Image Classification pipeline. Lecture 2-1

Size: px
Start display at page:

Download "Image Classification pipeline. Lecture 2-1"

Transcription

1 Lecture 2: Image Classification pipeline Lecture 2-1

2 Administrative: Piazza For questions about midterm, poster session, projects, etc, use Piazza! SCPD students: Use address to register for Piazza; contact for help. Lecture 2-2

3 Administrative: Assignment 1 Out yesterday, due 4/18 11:59pm - K-Nearest Neighbor Linear classifiers: SVM, Softmax Two-layer neural network Image features Lecture 2-3

4 Administrative: Friday Discussion Sections Fridays 12:30pm - 1:20pm in Skilling Auditorium Hands-on tutorials, with more practical detail than main lecture Check course website for schedule: This Friday: Python / numpy / Google Cloud setup Lecture 2-4

5 Administrative: Python + Numpy Lecture 2-5

6 Administrative: Google Cloud We will be using Google Cloud in this class We will be distributing coupons coupons to all enrolled students See our tutorial here for walking through Google Cloud setup: Lecture 2-6

7 Image Classification: A core task in Computer Vision (assume given set of discrete labels) {dog, cat, truck, plane,...} cat This image by Nikita is licensed under CC-BY 2.0 Lecture 2-7

8 The Problem: Semantic Gap What the computer sees An image is just a big grid of numbers between [0, 255]: This image by Nikita is licensed under CC-BY 2.0 e.g. 800 x 600 x 3 (3 channels RGB) Lecture 2-8

9 Challenges: Viewpoint variation All pixels change when the camera moves! This image by Nikita is licensed under CC-BY 2.0 Lecture 2-9

10 Challenges: Illumination This image is CC0 1.0 public domain This image is CC0 1.0 public domain This image is CC0 1.0 public domain Lecture 2-10 This image is CC0 1.0 public domain

11 Challenges: Deformation This image by Umberto Salvagnin is licensed under CC-BY 2.0 This image by Umberto Salvagnin is licensed under CC-BY 2.0 This image by sare bear is licensed under CC-BY 2.0 Lecture 2-11 This image by Tom Thai is licensed under CC-BY 2.0

12 Challenges: Occlusion This image is CC0 1.0 public domain This image by jonsson is licensed under CC-BY 2.0 This image is CC0 1.0 public domain Lecture 2-12

13 Challenges: Background Clutter This image is CC0 1.0 public domain This image is CC0 1.0 public domain Lecture 2-13

14 Challenges: Intraclass variation This image is CC0 1.0 public domain Lecture 2-14

15 An image classifier Unlike e.g. sorting a list of numbers, no obvious way to hard-code the algorithm for recognizing a cat, or other classes. Lecture 2-15

16 Attempts have been made Find edges Find corners? John Canny, A Computational Approach to Edge Detection, IEEE TPAMI 1986 Lecture 2-16

17 Machine Learning: Data-Driven Approach 1. Collect a dataset of images and labels 2. Use Machine Learning to train a classifier 3. Evaluate the classifier on new images Example training set Lecture 2-17

18 First classifier: Nearest Neighbor Memorize all data and labels Predict the label of the most similar training image Lecture 2-18

19 Example Dataset: CIFAR10 10 classes 50,000 training images 10,000 testing images Alex Krizhevsky, Learning Multiple Layers of Features from Tiny Images, Technical Report, Lecture 2-19

20 Example Dataset: CIFAR10 10 classes 50,000 training images 10,000 testing images Test images and nearest neighbors Alex Krizhevsky, Learning Multiple Layers of Features from Tiny Images, Technical Report, Lecture 2-20

21 Distance Metric to compare images L1 distance: add Lecture 2-21

22 Nearest Neighbor classifier Lecture 2-22

23 Nearest Neighbor classifier Memorize training data Lecture 2-23

24 Nearest Neighbor classifier For each test image: Find closest train image Predict label of nearest image Lecture 2-24

25 Nearest Neighbor classifier Q: With N examples, how fast are training and prediction? Lecture 2-25

26 Nearest Neighbor classifier Q: With N examples, how fast are training and prediction? A: Train O(1), predict O(N) Lecture 2-26

27 Nearest Neighbor classifier Q: With N examples, how fast are training and prediction? A: Train O(1), predict O(N) This is bad: we want classifiers that are fast at prediction; slow for training is ok Lecture 2-27

28 What does this look like? Lecture 2-28

29 K-Nearest Neighbors Instead of copying label from nearest neighbor, take majority vote from K closest points K=1 K=3 K=5 Lecture 2-29

30 What does this look like? Lecture 2-30

31 What does this look like? Lecture 2-31

32 K-Nearest Neighbors: Distance Metric L1 (Manhattan) distance L2 (Euclidean) distance Lecture 2-32

33 K-Nearest Neighbors: Distance Metric L1 (Manhattan) distance K=1 L2 (Euclidean) distance K=1 Lecture 2-33

34 K-Nearest Neighbors: Demo Time Lecture 2-34

35 Hyperparameters What is the best value of k to use? What is the best distance to use? These are hyperparameters: choices about the algorithm that we set rather than learn Lecture 2-35

36 Hyperparameters What is the best value of k to use? What is the best distance to use? These are hyperparameters: choices about the algorithm that we set rather than learn Very problem-dependent. Must try them all out and see what works best. Lecture 2-36

37 Setting Hyperparameters Idea #1: Choose hyperparameters that work best on the data Your Dataset Lecture 2-37

38 Setting Hyperparameters Idea #1: Choose hyperparameters that work best on the data BAD: K = 1 always works perfectly on training data Your Dataset Lecture 2-38

39 Setting Hyperparameters Idea #1: Choose hyperparameters that work best on the data BAD: K = 1 always works perfectly on training data Your Dataset Idea #2: Split data into train and test, choose hyperparameters that work best on test data train test Lecture 2-39

40 Setting Hyperparameters Idea #1: Choose hyperparameters that work best on the data BAD: K = 1 always works perfectly on training data Your Dataset Idea #2: Split data into train and test, choose hyperparameters that work best on test data BAD: No idea how algorithm will perform on new data train test Lecture 2-40

41 Setting Hyperparameters BAD: K = 1 always works perfectly on training data Idea #1: Choose hyperparameters that work best on the data Your Dataset Idea #2: Split data into train and test, choose hyperparameters that work best on test data BAD: No idea how algorithm will perform on new data train test Idea #3: Split data into train, val, and test; choose hyperparameters on val and evaluate on test train Better! validation Lecture 2-41 test

42 Setting Hyperparameters Your Dataset Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results fold 1 fold 2 fold 3 fold 4 fold 5 test fold 1 fold 2 fold 3 fold 4 fold 5 test fold 1 fold 2 fold 3 fold 4 fold 5 test Useful for small datasets, but not used too frequently in deep learning Lecture 2-42

43 Setting Hyperparameters Example of 5-fold cross-validation for the value of k. Each point: single outcome. The line goes through the mean, bars indicated standard deviation (Seems that k ~= 7 works best for this data) Lecture 2-43

44 k-nearest Neighbor on images never used. - Very slow at test time - Distance metrics on pixels are not informative Original Original image is CC0 public domain Boxed Shifted Tinted (all 3 images have same L2 distance to the one on the left) Lecture 2-44

45 k-nearest Neighbor on images never used. Dimensions = 3 Points = 43 - Curse of dimensionality Dimensions = 2 Points = 42 Dimensions = 1 Points = 4 Lecture 2-45

46 K-Nearest Neighbors: Summary In Image classification we start with a training set of images and labels, and must predict labels on the test set The K-Nearest Neighbors classifier predicts labels based on nearest training examples Distance metric and K are hyperparameters Choose hyperparameters using the validation set; only run on the test set once at the very end! Lecture 2-46

47 Linear Classification Lecture 2-47

48 Neural Network Linear classifiers This image is CC0 1.0 public domain Lecture 2-48

49 Two young girls are Boy is doing backflip playing with lego toy. on wakeboard Man in black shirt is playing guitar. Construction worker in orange safety vest is working on road. Karpathy and Fei-Fei, Deep Visual-Semantic Alignments for Generating Image Descriptions, CVPR 2015 Figures copyright IEEE, Reproduced for educational purposes. Lecture 2-49

50 Recall CIFAR10 50,000 training images each image is 32x32x3 10,000 test images. Lecture 2-50

51 Parametric Approach Image f(x,w) Array of 32x32x3 numbers (3072 numbers total) 10 numbers giving class scores W parameters or weights Lecture 2-51

52 Parametric Approach: Linear Classifier Image f(x,w) = Wx f(x,w) Array of 32x32x3 numbers (3072 numbers total) 10 numbers giving class scores W parameters or weights Lecture 2-52

53 Parametric Approach: Linear Classifier 3072x1 Image f(x,w) = Wx 10x1 10x3072 f(x,w) Array of 32x32x3 numbers (3072 numbers total) 10 numbers giving class scores W parameters or weights Lecture 2-53

54 Parametric Approach: Linear Classifier 3072x1 Image f(x,w) = Wx + b 10x1 10x3072 f(x,w) Array of 32x32x3 numbers (3072 numbers total) 10x1 10 numbers giving class scores W parameters or weights Lecture 2-54

55 Example with an image with 4 pixels, and 3 classes (cat/dog/ship) Stretch pixels into column Input image Lecture 2-55

56 Example with an image with 4 pixels, and 3 classes (cat/dog/ship) Stretch pixels into column Input image Cat score Dog score Ship score = W b Lecture 2-56

57 Example with an image with 4 pixels, and 3 classes (cat/dog/ship) Algebraic Viewpoint f(x,w) = Wx Lecture 2-57

58 Example with an image with 4 pixels, and 3 classes (cat/dog/ship) Input image Algebraic Viewpoint f(x,w) = Wx W b Score Lecture 2-58

59 Interpreting a Linear Classifier Lecture 2-59

60 Interpreting a Linear Classifier: Visual Viewpoint Lecture 2-60

61 Interpreting a Linear Classifier: Geometric Viewpoint f(x,w) = Wx + b Array of 32x32x3 numbers (3072 numbers total) Plot created using Wolfram Cloud Cat image by Nikita is licensed under CC-BY 2.0 Lecture 2-61

62 Hard cases for a linear classifier Class 1: First and third quadrants Class 1: 1 <= L2 norm <= 2 Class 1: Three modes Class 2: Second and fourth quadrants Class 2: Everything else Class 2: Everything else Lecture 2-62

63 Linear Classifier: Three Viewpoints Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint f(x,w) = Wx One template per class Hyperplanes cutting up space Lecture 2-63

64 So far: Defined a (linear) score function f(x,w) = Wx + b Example class scores for 3 images for some W: How can we tell whether this W is good or bad? Cat image by Nikita is licensed under CC-BY 2.0 Car image is CC0 1.0 public domain Frog image is in the public domain Lecture

65 f(x,w) = Wx + b Coming up: - Loss function - Optimization - ConvNets! (quantifying what it means to have a good W) (start with random W and find a W that minimizes the loss) (tweak the functional form of f) Lecture 2-65

Image Classification pipeline. Lecture 2-1

Image Classification pipeline. Lecture 2-1 Lecture 2: Image Classification pipeline Lecture 2-1 Administrative: Piazza For questions about midterm, poster session, projects, etc, use Piazza! SCPD students: Use your @stanford.edu address to register

More information

CS5670: Computer Vision

CS5670: Computer Vision CS5670: Computer Vision Noah Snavely Lecture 33: Recognition Basics Slides from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/ Announcements Quiz moved to Tuesday Project 4

More information

Deep neural networks II

Deep neural networks II Deep neural networks II May 31 st, 2018 Yong Jae Lee UC Davis Many slides from Rob Fergus, Svetlana Lazebnik, Jia-Bin Huang, Derek Hoiem, Adriana Kovashka, Why (convolutional) neural networks? State of

More information

K-Nearest Neighbors. Jia-Bin Huang. Virginia Tech Spring 2019 ECE-5424G / CS-5824

K-Nearest Neighbors. Jia-Bin Huang. Virginia Tech Spring 2019 ECE-5424G / CS-5824 K-Nearest Neighbors Jia-Bin Huang ECE-5424G / CS-5824 Virginia Tech Spring 2019 Administrative Check out review materials Probability Linear algebra Python and NumPy Start your HW 0 On your Local machine:

More information

CS 1674: Intro to Computer Vision. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh November 16, 2016

CS 1674: Intro to Computer Vision. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh November 16, 2016 CS 1674: Intro to Computer Vision Neural Networks Prof. Adriana Kovashka University of Pittsburgh November 16, 2016 Announcements Please watch the videos I sent you, if you haven t yet (that s your reading)

More information

Real-time Object Detection CS 229 Course Project

Real-time Object Detection CS 229 Course Project Real-time Object Detection CS 229 Course Project Zibo Gong 1, Tianchang He 1, and Ziyi Yang 1 1 Department of Electrical Engineering, Stanford University December 17, 2016 Abstract Objection detection

More information

Image classification Computer Vision Spring 2018, Lecture 18

Image classification Computer Vision Spring 2018, Lecture 18 Image classification http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 18 Course announcements Homework 5 has been posted and is due on April 6 th. - Dropbox link because course

More information

Deep Learning for Computer Vision

Deep Learning for Computer Vision Deep Learning for Computer Vision Spring 2018 http://vllab.ee.ntu.edu.tw/dlcv.html (primary) https://ceiba.ntu.edu.tw/1062dlcv (grade, etc.) FB: DLCV Spring 2018 Yu Chiang Frank Wang 王鈺強, Associate Professor

More information

Lecture 27: Review. Reading: All chapters in ISLR. STATS 202: Data mining and analysis. December 6, 2017

Lecture 27: Review. Reading: All chapters in ISLR. STATS 202: Data mining and analysis. December 6, 2017 Lecture 27: Review Reading: All chapters in ISLR. STATS 202: Data mining and analysis December 6, 2017 1 / 16 Final exam: Announcements Tuesday, December 12, 8:30-11:30 am, in the following rooms: Last

More information

Spatial Localization and Detection. Lecture 8-1

Spatial Localization and Detection. Lecture 8-1 Lecture 8: Spatial Localization and Detection Lecture 8-1 Administrative - Project Proposals were due on Saturday Homework 2 due Friday 2/5 Homework 1 grades out this week Midterm will be in-class on Wednesday

More information

k-nearest Neighbors + Model Selection

k-nearest Neighbors + Model Selection 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University k-nearest Neighbors + Model Selection Matt Gormley Lecture 5 Jan. 30, 2019 1 Reminders

More information

Verification: is that a lamp? What do we mean by recognition? Recognition. Recognition

Verification: is that a lamp? What do we mean by recognition? Recognition. Recognition Recognition Recognition The Margaret Thatcher Illusion, by Peter Thompson The Margaret Thatcher Illusion, by Peter Thompson Readings C. Bishop, Neural Networks for Pattern Recognition, Oxford University

More information

What do we mean by recognition?

What do we mean by recognition? Announcements Recognition Project 3 due today Project 4 out today (help session + photos end-of-class) The Margaret Thatcher Illusion, by Peter Thompson Readings Szeliski, Chapter 14 1 Recognition What

More information

16-785: Integrated Intelligence in Robotics: Vision, Language, and Planning. Spring 2018 Lecture 14. Image to Text

16-785: Integrated Intelligence in Robotics: Vision, Language, and Planning. Spring 2018 Lecture 14. Image to Text 16-785: Integrated Intelligence in Robotics: Vision, Language, and Planning Spring 2018 Lecture 14. Image to Text Input Output Classification tasks 4/1/18 CMU 16-785: Integrated Intelligence in Robotics

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2013 TTh 17:30-18:45 FDH 204 Lecture 18 130404 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Object Recognition Intro (Chapter 14) Slides from

More information

Nearest Neighbor Classifiers

Nearest Neighbor Classifiers Nearest Neighbor Classifiers CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 The Nearest Neighbor Classifier Let X be the space

More information

COMPUTATIONAL INTELLIGENCE SEW (INTRODUCTION TO MACHINE LEARNING) SS18. Lecture 6: k-nn Cross-validation Regularization

COMPUTATIONAL INTELLIGENCE SEW (INTRODUCTION TO MACHINE LEARNING) SS18. Lecture 6: k-nn Cross-validation Regularization COMPUTATIONAL INTELLIGENCE SEW (INTRODUCTION TO MACHINE LEARNING) SS18 Lecture 6: k-nn Cross-validation Regularization LEARNING METHODS Lazy vs eager learning Eager learning generalizes training data before

More information

Feature Extractors. CS 188: Artificial Intelligence Fall Some (Vague) Biology. The Binary Perceptron. Binary Decision Rule.

Feature Extractors. CS 188: Artificial Intelligence Fall Some (Vague) Biology. The Binary Perceptron. Binary Decision Rule. CS 188: Artificial Intelligence Fall 2008 Lecture 24: Perceptrons II 11/24/2008 Dan Klein UC Berkeley Feature Extractors A feature extractor maps inputs to feature vectors Dear Sir. First, I must solicit

More information

HOG-based Pedestriant Detector Training

HOG-based Pedestriant Detector Training HOG-based Pedestriant Detector Training evs embedded Vision Systems Srl c/o Computer Science Park, Strada Le Grazie, 15 Verona- Italy http: // www. embeddedvisionsystems. it Abstract This paper describes

More information

Introduction to object recognition. Slides adapted from Fei-Fei Li, Rob Fergus, Antonio Torralba, and others

Introduction to object recognition. Slides adapted from Fei-Fei Li, Rob Fergus, Antonio Torralba, and others Introduction to object recognition Slides adapted from Fei-Fei Li, Rob Fergus, Antonio Torralba, and others Overview Basic recognition tasks A statistical learning approach Traditional or shallow recognition

More information

Classification: Feature Vectors

Classification: Feature Vectors Classification: Feature Vectors Hello, Do you want free printr cartriges? Why pay more when you can get them ABSOLUTELY FREE! Just # free YOUR_NAME MISSPELLED FROM_FRIEND... : : : : 2 0 2 0 PIXEL 7,12

More information

Automatic Colorization of Grayscale Images

Automatic Colorization of Grayscale Images Automatic Colorization of Grayscale Images Austin Sousa Rasoul Kabirzadeh Patrick Blaes Department of Electrical Engineering, Stanford University 1 Introduction ere exists a wealth of photographic images,

More information

Instance-based Learning

Instance-based Learning Instance-based Learning Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University February 19 th, 2007 2005-2007 Carlos Guestrin 1 Why not just use Linear Regression? 2005-2007 Carlos Guestrin

More information

Naïve Bayes for text classification

Naïve Bayes for text classification Road Map Basic concepts Decision tree induction Evaluation of classifiers Rule induction Classification using association rules Naïve Bayesian classification Naïve Bayes for text classification Support

More information

Lecture 6 K- Nearest Neighbors(KNN) And Predictive Accuracy

Lecture 6 K- Nearest Neighbors(KNN) And Predictive Accuracy Lecture 6 K- Nearest Neighbors(KNN) And Predictive Accuracy Machine Learning Dr.Ammar Mohammed Nearest Neighbors Set of Stored Cases Atr1... AtrN Class A Store the training samples Use training samples

More information

Lecture 37: ConvNets (Cont d) and Training

Lecture 37: ConvNets (Cont d) and Training Lecture 37: ConvNets (Cont d) and Training CS 4670/5670 Sean Bell [http://bbabenko.tumblr.com/post/83319141207/convolutional-learnings-things-i-learned-by] (Unrelated) Dog vs Food [Karen Zack, @teenybiscuit]

More information

Polytechnic University of Tirana

Polytechnic University of Tirana 1 Polytechnic University of Tirana Department of Computer Engineering SIBORA THEODHOR ELINDA KAJO M ECE 2 Computer Vision OCR AND BEYOND THE PRESENTATION IS ORGANISED IN 3 PARTS : 3 Introduction, previous

More information

Last week. Multi-Frame Structure from Motion: Multi-View Stereo. Unknown camera viewpoints

Last week. Multi-Frame Structure from Motion: Multi-View Stereo. Unknown camera viewpoints Last week Multi-Frame Structure from Motion: Multi-View Stereo Unknown camera viewpoints Last week PCA Today Recognition Today Recognition Recognition problems What is it? Object detection Who is it? Recognizing

More information

Classifying Depositional Environments in Satellite Images

Classifying Depositional Environments in Satellite Images Classifying Depositional Environments in Satellite Images Alex Miltenberger and Rayan Kanfar Department of Geophysics School of Earth, Energy, and Environmental Sciences Stanford University 1 Introduction

More information

CSE 573: Artificial Intelligence Autumn 2010

CSE 573: Artificial Intelligence Autumn 2010 CSE 573: Artificial Intelligence Autumn 2010 Lecture 16: Machine Learning Topics 12/7/2010 Luke Zettlemoyer Most slides over the course adapted from Dan Klein. 1 Announcements Syllabus revised Machine

More information

Dynamic Routing Between Capsules

Dynamic Routing Between Capsules Report Explainable Machine Learning Dynamic Routing Between Capsules Author: Michael Dorkenwald Supervisor: Dr. Ullrich Köthe 28. Juni 2018 Inhaltsverzeichnis 1 Introduction 2 2 Motivation 2 3 CapusleNet

More information

Kernels and Clustering

Kernels and Clustering Kernels and Clustering Robert Platt Northeastern University All slides in this file are adapted from CS188 UC Berkeley Case-Based Learning Non-Separable Data Case-Based Reasoning Classification from similarity

More information

CISC 4631 Data Mining

CISC 4631 Data Mining CISC 4631 Data Mining Lecture 03: Nearest Neighbor Learning Theses slides are based on the slides by Tan, Steinbach and Kumar (textbook authors) Prof. R. Mooney (UT Austin) Prof E. Keogh (UCR), Prof. F.

More information

Template Matching Rigid Motion

Template Matching Rigid Motion Template Matching Rigid Motion Find transformation to align two images. Focus on geometric features (not so much interesting with intensity images) Emphasis on tricks to make this efficient. Problem Definition

More information

Object Recognition II

Object Recognition II Object Recognition II Linda Shapiro EE/CSE 576 with CNN slides from Ross Girshick 1 Outline Object detection the task, evaluation, datasets Convolutional Neural Networks (CNNs) overview and history Region-based

More information

COMP 551 Applied Machine Learning Lecture 16: Deep Learning

COMP 551 Applied Machine Learning Lecture 16: Deep Learning COMP 551 Applied Machine Learning Lecture 16: Deep Learning Instructor: Ryan Lowe (ryan.lowe@cs.mcgill.ca) Slides mostly by: Class web page: www.cs.mcgill.ca/~hvanho2/comp551 Unless otherwise noted, all

More information

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Si Chen The George Washington University sichen@gwmail.gwu.edu Meera Hahn Emory University mhahn7@emory.edu Mentor: Afshin

More information

Apparel Classifier and Recommender using Deep Learning

Apparel Classifier and Recommender using Deep Learning Apparel Classifier and Recommender using Deep Learning Live Demo at: http://saurabhg.me/projects/tag-that-apparel Saurabh Gupta sag043@ucsd.edu Siddhartha Agarwal siagarwa@ucsd.edu Apoorve Dave a1dave@ucsd.edu

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Kernels and Clustering Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.

More information

Beyond Bags of features Spatial information & Shape models

Beyond Bags of features Spatial information & Shape models Beyond Bags of features Spatial information & Shape models Jana Kosecka Many slides adapted from S. Lazebnik, FeiFei Li, Rob Fergus, and Antonio Torralba Detection, recognition (so far )! Bags of features

More information

Learning to Recognize Faces in Realistic Conditions

Learning to Recognize Faces in Realistic Conditions 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

More information

Model Selection Introduction to Machine Learning. Matt Gormley Lecture 4 January 29, 2018

Model Selection Introduction to Machine Learning. Matt Gormley Lecture 4 January 29, 2018 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Model Selection Matt Gormley Lecture 4 January 29, 2018 1 Q&A Q: How do we deal

More information

Project 3 Q&A. Jonathan Krause

Project 3 Q&A. Jonathan Krause Project 3 Q&A Jonathan Krause 1 Outline R-CNN Review Error metrics Code Overview Project 3 Report Project 3 Presentations 2 Outline R-CNN Review Error metrics Code Overview Project 3 Report Project 3 Presentations

More information

Deformable Part Models

Deformable Part Models CS 1674: Intro to Computer Vision Deformable Part Models Prof. Adriana Kovashka University of Pittsburgh November 9, 2016 Today: Object category detection Window-based approaches: Last time: Viola-Jones

More information

Announcements. CS 188: Artificial Intelligence Spring Classification: Feature Vectors. Classification: Weights. Learning: Binary Perceptron

Announcements. CS 188: Artificial Intelligence Spring Classification: Feature Vectors. Classification: Weights. Learning: Binary Perceptron CS 188: Artificial Intelligence Spring 2010 Lecture 24: Perceptrons and More! 4/20/2010 Announcements W7 due Thursday [that s your last written for the semester!] Project 5 out Thursday Contest running

More information

Template Matching Rigid Motion. Find transformation to align two images. Focus on geometric features

Template Matching Rigid Motion. Find transformation to align two images. Focus on geometric features Template Matching Rigid Motion Find transformation to align two images. Focus on geometric features (not so much interesting with intensity images) Emphasis on tricks to make this efficient. Problem Definition

More information

Object Detection Design challenges

Object Detection Design challenges Object Detection Design challenges How to efficiently search for likely objects Even simple models require searching hundreds of thousands of positions and scales Feature design and scoring How should

More information

Computer Vision. Exercise Session 10 Image Categorization

Computer Vision. Exercise Session 10 Image Categorization Computer Vision Exercise Session 10 Image Categorization Object Categorization Task Description Given a small number of training images of a category, recognize a-priori unknown instances of that category

More information

Deep Learning for Remote Sensing

Deep Learning for Remote Sensing 1 ENPC Data Science Week Deep Learning for Remote Sensing Alexandre Boulch 2 ONERA Research, Innovation, expertise and long-term vision for industry, French government and Europe 3 Materials Optics Aerodynamics

More information

Machine Learning. Nonparametric methods for Classification. Eric Xing , Fall Lecture 2, September 12, 2016

Machine Learning. Nonparametric methods for Classification. Eric Xing , Fall Lecture 2, September 12, 2016 Machine Learning 10-701, Fall 2016 Nonparametric methods for Classification Eric Xing Lecture 2, September 12, 2016 Reading: 1 Classification Representing data: Hypothesis (classifier) 2 Clustering 3 Supervised

More information

Nearest Neighbor Classification. Machine Learning Fall 2017

Nearest Neighbor Classification. Machine Learning Fall 2017 Nearest Neighbor Classification Machine Learning Fall 2017 1 This lecture K-nearest neighbor classification The basic algorithm Different distance measures Some practical aspects Voronoi Diagrams and Decision

More information

Applying Supervised Learning

Applying Supervised Learning Applying Supervised Learning When to Consider Supervised Learning A supervised learning algorithm takes a known set of input data (the training set) and known responses to the data (output), and trains

More information

Announcements. Recognition. Recognition. Recognition. Recognition. Homework 3 is due May 18, 11:59 PM Reading: Computer Vision I CSE 152 Lecture 14

Announcements. Recognition. Recognition. Recognition. Recognition. Homework 3 is due May 18, 11:59 PM Reading: Computer Vision I CSE 152 Lecture 14 Announcements Computer Vision I CSE 152 Lecture 14 Homework 3 is due May 18, 11:59 PM Reading: Chapter 15: Learning to Classify Chapter 16: Classifying Images Chapter 17: Detecting Objects in Images Given

More information

Machine Learning 13. week

Machine Learning 13. week Machine Learning 13. week Deep Learning Convolutional Neural Network Recurrent Neural Network 1 Why Deep Learning is so Popular? 1. Increase in the amount of data Thanks to the Internet, huge amount of

More information

Announcements. CS 188: Artificial Intelligence Spring Generative vs. Discriminative. Classification: Feature Vectors. Project 4: due Friday.

Announcements. CS 188: Artificial Intelligence Spring Generative vs. Discriminative. Classification: Feature Vectors. Project 4: due Friday. CS 188: Artificial Intelligence Spring 2011 Lecture 21: Perceptrons 4/13/2010 Announcements Project 4: due Friday. Final Contest: up and running! Project 5 out! Pieter Abbeel UC Berkeley Many slides adapted

More information

Object Recognition. Lecture 11, April 21 st, Lexing Xie. EE4830 Digital Image Processing

Object Recognition. Lecture 11, April 21 st, Lexing Xie. EE4830 Digital Image Processing Object Recognition Lecture 11, April 21 st, 2008 Lexing Xie EE4830 Digital Image Processing http://www.ee.columbia.edu/~xlx/ee4830/ 1 Announcements 2 HW#5 due today HW#6 last HW of the semester Due May

More information

Deep Learning for Computer Vision II

Deep Learning for Computer Vision II IIIT Hyderabad Deep Learning for Computer Vision II C. V. Jawahar Paradigm Shift Feature Extraction (SIFT, HoG, ) Part Models / Encoding Classifier Sparrow Feature Learning Classifier Sparrow L 1 L 2 L

More information

Data Mining. Lecture 03: Nearest Neighbor Learning

Data Mining. Lecture 03: Nearest Neighbor Learning Data Mining Lecture 03: Nearest Neighbor Learning Theses slides are based on the slides by Tan, Steinbach and Kumar (textbook authors) Prof. R. Mooney (UT Austin) Prof E. Keogh (UCR), Prof. F. Provost

More information

Lecture 8: Grid Search and Model Validation Continued

Lecture 8: Grid Search and Model Validation Continued Lecture 8: Grid Search and Model Validation Continued Mat Kallada STAT2450 - Introduction to Data Mining with R Outline for Today Model Validation Grid Search Some Preliminary Notes Thank you for submitting

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing ECG782: Multidimensional Digital Signal Processing Object Recognition http://www.ee.unlv.edu/~b1morris/ecg782/ 2 Outline Knowledge Representation Statistical Pattern Recognition Neural Networks Boosting

More information

K- Nearest Neighbors(KNN) And Predictive Accuracy

K- Nearest Neighbors(KNN) And Predictive Accuracy Contact: mailto: Ammar@cu.edu.eg Drammarcu@gmail.com K- Nearest Neighbors(KNN) And Predictive Accuracy Dr. Ammar Mohammed Associate Professor of Computer Science ISSR, Cairo University PhD of CS ( Uni.

More information

Image Processing. David Kauchak cs160 Fall Empirical Evaluation of Dissimilarity Measures for Color and Texture

Image Processing. David Kauchak cs160 Fall Empirical Evaluation of Dissimilarity Measures for Color and Texture Image Processing Empirical Evaluation of Dissimilarity Measures for Color and Texture Jan Puzicha, Joachim M. Buhmann, Yossi Rubner & Carlo Tomasi David Kauchak cs160 Fall 2009 Administrative 11/4 class

More information

Object recognition (part 1)

Object recognition (part 1) Recognition Object recognition (part 1) CSE P 576 Larry Zitnick (larryz@microsoft.com) The Margaret Thatcher Illusion, by Peter Thompson Readings Szeliski Chapter 14 Recognition What do we mean by object

More information

Local features: detection and description. Local invariant features

Local features: detection and description. Local invariant features Local features: detection and description Local invariant features Detection of interest points Harris corner detection Scale invariant blob detection: LoG Description of local patches SIFT : Histograms

More information

Multi-layer Perceptron Forward Pass Backpropagation. Lecture 11: Aykut Erdem November 2016 Hacettepe University

Multi-layer Perceptron Forward Pass Backpropagation. Lecture 11: Aykut Erdem November 2016 Hacettepe University Multi-layer Perceptron Forward Pass Backpropagation Lecture 11: Aykut Erdem November 2016 Hacettepe University Administrative Assignment 2 due Nov. 10, 2016! Midterm exam on Monday, Nov. 14, 2016 You are

More information

CAP 6412 Advanced Computer Vision

CAP 6412 Advanced Computer Vision CAP 6412 Advanced Computer Vision http://www.cs.ucf.edu/~bgong/cap6412.html Boqing Gong April 21st, 2016 Today Administrivia Free parameters in an approach, model, or algorithm? Egocentric videos by Aisha

More information

The Boundary Graph Supervised Learning Algorithm for Regression and Classification

The Boundary Graph Supervised Learning Algorithm for Regression and Classification The Boundary Graph Supervised Learning Algorithm for Regression and Classification! Jonathan Yedidia! Disney Research!! Outline Motivation Illustration using a toy classification problem Some simple refinements

More information

CSE 152 : Introduction to Computer Vision, Spring 2018 Assignment 5

CSE 152 : Introduction to Computer Vision, Spring 2018 Assignment 5 CSE 152 : Introduction to Computer Vision, Spring 2018 Assignment 5 Instructor: Ben Ochoa Assignment Published On: Wednesday, May 23, 2018 Due On: Saturday, June 9, 2018, 11:59 PM Instructions Review the

More information

Multi-Glance Attention Models For Image Classification

Multi-Glance Attention Models For Image Classification Multi-Glance Attention Models For Image Classification Chinmay Duvedi Stanford University Stanford, CA cduvedi@stanford.edu Pararth Shah Stanford University Stanford, CA pararth@stanford.edu Abstract We

More information

CS231A Midterm Review. Friday 5/6/2016

CS231A Midterm Review. Friday 5/6/2016 CS231A Midterm Review Friday 5/6/2016 Outline General Logistics Camera Models Non-perspective cameras Calibration Single View Metrology Epipolar Geometry Structure from Motion Active Stereo and Volumetric

More information

Semi-Automatic Transcription Tool for Ancient Manuscripts

Semi-Automatic Transcription Tool for Ancient Manuscripts The Venice Atlas A Digital Humanities atlas project by DH101 EPFL Students Semi-Automatic Transcription Tool for Ancient Manuscripts In this article, we investigate various techniques from the fields of

More information

Beyond Sliding Windows: Object Localization by Efficient Subwindow Search

Beyond Sliding Windows: Object Localization by Efficient Subwindow Search Beyond Sliding Windows: Object Localization by Efficient Subwindow Search Christoph H. Lampert, Matthew B. Blaschko, & Thomas Hofmann Max Planck Institute for Biological Cybernetics Tübingen, Germany Google,

More information

Index. Umberto Michelucci 2018 U. Michelucci, Applied Deep Learning,

Index. Umberto Michelucci 2018 U. Michelucci, Applied Deep Learning, A Acquisition function, 298, 301 Adam optimizer, 175 178 Anaconda navigator conda command, 3 Create button, 5 download and install, 1 installing packages, 8 Jupyter Notebook, 11 13 left navigation pane,

More information

Detection III: Analyzing and Debugging Detection Methods

Detection III: Analyzing and Debugging Detection Methods CS 1699: Intro to Computer Vision Detection III: Analyzing and Debugging Detection Methods Prof. Adriana Kovashka University of Pittsburgh November 17, 2015 Today Review: Deformable part models How can

More information

Improving the way neural networks learn Srikumar Ramalingam School of Computing University of Utah

Improving the way neural networks learn Srikumar Ramalingam School of Computing University of Utah Improving the way neural networks learn Srikumar Ramalingam School of Computing University of Utah Reference Most of the slides are taken from the third chapter of the online book by Michael Nielson: neuralnetworksanddeeplearning.com

More information

Lecture 3. Oct

Lecture 3. Oct Lecture 3 Oct 3 2008 Review of last lecture A supervised learning example spam filter, and the design choices one need to make for this problem use bag-of-words to represent emails linear functions as

More information

Supervised vs unsupervised clustering

Supervised vs unsupervised clustering Classification Supervised vs unsupervised clustering Cluster analysis: Classes are not known a- priori. Classification: Classes are defined a-priori Sometimes called supervised clustering Extract useful

More information

Introduction to Data Science. Introduction to Data Science with Python. Python Basics: Basic Syntax, Data Structures. Python Concepts (Core)

Introduction to Data Science. Introduction to Data Science with Python. Python Basics: Basic Syntax, Data Structures. Python Concepts (Core) Introduction to Data Science What is Analytics and Data Science? Overview of Data Science and Analytics Why Analytics is is becoming popular now? Application of Analytics in business Analytics Vs Data

More information

LEARNING TO GENERATE CHAIRS WITH CONVOLUTIONAL NEURAL NETWORKS

LEARNING TO GENERATE CHAIRS WITH CONVOLUTIONAL NEURAL NETWORKS LEARNING TO GENERATE CHAIRS WITH CONVOLUTIONAL NEURAL NETWORKS Alexey Dosovitskiy, Jost Tobias Springenberg and Thomas Brox University of Freiburg Presented by: Shreyansh Daftry Visual Learning and Recognition

More information

PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space

PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space Sikai Zhong February 14, 2018 COMPUTER SCIENCE Table of contents 1. PointNet 2. PointNet++ 3. Experiments 1 PointNet Property

More information

Supervised Learning: Nearest Neighbors

Supervised Learning: Nearest Neighbors CS 2750: Machine Learning Supervised Learning: Nearest Neighbors Prof. Adriana Kovashka University of Pittsburgh February 1, 2016 Today: Supervised Learning Part I Basic formulation of the simplest classifier:

More information

CIS680: Vision & Learning Assignment 2.b: RPN, Faster R-CNN and Mask R-CNN Due: Nov. 21, 2018 at 11:59 pm

CIS680: Vision & Learning Assignment 2.b: RPN, Faster R-CNN and Mask R-CNN Due: Nov. 21, 2018 at 11:59 pm CIS680: Vision & Learning Assignment 2.b: RPN, Faster R-CNN and Mask R-CNN Due: Nov. 21, 2018 at 11:59 pm Instructions This is an individual assignment. Individual means each student must hand in their

More information

Local features: detection and description May 12 th, 2015

Local features: detection and description May 12 th, 2015 Local features: detection and description May 12 th, 2015 Yong Jae Lee UC Davis Announcements PS1 grades up on SmartSite PS1 stats: Mean: 83.26 Standard Dev: 28.51 PS2 deadline extended to Saturday, 11:59

More information

Contexts and 3D Scenes

Contexts and 3D Scenes Contexts and 3D Scenes Computer Vision Jia-Bin Huang, Virginia Tech Many slides from D. Hoiem Administrative stuffs Final project presentation Dec 1 st 3:30 PM 4:45 PM Goodwin Hall Atrium Grading Three

More information

CSE 527: Introduction to Computer Vision

CSE 527: Introduction to Computer Vision CSE 527: Introduction to Computer Vision Week 5 - Class 1: Matching, Stitching, Registration September 26th, 2017 ??? Recap Today Feature Matching Image Alignment Panoramas HW2! Feature Matches Feature

More information

CS231A Course Project Final Report Sign Language Recognition with Unsupervised Feature Learning

CS231A Course Project Final Report Sign Language Recognition with Unsupervised Feature Learning CS231A Course Project Final Report Sign Language Recognition with Unsupervised Feature Learning Justin Chen Stanford University justinkchen@stanford.edu Abstract This paper focuses on experimenting with

More information

LARGE MARGIN CLASSIFIERS

LARGE MARGIN CLASSIFIERS Admin Assignment 5 LARGE MARGIN CLASSIFIERS David Kauchak CS 451 Fall 2013 Midterm Download from course web page when you re ready to take it 2 hours to complete Must hand-in (or e-mail in) by 11:59pm

More information

CS395T paper review. Indoor Segmentation and Support Inference from RGBD Images. Chao Jia Sep

CS395T paper review. Indoor Segmentation and Support Inference from RGBD Images. Chao Jia Sep CS395T paper review Indoor Segmentation and Support Inference from RGBD Images Chao Jia Sep 28 2012 Introduction What do we want -- Indoor scene parsing Segmentation and labeling Support relationships

More information

Feature Extractors. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. The Perceptron Update Rule.

Feature Extractors. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. The Perceptron Update Rule. CS 188: Artificial Intelligence Fall 2007 Lecture 26: Kernels 11/29/2007 Dan Klein UC Berkeley Feature Extractors A feature extractor maps inputs to feature vectors Dear Sir. First, I must solicit your

More information

Contents Machine Learning concepts 4 Learning Algorithm 4 Predictive Model (Model) 4 Model, Classification 4 Model, Regression 4 Representation

Contents Machine Learning concepts 4 Learning Algorithm 4 Predictive Model (Model) 4 Model, Classification 4 Model, Regression 4 Representation Contents Machine Learning concepts 4 Learning Algorithm 4 Predictive Model (Model) 4 Model, Classification 4 Model, Regression 4 Representation Learning 4 Supervised Learning 4 Unsupervised Learning 4

More information

Lecture 28 Intro to Tracking

Lecture 28 Intro to Tracking Lecture 28 Intro to Tracking Some overlap with T&V Section 8.4.2 and Appendix A.8 Recall: Blob Merge/Split merge occlusion occlusion split When two objects pass close to each other, they are detected as

More information

Data Mining Classification: Alternative Techniques. Lecture Notes for Chapter 4. Instance-Based Learning. Introduction to Data Mining, 2 nd Edition

Data Mining Classification: Alternative Techniques. Lecture Notes for Chapter 4. Instance-Based Learning. Introduction to Data Mining, 2 nd Edition Data Mining Classification: Alternative Techniques Lecture Notes for Chapter 4 Instance-Based Learning Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar Instance Based Classifiers

More information

Recall: Blob Merge/Split Lecture 28

Recall: Blob Merge/Split Lecture 28 Recall: Blob Merge/Split Lecture 28 merge occlusion Intro to Tracking Some overlap with T&V Section 8.4.2 and Appendix A.8 occlusion split When two objects pass close to each other, they are detected as

More information

Contexts and 3D Scenes

Contexts and 3D Scenes Contexts and 3D Scenes Computer Vision Jia-Bin Huang, Virginia Tech Many slides from D. Hoiem Administrative stuffs Final project presentation Nov 30 th 3:30 PM 4:45 PM Grading Three senior graders (30%)

More information

Case-Based Reasoning. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. Parametric / Non-parametric.

Case-Based Reasoning. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. Parametric / Non-parametric. CS 188: Artificial Intelligence Fall 2008 Lecture 25: Kernels and Clustering 12/2/2008 Dan Klein UC Berkeley Case-Based Reasoning Similarity for classification Case-based reasoning Predict an instance

More information

CS 188: Artificial Intelligence Fall 2008

CS 188: Artificial Intelligence Fall 2008 CS 188: Artificial Intelligence Fall 2008 Lecture 25: Kernels and Clustering 12/2/2008 Dan Klein UC Berkeley 1 1 Case-Based Reasoning Similarity for classification Case-based reasoning Predict an instance

More information

Lecture 12 Recognition

Lecture 12 Recognition Institute of Informatics Institute of Neuroinformatics Lecture 12 Recognition Davide Scaramuzza 1 Lab exercise today replaced by Deep Learning Tutorial Room ETH HG E 1.1 from 13:15 to 15:00 Optional lab

More information

CP365 Artificial Intelligence

CP365 Artificial Intelligence CP365 Artificial Intelligence Example Problem Problem: Does a given image contain cats? Input vector: RGB/BW pixels of the image. Output: Yes or No. Example Problem Problem: What category is a news story?

More information

CSCI567 Machine Learning (Fall 2014)

CSCI567 Machine Learning (Fall 2014) CSCI567 Machine Learning (Fall 2014) Drs. Sha & Liu {feisha,yanliu.cs}@usc.edu September 9, 2014 Drs. Sha & Liu ({feisha,yanliu.cs}@usc.edu) CSCI567 Machine Learning (Fall 2014) September 9, 2014 1 / 47

More information

Object Category Detection. Slides mostly from Derek Hoiem

Object Category Detection. Slides mostly from Derek Hoiem Object Category Detection Slides mostly from Derek Hoiem Today s class: Object Category Detection Overview of object category detection Statistical template matching with sliding window Part-based Models

More information