F020 Methods for Computing Angle Gathers Using RTM

Size: px
Start display at page:

Download "F020 Methods for Computing Angle Gathers Using RTM"

Transcription

1 F020 Methods for Computing Angle Gathers Using RTM M. Vyas* (WesternGeco), X. Du (WesternGeco), E. Mobley (WesternGeco) & R. Fletcher (WesternGeco) SUMMARY Different techniques can be used to compute angle-domain common-image point gathers. They differ from one another not only from an algorithmic viewpoint but also in terms of cost and quality. The choice of method is thus dependent upon the purpose for which the gathers are being generated. In this paper we discuss some of the popular methods that have been proposed over the last few years along with a novel hybrid approach. We also allude to the relative advantages and dis-advantages of these techniques with the help of synthetic and real data examples.

2 Introduction Recently, there has been a renewed interest in common-image point (CIP) gathers and different methods have been proposed to compute angle-domain CIP gathers for reverse-time migration (RTM). These techniques can be categorized under two main classes: post-imaging and pre-imaging (Biondi, 2006). Generally speaking, the post-imaging algorithms are more attractive from a computational standpoint, whereas, the pre-imaging workflows are considered more accurate. There exist various types of methods belonging to both of these broad classes; they differ in terms of implementation, cost and accuracy. In this paper we discuss some of the popular ways of computing angle gathers both post- and pre-imaging and also their respective advantages and disadvantages. We also propose an approach that combines the benefits of some popular pre-imaging condition methods. Finally, we present results for synthetic as well as wide-azimuth field datasets. Post-imaging condition algorithms Post-imaging methods usually involve two steps: evaluating an extended imaging condition and transforming the extended gathers to angles and azimuths. We can choose to compute space-lag gathers (Biondi and Symes, 2004) or time-lag gathers (Sava and Fomel, 2006; Vyas et al., 2010) or a combination of both. The extended imaging condition in its most general form could be written as I(x,y,z,h x,h y,h z,τ) = U S (x + h x,y + h y,z + h z,t + τ) U R (x h x,y h y,z h z,t τ) (1) x, y and z represent the coordinates of the image point, t is time, τ is the time lag, h x, h y and h z are spatial lags, U S and U R are source and receiver wavefields and I is the image. Computing all the lags is computationally very expensive and the memory requirements to work with a 7D image volume are very high. Hence, it is common to only evaluate a few lags. Computing space lag in a single direction is usually not sufficient in 3D scenarios as it introduces a bias towards a particular coordinate axis and is commonly referred to as the 2D approximation. However, it is possible to compute accurate angle gathers using time lags alone as discussed below. Time-lag gathers The time-lag imaging condition does not have a bias towards any coordinate axes, and hence, no 2D assumption. However, it has an implicit integration over all the reflection azimuths, which implies time lags do give accurate angle information, but alone, they are not sufficient for computing both angles and azimuths. Vyas et al. (2010) suggest improvements to the time-lag gather algorithm presented by Sava and Fomel (2006) that make its application in the presence of conflicting dips, steeply dipping reflectors and anisotropy accurate. The transformation of time lags to angles can also be formulated in a least-squares sense to enhance the resolution and remove certain artifacts. Since the time-lag gathers provide accurate angle information they can be used for 3D applications where we do not expect strong azimuthal variations like shallow sediments or for narrow azimuth surveys. It should be mentioned that computing angle gathers using time lags is much cheaper than wavefield decomposition-type methods. Here we provide an example of WAZ data where angle gathers aided the interpretation of top salt. Figure 1(a) is the image obtained after a sediment flood migration and Figure 1(b) shows the angle gathers for the location marked with a red line in the image. Gathers above the salt look clean and free from any artifacts. Pre-imaging condition algorithms These refer to methods that estimate the opening angle and azimuth before or at the time of applying the imaging condition. To compute these quantities at the image point an estimate of the direction(s) of the incoming wavefield and the reflected wavefield is needed. The dot product between the two provides the opening angle (θ) whereas the cross product defines the reflection plane, hence the azimuth (φ). From an implementation standpoint, this can be accomplished by either carrying out the space-time

3 (a) (b) Figure 1 (a) Image after sediment flood migration and (b) time-shift angle gathers (0 to 60 ) for the marked location. The yellow line is the salt interpretation. domain decomposition, frequency-wavenumber ( f k) domain decomposition (Xu et al., 2010), or by estimation of the direction of the most energetic component (Yoon and Marfurt, 2006). 1. Space-time domain decomposition An obvious approach for computing opening angles and azimuths would be to apply the imaging condition after decomposing U S and U R into respective plane-wave components, I( x, p s, p r ) = U S D ( x, p s,t)u R D( x, p r,t)dt (2) Here, x is the spatial location vector, t is time, and p s and p r represent the plane-wave component of the decomposed source (U S D ) and the decomposed receiver wavefield (UR D ). The decomposition is carried out such that U S ( x,t) = U S D ( x, p s,t)d p s and U R ( x,t) = U R D ( x, p r,t)d p r. The imaging condition is evaluated for each pair of p s and p r and easily transformed to θ and φ. Although this approach for computing angle gathers is conceptually simple and intuitive, its implementation is extremely expensive and almost impractical with the current computational capacity. This leads us to other methods that try to achieve a similar objective, but in a more feasible fashion. It should be pointed out that if you choose to integrate equation (2) over different plane-waves, it becomes equivalent to the stereographic imaging condition proposed by Sava (2007). 2. Frequency-wavenumber domain approach Xu et al. (2010) suggest an f k equivalent of the approach presented in the previous section. p s and p r are now computed using wavenumbers from the source and receiver wavefields and opening angle and azimuth can be estimated thereafter. Like the previous approach, this method is accurate and correctly handles the conflicting energy in complex media. However, in 3D it involves 4D Fourier transformations of the wavefields and the proposed imaging condition involves evaluation of multidimensional convolutions. If we choose to work on the full image volume the computation will be prohibitively expensive even for a small 3D model. To reduce the cost, Xu et al. (2010) carry out the decomposition in local windows while taking care to control the boundary effects due to partial decomposition. They also employ the knowledge of the dispersion relationships to reduce the cost of the multidimensional convolutions even further. Nevertheless, the cost still remains high for its application on full volumes of 3D wide-azimuth surveys. To demonstrate the application of the f k domain approach, we choose an area above the salt in the 2D Sigsbee model. Figure 2(a) shows the raw zero-lag cross-correlation image from a single shot. Strong backscatter from the top of salt overrides the sediment energy. Figure 2(b) shows the angle gathers with angles ranging from 0 to 90, corresponding to CIP locations highlighted in Figure 2(a). We can see that the backscatter is correctly binned to high angles around 90, and that the sediment reflectors are

4 well separated (highlighted with red ellipses), due to the accuracy of the method. However, we would like to underscore that the cost, although substantially reduced, remains to be extremely high for its widespread application. (a) (b) (c) (d) Figure 2 (a) Image from migrating one shot close to top salt in the Sigsbee model and angle gathers using the (b) f k domain approach, (c) optical flow calculation and (d) our hybrid approach. 3. Direction vector based methods Another way to approach the problem is to estimate a single dominant direction of the propagating wavefield instead of a full or partial wavefield decomposition. Once the direction vector for the source and the receiver wavefield is estimated we can calculate the opening angle and azimuth. In spirit, the procedure is somewhat similar to the previous two methods, but is significantly cheaper. Yoon and Marfurt (2006) propose an algorithm for computing these direction vectors or Poynting vectors. Their method measures the energy flow in order to compute the direction of wave propagation using p = U t. U. Here, p is the direction vector, U is the energy or pressure, U t is the temporal gradient and U is the spatial gradient. Direct application of this equation results in Poynting vectors that are quite noisy and require some form of regularization or smoothing. Optical flow algorithms used in computer vision provide a potentially better solution for 3D motion vectors. The direction vector, p, is calculated as p. U = U t. To provide a stable estimate of p i.e. the gradient of energy, we use a regularized L2 inversion following Lucas and Kanade (1981). The scheme is relatively inexpensive and easy to apply. It should be remembered that these direction vector methods are substantially cheaper when compared with wavefield decomposition methods but they only estimate a single direction at any one point in space and time. This makes the direction vector estimates inaccurate when wavefields are very complex (in the presence of conflicting energy). Figure 2(c) shows the corresponding angle gathers obtained using the optical flow algorithm. Because undesirable upgoing reflections from salt overwhelm the desired but weaker downgoing reflections from shallow sediments, the reflected energy from sediments is not well separated from backscattered energy and is mapped to the wrong angle bin. However, we can improve the optical flow calculation if we successfully separate the source and the receiver wavefield into upgoing and downgoing components. Liu et al. (2007) proposed an imaging condition to eliminate low-frequency backscatter artifacts from the stacked RTM image. The technique relies upon separating different components of the wavefield and we use a similar concept here. We suggest that one should carry out an appropriate wavefield separation in the challenging areas (with complex wavefields) and then do the optical flow calculation on separated wavefields independently. This can be

5 visualized as a hybrid approach between full wavefield decomposition and direction vector estimates. Here we use wavefield decomposition but only to separate the upgoing wavefield from the downgoing wavefield and the direction vector calculation is done on these separated (simpler) wavefields. We not only avoid the multidimensional convolution in the f k domain but the direction vector estimates become more reliable as well. Figure 2(d) shows improved angle gathers from applying this approach. The result is close to that of the f k method but is significantly less expensive to compute. We now show RTM angle gathers for 3D wide-azimuth WAZ Gulf of Mexico data (image in Figure 3(a)) computed using the optical flow algorithm. We use both a slower velocity model and the correct velocity model to generate 3D angle gathers that contain 6 azimuths with 30 increments and reflection angles from 0 to 60 (gathers provided for the location marked with a red line). Notice the moveout in Figure 3(b) due to under migration, especially in the shallow sedimentary reflections. The events are almost flat in Figure 3(c), validating the correct migration velocity model. (a) (b) (c) Figure 3 (a) Image (in-line) and angle-azimuth gathers with (b) slower velocity and (c) correct velocity. Conclusions We have discussed different methods to compute angle and azimuth gathers for RTM indicating the advantages and disadvantages of each. We also introduced a method to compute angle gathers using a hybrid approach between wavefield decomposition and direction-vector based techniques. Choosing an appropriate method to compute gathers in our view is strongly dependent on the final purpose. For certain applications like creating image stacks, gathers must be computed everywhere so cheaper alternatives like time-shift imaging or direction vector methods may be used; whereas, for targeted AVO/AVA inversion, the wavefield decomposition techniques can be employed. Acknowledgments The authors would like to thank WesternGeco for the permission to publish this work. References Biondi, B. [2006] 3D Seismic Imaging. SEG. Biondi, B. and Symes, W. [2004] Angle-domain common-image gathers for migration velocity analysis by wavefield-continuation imaging. Geophysics, 69, Liu, F., Zhang, G., Scott, M. and Levielle, J. [2007] Reverse-time migration using one-way wavefield imaging condition. SEG Expanded Abstracts, 26, Lucas, B. and Kanade, T. [1981] An iterative image registration technique with an application to stereo vision. Proceedings of the DARPV IV workshop. Sava, P.C. [2007] Stereographic imaging condition for wave-equation migration. Geophysics, 72(6), A87 A91. Sava, P. and Fomel, S. [2006] Time-shift imaging condition in seismic migration. Geophysics, 71(6). Vyas, M., Mobley, E., Nichols, D. and Perdomo, J. [2010] Angle gathers from RTM using extended imaging conditions. SEG Expanded Abstracts, 29, Xu, S., Zhang, Y. and Tang, B. [2010] 3D common image gathers from Reverse time migration. SEG Expanded Abstracts, 29, Yoon, K. and Marfurt, K.J. [2006] Reverse-time migration using the Poynting vector. Exploration Geophysics, 37.

3D angle decomposition for elastic reverse time migration Yuting Duan & Paul Sava, Center for Wave Phenomena, Colorado School of Mines

3D angle decomposition for elastic reverse time migration Yuting Duan & Paul Sava, Center for Wave Phenomena, Colorado School of Mines 3D angle decomposition for elastic reverse time migration Yuting Duan & Paul Sava, Center for Wave Phenomena, Colorado School of Mines SUMMARY We propose 3D angle decomposition methods from elastic reverse

More information

3D angle gathers from wave-equation extended images Tongning Yang and Paul Sava, Center for Wave Phenomena, Colorado School of Mines

3D angle gathers from wave-equation extended images Tongning Yang and Paul Sava, Center for Wave Phenomena, Colorado School of Mines from wave-equation extended images Tongning Yang and Paul Sava, Center for Wave Phenomena, Colorado School of Mines SUMMARY We present a method to construct 3D angle gathers from extended images obtained

More information

Equivalence of source-receiver migration and shot-profile migration

Equivalence of source-receiver migration and shot-profile migration Stanford Exploration Project, Report 112, November 11, 2002, pages 109 117 Short Note Equivalence of source-receiver migration and shot-profile migration Biondo Biondi 1 INTRODUCTION At first glance, shot

More information

Stanford Exploration Project, Report 120, May 3, 2005, pages

Stanford Exploration Project, Report 120, May 3, 2005, pages Stanford Exploration Project, Report 120, May 3, 2005, pages 167 179 166 Stanford Exploration Project, Report 120, May 3, 2005, pages 167 179 Non-linear estimation of vertical delays with a quasi-newton

More information

Reverse time migration in midpoint-offset coordinates

Reverse time migration in midpoint-offset coordinates Stanford Exploration Project, Report 111, June 9, 00, pages 19 156 Short Note Reverse time migration in midpoint-offset coordinates Biondo Biondi 1 INTRODUCTION Reverse-time migration (Baysal et al., 198)

More information

Th G Surface-offset RTM Gathers - What Happens When the Velocity is Wrong?

Th G Surface-offset RTM Gathers - What Happens When the Velocity is Wrong? Th G103 01 Surface-offset RTM Gathers - What Happens When the Velocity is Wrong? J.P. Montel* (CGG) SUMMARY Surface offset migrated common image gathers (SOCIGs) built by wave equation migration (WEM)

More information

SUMMARY INTRODUCTION NEW METHOD

SUMMARY INTRODUCTION NEW METHOD Reverse Time Migration in the presence of known sharp interfaces Alan Richardson and Alison E. Malcolm, Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology SUMMARY

More information

G042 Subsalt Imaging Challenges - A Deepwater Imaging Analysis

G042 Subsalt Imaging Challenges - A Deepwater Imaging Analysis G042 Subsalt Imaging Challenges - A Deepwater Imaging Analysis M. Cogan* (WesternGeco), J. Gardner (WesternGeco) & N. Moldoveanu (WesternGeco) SUMMARY Upon completion of the final reverse-time migration

More information

Anisotropy-preserving 5D interpolation by hybrid Fourier transform

Anisotropy-preserving 5D interpolation by hybrid Fourier transform Anisotropy-preserving 5D interpolation by hybrid Fourier transform Juefu Wang and Shaowu Wang, CGG Summary We present an anisotropy-preserving interpolation method based on a hybrid 5D Fourier transform,

More information

Lab 3: Depth imaging using Reverse Time Migration

Lab 3: Depth imaging using Reverse Time Migration Due Wednesday, May 1, 2013 TA: Yunyue (Elita) Li Lab 3: Depth imaging using Reverse Time Migration Your Name: Anne of Cleves ABSTRACT In this exercise you will familiarize yourself with full wave-equation

More information

AVA analysis based on RTM angle-domain common image gather Rui Yan* and Xiao-Bi Xie, IGPP, University of California, Santa Cruz

AVA analysis based on RTM angle-domain common image gather Rui Yan* and Xiao-Bi Xie, IGPP, University of California, Santa Cruz AVA analysis based on RTM angle-domain common image gather Rui Yan* and Xiao-Bi Xie, IGPP, University of California, Santa Cruz Summary We propose an alternative approach of AVA analysis based on RTM angle-domain

More information

G021 Subsalt Velocity Analysis Using One-Way Wave Equation Based Poststack Modeling

G021 Subsalt Velocity Analysis Using One-Way Wave Equation Based Poststack Modeling G021 Subsalt Velocity Analysis Using One-Way Wave Equation Based Poststack Modeling B. Wang* (CGG Americas Inc.), F. Qin (CGG Americas Inc.), F. Audebert (CGG Americas Inc.) & V. Dirks (CGG Americas Inc.)

More information

Reverse-time migration by fan filtering plus wavefield decomposition Sang Yong Suh, KIGAM and Jun Cai, TGS-NOPEC

Reverse-time migration by fan filtering plus wavefield decomposition Sang Yong Suh, KIGAM and Jun Cai, TGS-NOPEC Reverse-time migration by fan filtering plus wavefield decomposition Sang Yong Suh, KIGAM and Jun Cai, TGS-NOPEC SUMMARY The conventional zero-lag crosscorrealtion imaging condition of reverse-time migration

More information

Multichannel deconvolution imaging condition for shot-profile migration

Multichannel deconvolution imaging condition for shot-profile migration Stanford Exploration Project, Report 113, July 8, 2003, pages 127 139 Multichannel deconvolution imaging condition for shot-profile migration Alejandro A. Valenciano and Biondo Biondi 1 ABSTRACT A significant

More information

Angle Gathers for Gaussian Beam Depth Migration

Angle Gathers for Gaussian Beam Depth Migration Angle Gathers for Gaussian Beam Depth Migration Samuel Gray* Veritas DGC Inc, Calgary, Alberta, Canada Sam Gray@veritasdgc.com Abstract Summary Migrated common-image-gathers (CIG s) are of central importance

More information

Robustness of the scalar elastic imaging condition for converted waves

Robustness of the scalar elastic imaging condition for converted waves CWP-830 Robustness of the scalar elastic imaging condition for converted waves Yuting Duan & Paul Sava Center for Wave Phenomena, Colorado School of Mines ABSTRACT For elastic reverse-time migration, one

More information

SUMMARY ELASTIC SCALAR IMAGING CONDITION

SUMMARY ELASTIC SCALAR IMAGING CONDITION Robust 3D scalar imaging condition for elastic RTM Yuting Duan, presently at Shell International Exploration and Production Inc., formerly at Center for Wave Phenomena, Colorado School of Mines Paul Sava,

More information

Efficient Beam Velocity Model Building with Tomography Designed to Accept 3d Residuals Aligning Depth Offset Gathers

Efficient Beam Velocity Model Building with Tomography Designed to Accept 3d Residuals Aligning Depth Offset Gathers Efficient Beam Velocity Model Building with Tomography Designed to Accept 3d Residuals Aligning Depth Offset Gathers J.W.C. Sherwood* (PGS), K. Sherwood (PGS), H. Tieman (PGS), R. Mager (PGS) & C. Zhou

More information

Q-compensation in complex media ray-based and wavefield extrapolation approaches Maud Cavalca, Robin Fletcher and Marko Riedel, WesternGeco.

Q-compensation in complex media ray-based and wavefield extrapolation approaches Maud Cavalca, Robin Fletcher and Marko Riedel, WesternGeco. ray-based and wavefield extrapolation approaches Maud Cavalca, Robin Fletcher and Marko Riedel, WesternGeco. Summary We apply and compare three model-based Q-compensation approaches. The first two approaches

More information

Least-squares Wave-Equation Migration for Broadband Imaging

Least-squares Wave-Equation Migration for Broadband Imaging Least-squares Wave-Equation Migration for Broadband Imaging S. Lu (Petroleum Geo-Services), X. Li (Petroleum Geo-Services), A. Valenciano (Petroleum Geo-Services), N. Chemingui* (Petroleum Geo-Services),

More information

Target-oriented wave-equation inversion with regularization in the subsurface-offset domain

Target-oriented wave-equation inversion with regularization in the subsurface-offset domain Stanford Exploration Project, Report 124, April 4, 2006, pages 1?? Target-oriented wave-equation inversion with regularization in the subsurface-offset domain Alejandro A. Valenciano ABSTRACT A complex

More information

Subsalt illumination analysis using RTM 3D dip gathers Zhengxue Li *, Bing Tang and Shuo Ji, CGGVeritas

Subsalt illumination analysis using RTM 3D dip gathers Zhengxue Li *, Bing Tang and Shuo Ji, CGGVeritas Zhengxue Li *, Bing Tang and Shuo Ji, CGGVeritas Summary Reverse Time Migration (RTM) is now the preferred option for subsalt imaging in deep water Gulf of Mexico, and its 3D angle gather output plays

More information

Inversion after depth imaging

Inversion after depth imaging Robin P. Fletcher *, Stewart Archer, Dave Nichols, and Weijian Mao, WesternGeco Summary In many areas, depth imaging of seismic data is required to construct an accurate view of the reservoir structure.

More information

Anisotropic model building with well control Chaoguang Zhou*, Zijian Liu, N. D. Whitmore, and Samuel Brown, PGS

Anisotropic model building with well control Chaoguang Zhou*, Zijian Liu, N. D. Whitmore, and Samuel Brown, PGS Anisotropic model building with well control Chaoguang Zhou*, Zijian Liu, N. D. Whitmore, and Samuel Brown, PGS Summary Anisotropic depth model building using surface seismic data alone is non-unique and

More information

Scalar imaging condition for elastic reverse time migration

Scalar imaging condition for elastic reverse time migration GEOPHYSICS, VOL. 80, NO. 4 (JULY-AUGUST 2015); P. S127 S136, 17 FIGS. 10.1190/GEO2014-0453.1 Scalar imaging condition for elastic reverse time migration Yuting Duan 1 and Paul Sava 1 ABSTRACT Polarity

More information

Adaptive Waveform Inversion: Theory Mike Warner*, Imperial College London, and Lluís Guasch, Sub Salt Solutions Limited

Adaptive Waveform Inversion: Theory Mike Warner*, Imperial College London, and Lluís Guasch, Sub Salt Solutions Limited Adaptive Waveform Inversion: Theory Mike Warner*, Imperial College London, and Lluís Guasch, Sub Salt Solutions Limited Summary We present a new method for performing full-waveform inversion that appears

More information

Prestack residual migration in the frequency domain

Prestack residual migration in the frequency domain GEOPHYSICS, VOL. 68, NO. (MARCH APRIL 3); P. 634 64, 8 FIGS. 1.119/1.156733 Prestack residual migration in the frequency domain Paul C. Sava ABSTRACT Prestack Stolt residual migration can be applied to

More information

SUMMARY. earth is characterized by strong (poro)elasticity.

SUMMARY. earth is characterized by strong (poro)elasticity. with illumination compensation Tongning Yang, Center for Wave Phenomena, Colorado School of Mines, Jeffrey Shragge, School of Earth and Environment, University of Western Australia, and Paul Sava, Center

More information

A case study for salt model building using CFP full azimuth data W. Gao*, Z. Guo, M. Guo, Q. Zhang, S. Hightower, G. Cloudy Jr. and Z.

A case study for salt model building using CFP full azimuth data W. Gao*, Z. Guo, M. Guo, Q. Zhang, S. Hightower, G. Cloudy Jr. and Z. case study for salt model building using CFP full azimuth data W. Gao*, Z. Guo, M. Guo, Q. Zhang, S. Hightower, G. Cloudy Jr. and Z. Li, TGS Summary We present a case study of the salt model building for

More information

Offset plane waves vs. common-azimuth migration for sub-salt imaging

Offset plane waves vs. common-azimuth migration for sub-salt imaging Stanford Exploration Project, Report, October 5, 999, pages?? Offset plane waves vs. common-azimuth migration for sub-salt imaging Biondo Biondi keywords: depth migration, wave-propagation, wave equation

More information

Target-oriented wavefield tomography: A field data example

Target-oriented wavefield tomography: A field data example Target-oriented wavefield tomography: A field data example Yaxun Tang and Biondo Biondi ABSTRACT We present a strategy for efficient migration velocity analysis in complex geological settings. The proposed

More information

Azimuth Moveout (AMO) for data regularization and interpolation. Application to shallow resource plays in Western Canada

Azimuth Moveout (AMO) for data regularization and interpolation. Application to shallow resource plays in Western Canada Azimuth Moveout (AMO) for data regularization and interpolation. Application to shallow resource plays in Western Canada Dan Negut, Samo Cilensek, Arcis Processing, Alexander M. Popovici, Sean Crawley,

More information

Converted wave dip moveout

Converted wave dip moveout Stanford Exploration Project, Report 111, June 9, 2002, pages 47 59 Converted wave dip moveout Daniel Rosales 1 ABSTRACT Dip moveout (DMO) introduces a dip-dependent correction for a more appropiate transformation

More information

Imaging with multiples using LSRTM

Imaging with multiples using LSRTM Chapter 4 Imaging with multiples using LSRTM In this chapter, I present a technique for imaging both primaries and higher-order multiples using joint least-squares reverse-time migration (joint-lsrtm).

More information

We G High-resolution Tomography Using Offsetdependent Picking and Inversion Conditioned by Image-guided Interpolation

We G High-resolution Tomography Using Offsetdependent Picking and Inversion Conditioned by Image-guided Interpolation We G103 05 High-resolution Tomography Using Offsetdependent Picking and Inversion Conditioned by Image-guided Interpolation G. Hilburn* (TGS), Y. He (TGS), Z. Yan (TGS) & F. Sherrill (TGS) SUMMARY An approach

More information

Migration from a non-flat datum via reverse-time extrapolation

Migration from a non-flat datum via reverse-time extrapolation Stanford Exploration Project, Report 84, May 9, 2001, pages 1 50 Migration from a non-flat datum via reverse-time extrapolation Gopal Palacharla 1 ABSTRACT Land surveys usually have elevation changes,

More information

Reverse time migration of multiples: Applications and challenges

Reverse time migration of multiples: Applications and challenges Reverse time migration of multiples: Applications and challenges Zhiping Yang 1, Jeshurun Hembd 1, Hui Chen 1, and Jing Yang 1 Abstract Marine seismic acquisitions record both primary and multiple wavefields.

More information

Downloaded 09/09/15 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 09/09/15 to Redistribution subject to SEG license or copyright; see Terms of Use at Recovering the Reflectivity Matrix and Angle-dependent Plane-wave Reflection Coefficients from Imaging of Multiples Alba Ordoñez PGS/UiO*, Walter Söllner PGS, Tilman Klüver PGS and Leiv J. Gelius UiO Summary

More information

3D image-domain wavefield tomography using time-lag extended images

3D image-domain wavefield tomography using time-lag extended images CWP-748 3D image-domain wavefield tomography using time-lag extended images Tongning Yang and Paul Sava Center for Wave Phenomena, Colorado School of Mines ABSTRACT Image-domain wavefield tomography is

More information

Plane-wave migration in tilted coordinates

Plane-wave migration in tilted coordinates Plane-wave migration in tilted coordinates Guojian Shan and Biondo Biondi ABSTRACT Most existing one-way wave-equation migration algorithms have difficulty in imaging steep dips in a medium with strong

More information

G012 Scattered Ground-roll Attenuation for 2D Land Data Using Seismic Interferometry

G012 Scattered Ground-roll Attenuation for 2D Land Data Using Seismic Interferometry G012 Scattered Ground-roll Attenuation for 2D Land Data Using Seismic Interferometry D.F. Halliday* (Schlumberger Cambridge Research), P.J. Bilsby (WesternGeco), J. Quigley (WesternGeco) & E. Kragh (Schlumberger

More information

EARTH SCIENCES RESEARCH JOURNAL

EARTH SCIENCES RESEARCH JOURNAL EARTH SCIENCES RESEARCH JOURNAL Earth Sci. Res. J. Vol. 10, No. 2 (December 2006): 117-129 ATTENUATION OF DIFFRACTED MULTIPLES WITH AN APEX-SHIFTED TANGENT- SQUARED RADON TRANSFORM IN IMAGE SPACE Gabriel

More information

Minimizing Fracture Characterization Uncertainties Using Full Azimuth Imaging in Local Angle Domain

Minimizing Fracture Characterization Uncertainties Using Full Azimuth Imaging in Local Angle Domain P-237 Minimizing Fracture Characterization Uncertainties Using Full Azimuth Imaging in Local Angle Domain Shiv Pujan Singh*, Duane Dopkin, Paradigm Geophysical Summary Shale plays are naturally heterogeneous

More information

Illumination compensation with Poynting vectors

Illumination compensation with Poynting vectors Illumination compensation using Poynting vectors, with special treatment for multiples Alan Richardson and Alison E. Malcolm, Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute

More information

3D plane-wave migration in tilted coordinates

3D plane-wave migration in tilted coordinates Stanford Exploration Project, Report 129, May 6, 2007, pages 1 18 3D plane-wave migration in tilted coordinates Guojian Shan, Robert Clapp, and Biondo Biondi ABSTRACT We develop 3D plane-wave migration

More information

Challenges and Opportunities in 3D Imaging of Sea Surface Related Multiples Shaoping Lu*, N.D. Whitmore and A.A. Valenciano, PGS

Challenges and Opportunities in 3D Imaging of Sea Surface Related Multiples Shaoping Lu*, N.D. Whitmore and A.A. Valenciano, PGS Challenges and Opportunities in 3D Imaging of Sea Surface Related Multiples Shaoping Lu*, N.D. Whitmore and A.A. Valenciano, PGS Summary Conventional shot domain migration constructs a subsurface image

More information

Overview and classification of wavefield seismic imaging methods

Overview and classification of wavefield seismic imaging methods Overview and classification of wavefield seismic imaging methods Paul Sava and Stephen J. Hill, Colorado School of Mines Prepared for The Leading Edge Introduction. The literature and seismic processing

More information

U043 3D Prestack Time Domain Full Waveform Inversion

U043 3D Prestack Time Domain Full Waveform Inversion U043 3D Prestack Time Domain Full Waveform Inversion D.V. Vigh* (WesternGeco), W.E.S. Starr (WesternGeco) & K.D. Kenneth Dingwall (WesternGeco) SUMMARY Despite the relatively high computational demand,

More information

Wave-equation inversion prestack Hessian

Wave-equation inversion prestack Hessian Stanford Exploration Project, Report 125, January 16, 2007, pages 201 209 Wave-equation inversion prestack Hessian Alejandro A. Valenciano and Biondo Biondi ABSTRACT The angle-domain Hessian can be computed

More information

Downloaded 10/23/13 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 10/23/13 to Redistribution subject to SEG license or copyright; see Terms of Use at ACQUISITION APERTURE CORRECTION IN ANGLE-DOMAIN TOWARDS THE TRUE- REFLECTION RTM Rui Yan 1*, Huimin Guan 2, Xiao-Bi Xie 1, Ru-Shan Wu 1, 1 IGPP, Earth and Planetary Sciences Department, University of California,

More information

Residual move-out analysis with 3-D angle-domain common-image gathers

Residual move-out analysis with 3-D angle-domain common-image gathers Stanford Exploration Project, Report 115, May 22, 2004, pages 191 199 Residual move-out analysis with 3-D angle-domain common-image gathers Thomas Tisserant and Biondo Biondi 1 ABSTRACT We describe a method

More information

SUMMARY INTRODUCTION THEORY

SUMMARY INTRODUCTION THEORY Illumination compensation for subsalt image-domain wavefield tomography Tongning Yang, Center for Wave Phenomena, Colorado School of Mines, Jeffrey Shragge, School of Earth and Environment, University

More information

SUMMARY THEORY INTRODUCTION

SUMMARY THEORY INTRODUCTION Acoustic 3D least-squares reverse time migration using the energy norm Daniel Rocha, Paul Sava & Antoine Guitton Center for Wave Phenomena, Colorado School of Mines SUMMARY We propose a least-squares reverse

More information

Successes and challenges in 3D interpolation and deghosting of single-component marinestreamer

Successes and challenges in 3D interpolation and deghosting of single-component marinestreamer Successes and challenges in 3D interpolation and deghosting of single-component marinestreamer data James Rickett*, Schlumberger Gould Research Summary Combining deghosting with crossline interpolation

More information

P071 Land Data Regularization and Interpolation Using Azimuth Moveout (AMO)

P071 Land Data Regularization and Interpolation Using Azimuth Moveout (AMO) P071 Land Data Regularization and Interpolation Using Azimuth Moveout (AMO) A.M. Popovici* (3DGeo Development Inc.), S. Crawley (3DGeo), D. Bevc (3DGeo) & D. Negut (Arcis Processing) SUMMARY Azimuth Moveout

More information

Reconciling processing and inversion: Multiple attenuation prior to wave-equation inversion

Reconciling processing and inversion: Multiple attenuation prior to wave-equation inversion Reconciling processing and inversion: Multiple attenuation prior to wave-equation inversion Claudio Guerra and Alejandro Valenciano ABSTRACT Seismic inversion is very sensitive to the presence of noise.

More information

Wave-equation angle-domain common-image gathers for converted waves

Wave-equation angle-domain common-image gathers for converted waves GEOPHYSICS VOL. 73 NO. 1 JANUARY-FEBRUARY 8; P. S17 S6 17 FIGS. 1.119/1.81193 Wave-equation angle-domain common-image gathers for converted waves Daniel A. Rosales 1 Sergey Fomel Biondo L. Biondi 1 and

More information

Wave Imaging Technology Inc.

Wave Imaging Technology Inc. Applications of wave imaging technologies to improve onshore US prospecting Morgan Brown Pacific Coast Section SEG Luncheon September 22, 2010 Wave Imaging Technology Inc. Talk Summary (45 min) WIT: Wave

More information

Angle-domain parameters computed via weighted slant-stack

Angle-domain parameters computed via weighted slant-stack Angle-domain parameters computed via weighted slant-stack Claudio Guerra 1 INTRODUCTION Angle-domain common image gathers (ADCIGs), created from downward-continuation or reverse time migration, can provide

More information

M. Warner* (S-Cube), T. Nangoo (S-Cube), A. Umpleby (S-Cube), N. Shah (S-Cube), G. Yao (S-Cube)

M. Warner* (S-Cube), T. Nangoo (S-Cube), A. Umpleby (S-Cube), N. Shah (S-Cube), G. Yao (S-Cube) Tu A12 15 High-Resolution Reflection FWI M. Warner* (S-Cube), T. Nangoo (S-Cube), A. Umpleby (S-Cube), N. Shah (S-Cube), G. Yao (S-Cube) Summary We demonstrate reflection FWI on a less-than-ideal 3D narrow-azimuth

More information

A comparison of shot-encoding schemes for wave-equation migration Jeff Godwin and Paul Sava, Center for Wave Phenomena, Colorado School of Mines

A comparison of shot-encoding schemes for wave-equation migration Jeff Godwin and Paul Sava, Center for Wave Phenomena, Colorado School of Mines A comparison of shot-encoding schemes for wave-equation migration Jeff Godwin and Paul Sava, Center for Wave Phenomena, Colorado School of Mines SUMMARY The seismic imaging industry is increasingly collecting

More information

Common-angle processing using reflection angle computed by kinematic pre-stack time demigration

Common-angle processing using reflection angle computed by kinematic pre-stack time demigration Common-angle processing using reflection angle computed by kinematic pre-stack time demigration Didier Lecerf*, Philippe Herrmann, Gilles Lambaré, Jean-Paul Tourré and Sylvian Legleut, CGGVeritas Summary

More information

A comparison between time domain and depth domain inversion to acoustic impedance Laurence Letki*, Kevin Darke, and Yan Araujo Borges, Schlumberger

A comparison between time domain and depth domain inversion to acoustic impedance Laurence Letki*, Kevin Darke, and Yan Araujo Borges, Schlumberger Laurence Letki*, Kevin Darke, and Yan Araujo Borges, Schlumberger Summary Geophysical reservoir characterization in a complex geologic environment remains a challenge. Conventional amplitude inversion

More information

CLASSIFICATION OF MULTIPLES

CLASSIFICATION OF MULTIPLES Introduction Subsurface images provided by the seismic reflection method are the single most important tool used in oil and gas exploration. Almost exclusively, our conceptual model of the seismic reflection

More information

Wave-equation migration from topography: Imaging Husky

Wave-equation migration from topography: Imaging Husky Stanford Exploration Project, Report 123, October 31, 2005, pages 49 56 Short Note Wave-equation migration from topography: Imaging Husky Jeff Shragge 1 INTRODUCTION Imaging land seismic data is wrought

More information

Refraction Full-waveform Inversion in a Shallow Water Environment

Refraction Full-waveform Inversion in a Shallow Water Environment Refraction Full-waveform Inversion in a Shallow Water Environment Z. Zou* (PGS), J. Ramos-Martínez (PGS), S. Kelly (PGS), G. Ronholt (PGS), L.T. Langlo (PGS), A. Valenciano Mavilio (PGS), N. Chemingui

More information

Flattening without picking

Flattening without picking Stanford Exploration Project, Report 112, November 11, 2002, pages 141 151 Flattening without picking Jesse Lomask and Jon Claerbout 1 ABSTRACT We introduce an analytical method for integrating dip information

More information

G017 Beyond WAZ - A Modeling-based Evaluation of Extensions to Current Wide Azimuth Streamer Acquisition Geometries

G017 Beyond WAZ - A Modeling-based Evaluation of Extensions to Current Wide Azimuth Streamer Acquisition Geometries G017 Beyond WAZ - A Modeling-based Evaluation of Extensions to Current Wide Azimuth Streamer Acquisition Geometries M. Cvetkovic* (ION Geophysical), Z. Zhou (ION Geophysical / GXT Imaging Solutions) &

More information

Angle-domain common-image gathers for migration velocity analysis by. wavefield-continuation imaging

Angle-domain common-image gathers for migration velocity analysis by. wavefield-continuation imaging Angle-domain common-image gathers for migration velocity analysis by wavefield-continuation imaging Biondo Biondi and William Symes 1 Stanford Exploration Project, Mitchell Bldg., Department of Geophysics,

More information

Introduction. Surface and Interbed Multtple Elimination

Introduction. Surface and Interbed Multtple Elimination Pre-stack Land Surface and Interbed Demultiple Methodology An Example from the Arabian Peninsula Roald van Borselen, Grog Fookes, Michel Schonewille, Constantine Tsingas, Michael West PGS Geophysical;

More information

Attenuation of diffracted multiples with an apex-shifted tangent-squared radon transform in image space

Attenuation of diffracted multiples with an apex-shifted tangent-squared radon transform in image space Attenuation of diffracted multiples with an apex-shifted tangent-squared radon transform in image space Gabriel Alvarez, Biondo Biondi, and Antoine Guitton 1 ABSTRACT We propose to attenuate diffracted

More information

Recovering the Reflectivity Matrix and Angledependent Plane-wave Reflection Coefficients from Imaging of Multiples

Recovering the Reflectivity Matrix and Angledependent Plane-wave Reflection Coefficients from Imaging of Multiples Recovering the Reflectivity Matrix and Angledependent Plane-wave Reflection Coefficients from Imaging of Multiples A. Ordoñez* (PGS), W.F. Sollner (PGS), T. Klüver (PGS) & L.G. Gelius (UiO) SUMMARY A joint

More information

Z-99 3D Sub-salt Tomography Based on Wave Equation Migration Perturbation Scans

Z-99 3D Sub-salt Tomography Based on Wave Equation Migration Perturbation Scans 1 Z-99 3D Sub-salt Tomography Based on Wave Equation Migration Perturbation Scans BIN WANG 1, VOLKER DIRKS 1, PATRICE GUILLAUME 2, FRANÇOIS AUDEBERT 1, ANNING HOU 1 AND DURYODHAN EPILI 1 1 CGG Americas;

More information

Mitigation of the 3D Cross-line Acquisition Footprint Using Separated Wavefield Imaging of Dual-sensor Streamer Seismic

Mitigation of the 3D Cross-line Acquisition Footprint Using Separated Wavefield Imaging of Dual-sensor Streamer Seismic Mitigation of the 3D Cross-line Acquisition Footprint Using Separated Wavefield Imaging of Dual-sensor Streamer Seismic A.S. Long* (PGS), S. Lu (PGS), D. Whitmore (PGS), H. LeGleut (PGS), R. Jones (Lundin

More information

SEG/New Orleans 2006 Annual Meeting

SEG/New Orleans 2006 Annual Meeting 3-D tomographic updating with automatic volume-based picking Dimitri Bevc*, Moritz Fliedner, Joel VanderKwaak, 3DGeo Development Inc. Summary Whether refining seismic images to evaluate opportunities in

More information

Geometric theory of inversion and seismic imaging II: INVERSION + DATUMING + STATIC + ENHANCEMENT. August Lau and Chuan Yin.

Geometric theory of inversion and seismic imaging II: INVERSION + DATUMING + STATIC + ENHANCEMENT. August Lau and Chuan Yin. Geometric theory of inversion and seismic imaging II: INVERSION + DATUMING + STATIC + ENHANCEMENT August Lau and Chuan Yin January 6, 2017 Abstract The goal of seismic processing is to convert input data

More information

Seismic data interpolation beyond aliasing using regularized nonstationary autoregression a

Seismic data interpolation beyond aliasing using regularized nonstationary autoregression a Seismic data interpolation beyond aliasing using regularized nonstationary autoregression a a Published in Geophysics, 76, V69-V77, (2011) Yang Liu, Sergey Fomel ABSTRACT Seismic data are often inadequately

More information

Stanford Exploration Project, Report 111, June 9, 2002, pages INTRODUCTION THEORY

Stanford Exploration Project, Report 111, June 9, 2002, pages INTRODUCTION THEORY Stanford Exploration Project, Report 111, June 9, 2002, pages 231 238 Short Note Speeding up wave equation migration Robert G. Clapp 1 INTRODUCTION Wave equation migration is gaining prominence over Kirchhoff

More information

Wave-equation migration velocity analysis with time-lag imaging

Wave-equation migration velocity analysis with time-lag imaging 1 Wave-equation migration velocity analysis with time-lag imaging 2 3 Tongning Yang and Paul Sava Center for Wave Phenomena, Colorado School of Mines 4 5 6 (September 30, 2010) Running head: WEMVA with

More information

Stratigraphic coordinates, a coordinate system tailored to seismic interpretation a

Stratigraphic coordinates, a coordinate system tailored to seismic interpretation a Stratigraphic coordinates, a coordinate system tailored to seismic interpretation a a Published in Geophysical Prospecting, v. 63, 1246-1255, (2015) Parvaneh Karimi and Sergey Fomel ABSTRACT In certain

More information

E044 Ray-based Tomography for Q Estimation and Q Compensation in Complex Media

E044 Ray-based Tomography for Q Estimation and Q Compensation in Complex Media E044 Ray-based Tomography for Q Estimation and Q Compensation in Complex Media M. Cavalca* (WesternGeco), I. Moore (WesternGeco), L. Zhang (WesternGeco), S.L. Ng (WesternGeco), R.P. Fletcher (WesternGeco)

More information

Main Menu. Summary. Survey Design

Main Menu. Summary. Survey Design 3D VSP acquisition and 3C processing on a deep subsalt prospect in the Gulf of Mexico John Graves, Steve Checkles, Jacques Leveille, Hess Corporation, Houston; Allan Campbell*, Scott Leaney, C. Peter Deri,

More information

Wide-azimuth angle gathers for wave-equation migration

Wide-azimuth angle gathers for wave-equation migration 1 Wide-azimuth angle gathers for wave-equation migration 2 3 Paul Sava (Center for Wave Phenomena, Colorado School of Mines) Ioan Vlad (Statoil) 4 5 6 7 (September 14, 2010) GEO-2010-???? Running head:

More information

Main Menu. providing relatively fast and extremely high-quality and high-resolution performance.

Main Menu. providing relatively fast and extremely high-quality and high-resolution performance. Full-Aimuth Angle Domain Imaging Zvi Koren, Igor Ravve, Evgeny Ragoa, Allon Bartana, Paradigm Geophysical, Dan Kosloff, Tel Aviv University and Paradigm Geophysical Summary This work presents a new seismic

More information

High definition tomography brings velocities to light Summary Introduction Figure 1:

High definition tomography brings velocities to light Summary Introduction Figure 1: Saverio Sioni, Patrice Guillaume*, Gilles Lambaré, Anthony Prescott, Xiaoming Zhang, Gregory Culianez, and Jean- Philippe Montel (CGGVeritas) Summary Velocity model building remains a crucial step in seismic

More information

An illustration of adaptive Marchenko imaging

An illustration of adaptive Marchenko imaging An illustration of adaptive Marchenko imaging Joost van der Neut 1, Kees Wapenaar 1, Jan Thorbecke 1, Evert Slob 1, and Ivan Vasconcelos 2 Abstract In Marchenko imaging, wavefields are retrieved at specified

More information

Azimuth Moveout Transformation some promising applications from western Canada

Azimuth Moveout Transformation some promising applications from western Canada Azimuth Moveout Transformation some promising applications from western Canada Satinder Chopra and Dan Negut Arcis Corporation, Calgary, Canada Summary Azimuth moveout (AMO) is a partial migration operator

More information

Tu Crossline Reconstruction Using Aliased 3D Deghosted Up- and Downgoing Wavefields

Tu Crossline Reconstruction Using Aliased 3D Deghosted Up- and Downgoing Wavefields Tu-04-10 Crossline Reconstruction Using Aliased 3D Deghosted Up- and Downgoing Wavefields D.-J. van Manen* (Schlumberger), M. Vassallo (WesternGeco), A.K. Özdemir (WesternGeco), A. Özbek (Schlumberger)

More information

Crosswell Imaging by 2-D Prestack Wavepath Migration

Crosswell Imaging by 2-D Prestack Wavepath Migration Crosswell Imaging by 2-D Prestack Wavepath Migration Hongchuan Sun ABSTRACT Prestack wavepath migration (WM) is applied to 2-D synthetic crosswell data, and the migrated images are compared to those from

More information

Y015 Complementary Data-driven Methods for Interbed Demultiple of Land Data

Y015 Complementary Data-driven Methods for Interbed Demultiple of Land Data Y015 Complementary Data-driven Methods for Interbed Demultiple of Land Data S. Sonika* (WesternGeco), A. Zarkhidze (WesternGeco), J. Heim (WesternGeco) & B. Dragoset (WesternGeco) SUMMARY Interbed multiples

More information

Effects of multi-scale velocity heterogeneities on wave-equation migration Yong Ma and Paul Sava, Center for Wave Phenomena, Colorado School of Mines

Effects of multi-scale velocity heterogeneities on wave-equation migration Yong Ma and Paul Sava, Center for Wave Phenomena, Colorado School of Mines Effects of multi-scale velocity heterogeneities on wave-equation migration Yong Ma and Paul Sava, Center for Wave Phenomena, Colorado School of Mines SUMMARY Velocity models used for wavefield-based seismic

More information

Transformation to dip-dependent Common Image Gathers

Transformation to dip-dependent Common Image Gathers Stanford Exploration Project, Report 11, November 11, 00, pages 65 83 Transformation to dip-dependent Common Image Gathers Biondo Biondi and William Symes 1 ABSTRACT We introduce a new transform of offset-domain

More information

Revealing subsalt structure using RTM 3D dip gathers

Revealing subsalt structure using RTM 3D dip gathers Revealing subsalt structure using RTM 3D dip gathers Yi Huang 1, Yang Li 1, Chang-Chun Lee 1, Sabaresan Mothi 1, and Yan Huang 1 Abstract Gulf of Mexico (GoM) subsalt imaging often suffers from poor illumination

More information

Wide-azimuth angle gathers for anisotropic wave-equation migration

Wide-azimuth angle gathers for anisotropic wave-equation migration CWP-681 Wide-azimuth angle gathers for anisotropic wave-equation migration Paul Sava 1 & Tariq Alkhalifah 2 1 Center for Wave Phenomena, Colorado School of Mines 2 King Abdullah University of Science and

More information

= 0) is the 2-D Fourier transform of the field (1),, z = 0). The phase ) is defined in the dispersion relation as where

= 0) is the 2-D Fourier transform of the field (1),, z = 0). The phase ) is defined in the dispersion relation as where GEOPHYSICS, VOL. 61, NO. 5 (SEPTEMBER-OCTOBER 1996); P. 1412 1416, 4 FIGS. Short Note Prestack migration by split-step DSR. Alexander Mihai Popovici* INTRODUCTION The double-square-root (DSR) prestack

More information

Comments on wavefield propagation using Reverse-time and Downward continuation

Comments on wavefield propagation using Reverse-time and Downward continuation Comments on wavefield propagation using Reverse-time and Downward continuation John C. Bancroft ABSTRACT Each iteration a of Full-waveform inversion requires the migration of the difference between the

More information

Fast 3D wave-equation migration-velocity analysis using the prestack exploding-reflector model

Fast 3D wave-equation migration-velocity analysis using the prestack exploding-reflector model Fast 3D wave-equation migration-velocity analysis using the prestack exploding-reflector model Claudio Guerra and Biondo Biondi ABSTRACT In areas of complex geology, velocity-model definition should use

More information

2010 SEG SEG Denver 2010 Annual Meeting

2010 SEG SEG Denver 2010 Annual Meeting Localized anisotropic tomography with checkshot : Gulf of Mexico case study Andrey Bakulin*, Yangjun (Kevin) Liu, Olga Zdraveva, WesternGeco/Schlumberger Summary Borehole information must be used to build

More information

We C 07 Least-squares Inversion for Imaging the Full Seismic Wavefield

We C 07 Least-squares Inversion for Imaging the Full Seismic Wavefield We C 07 Least-squares Inversion for Imaging the Full Seismic Wavefield S. Lu* (Petroleum Geo-Services), F. Liu (Petroleum Geo-Services), N. Chemingui (Petroleum Geo-Services), M. Orlovich (Petroleum Geo-Services)

More information

P. Bilsby (WesternGeco), D.F. Halliday* (Schlumberger Cambridge Research) & L.R. West (WesternGeco)

P. Bilsby (WesternGeco), D.F. Halliday* (Schlumberger Cambridge Research) & L.R. West (WesternGeco) I040 Case Study - Residual Scattered Noise Attenuation for 3D Land Seismic Data P. Bilsby (WesternGeco), D.F. Halliday* (Schlumberger Cambridge Research) & L.R. West (WesternGeco) SUMMARY We show that

More information