: Right-Triangle Applications In this section, we ll solve right triangles. In some problems you will be asked to find one or two specific pieces of information, but often

More information

Chapter 12 Notes: Optics

Chapter 12 Notes: Optics Chapter 12 Notes: Optics How can the paths traveled by light rays be rearranged in order to form images? In this chapter we will consider just one form of electromagnetic wave: visible light. We will be

More information

Math-3 Lesson 6-1. Trigonometric Ratios for Right Triangles and Extending to Obtuse angles.

Math-3 Lesson 6-1. Trigonometric Ratios for Right Triangles and Extending to Obtuse angles. Math-3 Lesson 6-1 Trigonometric Ratios for Right Triangles and Extending to Obtuse angles. Right Triangle: has one angle whose measure is. 90 The short sides of the triangle are called legs. The side osite

More information

PreCalculus Unit 1: Unit Circle Trig Quiz Review (Day 9)

PreCalculus Unit 1: Unit Circle Trig Quiz Review (Day 9) PreCalculus Unit 1: Unit Circle Trig Quiz Review (Day 9) Name Date Directions: You may NOT use Right Triangle Trigonometry for any of these problems! Use your unit circle knowledge to solve these problems.

More information

Analytic Spherical Geometry:

Analytic Spherical Geometry: Analytic Spherical Geometry: Begin with a sphere of radius R, with center at the origin O. Measuring the length of a segment (arc) on a sphere. Let A and B be any two points on the sphere. We know that

More information

Fast sweeping methods for eikonal equations on triangular meshes

Fast sweeping methods for eikonal equations on triangular meshes Fast sweeping methods for eikonal equations on triangular meshes Jianliang Qian, Yong-Tao Zhang 2, and Hong-Kai Zhao 3 Abstract The original fast sweeping method, which is an efficient iterative method

More information

Section The Law of Sines and the Law of Cosines

Section The Law of Sines and the Law of Cosines Section 7.3 - The Law of Sines and the Law of Cosines Sometimes you will need to solve a triangle that is not a right triangle. This type of triangle is called an oblique triangle. To solve an oblique

More information

x 2 + y 2 + z 2 = 1 = ˆr ŷ = ±y cosθ z (a) The half angle of the cones (inside the material) is just given by the critical angle sinθ c n = 3.

x 2 + y 2 + z 2 = 1 = ˆr ŷ = ±y cosθ z (a) The half angle of the cones (inside the material) is just given by the critical angle sinθ c n = 3. Exercise.-6 The results of this problem are somewhat general and apply to any rectangular parallelepiped with source located at any position inside. One can see this as follows. The direction of an arbitrary

More information

MATHEMATICS FOR ENGINEERING TUTORIAL 5 COORDINATE SYSTEMS

MATHEMATICS FOR ENGINEERING TUTORIAL 5 COORDINATE SYSTEMS MATHEMATICS FOR ENGINEERING TUTORIAL 5 COORDINATE SYSTEMS This tutorial is essential pre-requisite material for anyone studying mechanical engineering. This tutorial uses the principle of learning by example.

More information

Linear algebra deals with matrixes: two-dimensional arrays of values. Here s a matrix: [ x + 5y + 7z 9x + 3y + 11z

Linear algebra deals with matrixes: two-dimensional arrays of values. Here s a matrix: [ x + 5y + 7z 9x + 3y + 11z Basic Linear Algebra Linear algebra deals with matrixes: two-dimensional arrays of values. Here s a matrix: [ 1 5 ] 7 9 3 11 Often matrices are used to describe in a simpler way a series of linear equations.

More information

PY106 Class31. Index of refraction. Refraction. Index of refraction. Sample values of n. Rays and wavefronts. index of refraction: n v.

PY106 Class31. Index of refraction. Refraction. Index of refraction. Sample values of n. Rays and wavefronts. index of refraction: n v. Refraction Index of refraction When an EM wave travels in a vacuum, its speed is: c = 3.00 x 10 8 m/s. In any other medium, light generally travels at a slower speed. The speed of light v in a material

More information

Background for Surface Integration

Background for Surface Integration Background for urface Integration 1 urface Integrals We have seen in previous work how to define and compute line integrals in R 2. You should remember the basic surface integrals that we will need to

More information

Wavefronts and Rays. When light or other electromagnetic waves interact with systems much larger than the wavelength, it s a good approximation to

Wavefronts and Rays. When light or other electromagnetic waves interact with systems much larger than the wavelength, it s a good approximation to Chapter 33: Optics Wavefronts and Rays When light or other electromagnetic waves interact with systems much larger than the wavelength, it s a good approximation to Neglect the wave nature of light. Consider

More information

521493S Computer Graphics Exercise 2 Solution (Chapters 4-5)

521493S Computer Graphics Exercise 2 Solution (Chapters 4-5) 5493S Computer Graphics Exercise Solution (Chapters 4-5). Given two nonparallel, three-dimensional vectors u and v, how can we form an orthogonal coordinate system in which u is one of the basis vectors?

More information

Numerical Geometry of Nonrigid Shapes. CS 468, Spring 2013 Differential Geometry for Computer Science Justin Solomon and Adrian Butscher

Numerical Geometry of Nonrigid Shapes. CS 468, Spring 2013 Differential Geometry for Computer Science Justin Solomon and Adrian Butscher Numerical Geometry of Nonrigid Shapes CS 468, Spring 2013 Differential Geometry for Computer Science Justin Solomon and Adrian Butscher Intrinsically far Extrinsically close Straightest Geodesics on Polyhedral

More information

CCSSM Curriculum Analysis Project Tool 1 Interpreting Functions in Grades 9-12

CCSSM Curriculum Analysis Project Tool 1 Interpreting Functions in Grades 9-12 Tool 1: Standards for Mathematical ent: Interpreting Functions CCSSM Curriculum Analysis Project Tool 1 Interpreting Functions in Grades 9-12 Name of Reviewer School/District Date Name of Curriculum Materials:

More information

Review: 22.4: Dispersion. Refraction in a Prism. Announcements

Review: 22.4: Dispersion. Refraction in a Prism. Announcements Announcements The second midterm exam is coming Monday, Nov 8 Will cover from 18.1 thru 22.7 Same format as Exam 1 20 multiple choice questions Room assignments TBA QUESTIONS? PLEASE ASK! Review: Light

More information

θ =θ i r n sinθ = n sinθ

θ =θ i r n sinθ = n sinθ θ i = θ r n = 1 sinθ1 n sin θ Total Internal Reflection Consider light moving from glass (n 1 =1.5) to air (n =1.0) n 1 incident ray θ 1 θ r reflected ray GLASS sinθ sinθ 1 > 1 = n n 1 θ > θ 1 n θ refracted

More information

SECTION 4.5: GRAPHS OF SINE AND COSINE FUNCTIONS

SECTION 4.5: GRAPHS OF SINE AND COSINE FUNCTIONS SECTION 4.5: GRAPHS OF SINE AND COSINE FUNCTIONS 4.33 PART A : GRAPH f ( θ ) = sinθ Note: We will use θ and f ( θ) for now, because we would like to reserve x and y for discussions regarding the Unit Circle.

More information

Introduction to Seismology Spring 2008

Introduction to Seismology Spring 2008 MIT OpenCourseWare http://ow.mit.edu 1.510 Introdution to Seismology Spring 008 For information about iting these materials or our Terms of Use, visit: http://ow.mit.edu/terms. 1.510 Leture Notes 3.3.007

More information

Math Boot Camp: Coordinate Systems

Math Boot Camp: Coordinate Systems Math Boot Camp: Coordinate Systems You can skip this boot camp if you can answer the following question: Staying on a sphere of radius R, what is the shortest distance between the point (0, 0, R) on the

More information

Ch. 26: Geometrical Optics

Ch. 26: Geometrical Optics Sec. 6-1: The Reflection of Light Wave Fronts and Rays Ch. 6: Geometrical Optics Wave front: a surface on which E is a maximum. Figure 5-3: Plane Wave *For this wave, the wave fronts are a series of planes.

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 26 Propagation of Light Hecht, chapter 5 Spring 2015 Semester Matthew Jones Geometric Optics Typical problems in geometric optics: Given an optical system, what

More information

1 (5 max) 2 (10 max) 3 (20 max) 4 (30 max) 5 (10 max) 6 (15 extra max) total (75 max + 15 extra)

1 (5 max) 2 (10 max) 3 (20 max) 4 (30 max) 5 (10 max) 6 (15 extra max) total (75 max + 15 extra) Mierm Exam CS223b Stanford CS223b Computer Vision, Winter 2004 Feb. 18, 2004 Full Name: Email: This exam has 7 pages. Make sure your exam is not missing any sheets, and write your name on every page. The

More information

WJEC LEVEL 2 CERTIFICATE 9550/01 ADDITIONAL MATHEMATICS

WJEC LEVEL 2 CERTIFICATE 9550/01 ADDITIONAL MATHEMATICS Surname Other Names Centre Number 0 Candidate Number WJEC LEVEL 2 CERTIFICATE 9550/01 ADDITIONAL MATHEMATICS A.M. MONDAY, 24 June 2013 2 1 hours 2 ADDITIONAL MATERIALS A calculator will be required for

More information

Light travels in straight lines, this is referred to as... this means that light does not bend...

Light travels in straight lines, this is referred to as... this means that light does not bend... SNC 2DI - 10.2 Properties of Light and Reflection Light travels in straight lines, this is referred to as... this means that light does not bend... Reflection : Light travels in a straight line as long

More information

Lecture 17: Recursive Ray Tracing. Where is the way where light dwelleth? Job 38:19

Lecture 17: Recursive Ray Tracing. Where is the way where light dwelleth? Job 38:19 Lecture 17: Recursive Ray Tracing Where is the way where light dwelleth? Job 38:19 1. Raster Graphics Typical graphics terminals today are raster displays. A raster display renders a picture scan line

More information

PS Computational Geometry Homework Assignment Sheet I (Due 16-March-2018)

PS Computational Geometry Homework Assignment Sheet I (Due 16-March-2018) Homework Assignment Sheet I (Due 16-March-2018) Assignment 1 Let f, g : N R with f(n) := 8n + 4 and g(n) := 1 5 n log 2 n. Prove explicitly that f O(g) and f o(g). Assignment 2 How can you generalize the

More information

ADVANCED GCE MATHEMATICS (MEI) 4754A

ADVANCED GCE MATHEMATICS (MEI) 4754A ADVANCED GCE MATHEMATICS (MEI) Applications of Advanced Mathematics (C4) Paper A 4754A Candidates answer on the Answer Booklet OCR Supplied Materials: 8 page Answer Booklet Graph paper MEI Examination

More information

Physics 1C. Lecture 22A. "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton

Physics 1C. Lecture 22A. There are two ways of spreading light: to be the candle or the mirror that reflects it. --Edith Wharton Physics 1C Lecture 22A "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton The Nature of Light An interesting question developed as to the nature of

More information

PHYS 202 Notes, Week 8

PHYS 202 Notes, Week 8 PHYS 202 Notes, Week 8 Greg Christian March 8 & 10, 2016 Last updated: 03/10/2016 at 12:30:44 This week we learn about electromagnetic waves and optics. Electromagnetic Waves So far, we ve learned about

More information

Geodesics in heat: A new approach to computing distance

Geodesics in heat: A new approach to computing distance Geodesics in heat: A new approach to computing distance based on heat flow Diana Papyan Faculty of Informatics - Technische Universität München Abstract In this report we are going to introduce new method

More information

M jrs M jgs M jbs Intensity of light reflected from surface j when illuminated by source i: I ijr

M jrs M jgs M jbs Intensity of light reflected from surface j when illuminated by source i: I ijr Lighting Basics: ADS Model The ADS (ambient, diffuse, specular) model simulates shading in terms of these three components Light source i is modeled as emitting L ira L iga L iba L i = L ird L igd L ibd

More information

! "To accept Huygens's principle requires abandoning the idea that a ray has much intrinsic physical significance..." (pg. 5.)

! To accept Huygens's principle requires abandoning the idea that a ray has much intrinsic physical significance... (pg. 5.) 02. Malus and Polarization. 1. The Optical Ray. Pre-17th Century: The ray as the physical foundation of light.! Euclid: "visual rays" proceed from the eye to object of sight. 1690. Huygens's Traite de

More information

The liquid s index of refraction is. v liquid = nm = = 460 nm 1.38

The liquid s index of refraction is. v liquid = nm = = 460 nm 1.38 HMWK 5 Ch 17: P 6, 11, 30, 31, 34, 42, 50, 56, 58, 60 Ch 18: P 7, 16, 22, 27, 28, 30, 51, 52, 59, 61 Ch. 17 P17.6. Prepare: The laser beam is an electromagnetic wave that travels with the speed of light.

More information

Lab 9 - Geometrical Optics

Lab 9 - Geometrical Optics Lab 9 Geometrical Optics L9-1 Name Date Partners Lab 9 - Geometrical Optics OBJECTIVES To examine Snell s Law To observe total internal reflection. To understand and use the lens equations. To find the

More information

UNIT 5 TRIGONOMETRY Lesson 5.4: Calculating Sine, Cosine, and Tangent. Instruction. Guided Practice 5.4. Example 1

UNIT 5 TRIGONOMETRY Lesson 5.4: Calculating Sine, Cosine, and Tangent. Instruction. Guided Practice 5.4. Example 1 Lesson : Calculating Sine, Cosine, and Tangent Guided Practice Example 1 Leo is building a concrete pathway 150 feet long across a rectangular courtyard, as shown in the following figure. What is the length

More information

Index of Refraction and Total Internal Reflection

Index of Refraction and Total Internal Reflection Index of Refraction and Total Internal Reflection Name: Group Members: Date: TA s Name: Materials: Ray box, two different transparent blocks, two letter size white pages, pencil, protractor, two nails,

More information

GEOMETRIC OPTICS MIRRORS

GEOMETRIC OPTICS MIRRORS GEOMETRIC OPTICS Now that we understand the laws of reflection and refraction we can put them to practical use by designing optical instruments. We begin with the law of reflection which tells us that

More information

Saab. Kyle McDonald. Polygon Meshes

Saab. Kyle McDonald. Polygon Meshes Saab Kyle McDonald Polygon Meshes Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749 What is a polygon mesh? Like a point cloud, it is a discrete sampling of a surface... but, it adds linear (flat)

More information

Light and the Properties of Reflection & Refraction

Light and the Properties of Reflection & Refraction Light and the Properties of Reflection & Refraction OBJECTIVE To study the imaging properties of a plane mirror. To prove the law of reflection from the previous imaging study. To study the refraction

More information

Justin Solomon MIT, Spring Numerical Geometry of Nonrigid Shapes

Justin Solomon MIT, Spring Numerical Geometry of Nonrigid Shapes Justin Solomon MIT, Spring 2017 Numerical Geometry of Nonrigid Shapes Intrinsically far Extrinsically close Geodesic distance [jee-uh-des-ik dis-tuh-ns]: Length of the shortest path, constrained not to

More information

Reflections and Refractions in Ray Tracing

Reflections and Refractions in Ray Tracing Reflections and Refractions in Ray Tracing Bram de Greve (bram.degreve@gmail.com) 10th October 2004 When you re writing a ray tracer, soon or late you ll stumble on the problem of reflection and refraction.

More information

Non-Bayesian Classifiers Part I: k-nearest Neighbor Classifier and Distance Functions

Non-Bayesian Classifiers Part I: k-nearest Neighbor Classifier and Distance Functions Non-Bayesian Classifiers Part I: k-nearest Neighbor Classifier and Distance Functions Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Fall 2017 CS 551,

More information

Lecture Ray Model of Light. Physics Help Q&A: tutor.leiacademy.org

Lecture Ray Model of Light. Physics Help Q&A: tutor.leiacademy.org Lecture 1201 Ray Model of Light Physics Help Q&A: tutor.leiacademy.org Reflection of Light A ray of light, the incident ray, travels in a medium. When it encounters a boundary with a second medium, part

More information

Chapter 3 Geometrical Optics

Chapter 3 Geometrical Optics Chapter 3 Geometrical Optics Gabriel Popescu University of Illinois at Urbana Champaign Beckman Institute Quantitative Light Imaging Laboratory http://light.ece.uiuc.edu Principles of Optical Imaging Electrical

More information

Problems set # 13 Physics 169 May 12, 2015

Problems set # 13 Physics 169 May 12, 2015 Prof. Anchordoqui Problems set # 3 Physics 69 May 2, 205. Consider a ray of light traveling in vacuum from point P to P 2 by way of the point Q on a plane miror as shown in Fig.. Show that Fermat s principle

More information

The diagram above shows a sketch of the curve C with parametric equations

The diagram above shows a sketch of the curve C with parametric equations 1. The diagram above shows a sketch of the curve C with parametric equations x = 5t 4, y = t(9 t ) The curve C cuts the x-axis at the points A and B. (a) Find the x-coordinate at the point A and the x-coordinate

More information

Fermat s principle and ray tracing in anisotropic layered media

Fermat s principle and ray tracing in anisotropic layered media Ray tracing in anisotropic layers Fermat s principle and ray tracing in anisotropic layered media Joe Wong ABSTRACT I consider the path followed by a seismic signal travelling through velocity models consisting

More information

Physics. Bending Light ID: 8878

Physics. Bending Light ID: 8878 Bending Light ID: 8878 By Peter Fox Time required 45 minutes Activity Overview In this activity, students explore the refraction of a single light ray. They begin by exploring light traveling from a less

More information

LIGHT. Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses

LIGHT. Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses LIGHT Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses Light = Electromagnetic Wave Requires No Medium to Travel Oscillating Electric and Magnetic Field Travel at the speed of light

More information