Fourier Transform in Image Processing. CS/BIOEN 6640 U of Utah Guido Gerig (slides modified from Marcel Prastawa 2012)

Size: px
Start display at page:

Download "Fourier Transform in Image Processing. CS/BIOEN 6640 U of Utah Guido Gerig (slides modified from Marcel Prastawa 2012)"

Transcription

1 Fourier Transform in Image Processing CS/BIOEN 6640 U of Utah Guido Gerig (slides modified from Marcel Prastawa 2012)

2 1D: Common Transform Pairs Summary source

3 FT Properties: Convolution See book DIP 4.2.5: F f t g t = F s. G s Convolution in space/time domain is equiv. to multiplication in frequency domain.

4 Important Application Filtering in frequency Domain

5 FT Properties Wikipedia Fourier Transforms

6 FT Properties

7 Aliasing

8 Discrete Sampling and Aliasing Digital signals and images are discrete representations of the real world Which is continuous What happens to signals/images when we sample them? Can we quantify the effects? Can we understand the artifacts and can we limit them? Can we reconstruct the original image from the discrete data?

9 A Mathematical Model of Discrete Delta functional Samples Shah functional

10 Goal A Mathematical Model of Discrete Discrete signal Samples To be able to do a continuous Fourier transform on a signal before and after sampling Samples from continuous function Representation as a function of t Multiplication of f(t) with Shah

11 Fourier Series of A Shah Functional u

12 Fourier Transform of A Discrete Sampling u

13 Fourier Transform of A Discrete Sampling Frequencies get mixed. The original signal is not recoverable. u Energy from higher freqs gets folded back down into lower freqs Aliasing

14 What if F(u) is Narrower in the Fourier Domain? No aliasing! How could we recover the original signal? u

15 What Comes Out of This Model Sampling criterion for complete recovery An understanding of the effects of sampling Aliasing and how to avoid it Reconstruction of signals from discrete samples

16 Shannon Sampling Theorem Assuming a signal that is band limited: Given set of samples from that signal Samples can be used to generate the original signal Samples and continuous signal are equivalent

17 Sampling Theorem Quantifies the amount of information in a signal Discrete signal contains limited frequencies Band-limited signals contain no more information then their discrete equivalents Reconstruction by cutting away the repeated signals in the Fourier domain Convolution with sinc function in space/time

18 Reconstruction Convolution with sinc function

19 Sinc Interpolation Issues Must functions are not band limited Forcing functions to be band-limited can cause artifacts (ringing) f(t) F(s)

20 Sinc Interpolation Issues Ringing - Gibbs phenomenon Other issues: Sinc is infinite - must be truncated

21 Fourier Transform F(s) = 4sinc(4s) - 2sinc 2 (2s) +.5sinc 2 (s) F(s) InverseFourier f(x)

22 Cut-off High Frequencies F(s) = (4sinc(4s) - 2sinc 2 (2s) +.5sinc 2 (s))*(heavisidepi(w/8) F(s) InverseFourier f(x)

23 Aliasing Reminder: high frequencies appear as low frequencies when undersampled

24 Sampling and Aliasing Given the sampling rate, CAN NOT distinguish the two functions High freq can appear as low freq

25 Ideal Solution: More Samples Faster sampling rate allows us to distinguish the two signals Not always practical: hardware cost, longer scan time

26 Aliasing 16 pixels 8 pixels pixels pixels

27 Aliasing Aliasing in digital videos Video1 Video2

28 Overcoming Aliasing Filter data prior to sampling Ideally - band limit the data (conv with sinc function) In practice - limit effects with fuzzy/soft low pass

29 Antialiasing in Graphics Screen resolution produces aliasing on underlying geometry Multiple high-res samples get averaged to create one screen sample

30 Antialiasing

31 Interpolation as Convolution Any discrete set of samples can be considered as a functional Any linear interpolant can be considered as a convolution Nearest neighbor - rect(t) Linear - tri(t)

32 Convolution-Based Interpolation Can be studied in terms of Fourier Domain Issues Pass energy (=1) in band Low energy out of band Reduce hard cut off (Gibbs, ringing)

33 Fourier Transform of Images

34 2D Fourier Transform Forward transform: Backward transform: Forward transform to freq. yields complex values (magnitude and phase):

35 2D Fourier Transform

36 Fourier Spectrum Image Fourier spectrum Origin in corners Retiled with origin In center Log of spectrum

37 Fourier Spectrum Translation and Rotation

38 Phase vs Spectrum Image Reconstruction from phase map Reconstruction from spectrum

39 Image Fourier Space v u

40 5 % 10 % 20 % 50 %

41 Fourier Spectrum Demo

42 Filtering Using FT and Inverse X

43 Low-Pass Filter Reduce/eliminate high frequencies Applications Noise reduction uncorrelated noise is broad band Images have spectrum that focus on low frequencies 100% 98% 96% 94% 92% 90% 88% 86% 0% 10% 20% 30% 40% 50% 60% 70% 80%

44 Ideal LP Filter Box, Rect Cutoff freq Ringing Gibbs phenomenon

45 Extending Filters to 2D (or higher) Two options Separable H(s) -> H(u)H(v) Easy, analysis Rotate H(s) -> H((u 2 + v 2 ) 1/2 ) Rotationally invariant

46 Ideal LP Filter Box, Rect

47 Ideal Low-Pass Rectangle With Cutoff of 2/3 Image Filtered Filtered + Histogram Equalized

48 Ideal LP 1/3

49 Ideal LP 2/3

50 Butterworth Filter Control of cutoff and slope Can control ringing

51 Butterworth - 1/3

52 Butterworth vs Ideal LP

53 Butterworth 2/3

54 Gaussian LP Filtering Ideal LPF Butterworth LPF Gaussian LPF F1 F2

55 High Pass Filtering HP = 1 - LP All the same filters as HP apply Applications Visualization of high-freq data (accentuate) High boost filtering HB = (1- a) + a(1 - LP) = 1 - a*lp

56 High-Pass Filters

57 High-Pass Filters in Spatial Domain

58 High-Pass Filtering with IHPF

59 BHPF

60 GHPF

61 HP, HB, HE

62 High Boost with GLPF

63 High-Boost Filtering

64 Band-Pass Filters Shift LP filter in Fourier domain by convolution with delta LP Typically 2-3 parameters -Width -Slope -Band value BP

65 Band Pass - Two Dimensions Two strategies Rotate Radially symmetric Translate in 2D Oriented filters Note: Convolution with delta-pair in FD is multiplication with cosine in spatial domain

66 Band Bass Filtering

67 SEM Image and Spectrum

68 Band-Pass Filter

69 Radial Band Pass/Reject

70 Band Reject Filtering

71 Band Reject Filtering

72 Band Reject Filtering

73 Fast Fourier Transform With slides from Richard Stern, CMU

74 DFT Ordinary DFT is O(N 2 ) DFT is slow for large images Exploit periodicity and symmetricity Fast FT is O(N log N) FFT can be faster than convolution

75 Fast Fourier Transform Divide and conquer algorithm Gauss ~1805 Cooley & Tukey 1965 For N = 2 K

76 The Cooley-Tukey Algorithm Consider the DFT algorithm for an integer power of 2, N 1 N 1 X[k] x[n]w nk N x[n]e j2 nk / N ; W N e j2 / N n 0 n 0 Create separate sums for even and odd values of n: X[k] x[n]w nk N x[n]w nk N n even n odd Letting n 2r for n even and n 2r 1 for n odd, we obtain N / 2 1 N /2 1 X[k] x[2r]w 2rk N r 0 r 0 x[2r 1]W 2r 1 k N N 2

77 The Cooley-Tukey Algorithm Splitting indices in time, we have obtained N / 2 1 N /2 1 X[k] x[2r]w 2rk N x[2r 1]W 2r 1 k N r 0 r 0 But and So W N 2 e j2 2 / N e j2 /(N / 2) WN / 2 W N 2rk WN k WN k WN / 2 X[k] (N/ 2) 1 n 0 rk x[2r]w N /2 W N k (N/ 2) 1 n 0 rk x[2r 1]W N / 2 rk N/2-point DFT of x[2r] N/2-point DFT of x[2r+1]

78 Divide and reuse Example: N=8

79 Example: N=8, Upper Part Continue to divide and reuse

80 Two-Point FFT The expression for the 2-point DFT is: 1 nk X[k] x[n]w 2 x[n]e j2 nk / 2 n 0 n 0 Evaluating for k 0,1 we obtain X[0] x[0] x[1] X[1] x[0] e j2 1/ 2 x[1] x[0] x[1] which in signal flowgraph notation looks like... 1 This topology is referred to as the basic butterfly

81 Modern FFT FFTW

INTRODUCTION TO THE FAST FOURIER TRANSFORM ALGORITHM

INTRODUCTION TO THE FAST FOURIER TRANSFORM ALGORITHM Course Outline Course Outline INTRODUCTION TO THE FAST FOURIER TRANSFORM ALGORITHM Introduction Fast Fourier Transforms have revolutionized digital signal processing What is the FFT? A collection of tricks

More information

Digital Image Processing. Image Enhancement in the Frequency Domain

Digital Image Processing. Image Enhancement in the Frequency Domain Digital Image Processing Image Enhancement in the Frequency Domain Topics Frequency Domain Enhancements Fourier Transform Convolution High Pass Filtering in Frequency Domain Low Pass Filtering in Frequency

More information

Lecture 5: Frequency Domain Transformations

Lecture 5: Frequency Domain Transformations #1 Lecture 5: Frequency Domain Transformations Saad J Bedros sbedros@umn.edu From Last Lecture Spatial Domain Transformation Point Processing for Enhancement Area/Mask Processing Transformations Image

More information

Image restoration. Lecture 14. Milan Gavrilovic Centre for Image Analysis Uppsala University

Image restoration. Lecture 14. Milan Gavrilovic Centre for Image Analysis Uppsala University Image restoration Lecture 14 Milan Gavrilovic milan@cb.uu.se Centre for Image Analysis Uppsala University Computer Assisted Image Analysis 2009-05-08 M. Gavrilovic (Uppsala University) L14 Image restoration

More information

Digital Image Processing. Lecture 6

Digital Image Processing. Lecture 6 Digital Image Processing Lecture 6 (Enhancement in the Frequency domain) Bu-Ali Sina University Computer Engineering Dep. Fall 2016 Image Enhancement In The Frequency Domain Outline Jean Baptiste Joseph

More information

Advanced Computer Graphics. Aliasing. Matthias Teschner. Computer Science Department University of Freiburg

Advanced Computer Graphics. Aliasing. Matthias Teschner. Computer Science Department University of Freiburg Advanced Computer Graphics Aliasing Matthias Teschner Computer Science Department University of Freiburg Outline motivation Fourier analysis filtering sampling reconstruction / aliasing antialiasing University

More information

Computer Vision and Graphics (ee2031) Digital Image Processing I

Computer Vision and Graphics (ee2031) Digital Image Processing I Computer Vision and Graphics (ee203) Digital Image Processing I Dr John Collomosse J.Collomosse@surrey.ac.uk Centre for Vision, Speech and Signal Processing University of Surrey Learning Outcomes After

More information

Reading. 2. Fourier analysis and sampling theory. Required: Watt, Section 14.1 Recommended:

Reading. 2. Fourier analysis and sampling theory. Required: Watt, Section 14.1 Recommended: Reading Required: Watt, Section 14.1 Recommended: 2. Fourier analysis and sampling theory Ron Bracewell, The Fourier Transform and Its Applications, McGraw-Hill. Don P. Mitchell and Arun N. Netravali,

More information

Computer Graphics. Sampling Theory & Anti-Aliasing. Philipp Slusallek

Computer Graphics. Sampling Theory & Anti-Aliasing. Philipp Slusallek Computer Graphics Sampling Theory & Anti-Aliasing Philipp Slusallek Dirac Comb (1) Constant & δ-function flash Comb/Shah function 2 Dirac Comb (2) Constant & δ-function Duality f(x) = K F(ω) = K (ω) And

More information

Biomedical Image Analysis. Spatial Filtering

Biomedical Image Analysis. Spatial Filtering Biomedical Image Analysis Contents: Spatial Filtering The mechanics of Spatial Filtering Smoothing and sharpening filters BMIA 15 V. Roth & P. Cattin 1 The Mechanics of Spatial Filtering Spatial filter:

More information

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines EECS 556 Image Processing W 09 Interpolation Interpolation techniques B splines What is image processing? Image processing is the application of 2D signal processing methods to images Image representation

More information

Drawing a Triangle (and an introduction to sampling)

Drawing a Triangle (and an introduction to sampling) Lecture 4: Drawing a Triangle (and an introduction to sampling) Computer Graphics CMU 15-462/15-662, Spring 2017 Assignment 1 is out! https://15462-s17.github.io/asst1_drawsvg/ Let s draw some triangles

More information

Review for Exam I, EE552 2/2009

Review for Exam I, EE552 2/2009 Gonale & Woods Review or Eam I, EE55 /009 Elements o Visual Perception Image Formation in the Ee and relation to a photographic camera). Brightness Adaption and Discrimination. Light and the Electromagnetic

More information

Fourier analysis and sampling theory

Fourier analysis and sampling theory Reading Required: Shirley, Ch. 9 Recommended: Fourier analysis and sampling theory Ron Bracewell, The Fourier Transform and Its Applications, McGraw-Hill. Don P. Mitchell and Arun N. Netravali, Reconstruction

More information

Theoretically Perfect Sensor

Theoretically Perfect Sensor Sampling 1/67 Sampling The ray tracer samples the geometry, only gathering information from the parts of the world that interact with a finite number of rays In contrast, a scanline renderer can push all

More information

Theoretically Perfect Sensor

Theoretically Perfect Sensor Sampling 1/60 Sampling The ray tracer samples the geometry, only gathering information from the parts of the world that interact with a finite number of rays In contrast, a scanline renderer can push all

More information

Aliasing and Antialiasing. ITCS 4120/ Aliasing and Antialiasing

Aliasing and Antialiasing. ITCS 4120/ Aliasing and Antialiasing Aliasing and Antialiasing ITCS 4120/5120 1 Aliasing and Antialiasing What is Aliasing? Errors and Artifacts arising during rendering, due to the conversion from a continuously defined illumination field

More information

Basics. Sampling and Reconstruction. Sampling and Reconstruction. Outline. (Spatial) Aliasing. Advanced Computer Graphics (Fall 2010)

Basics. Sampling and Reconstruction. Sampling and Reconstruction. Outline. (Spatial) Aliasing. Advanced Computer Graphics (Fall 2010) Advanced Computer Graphics (Fall 2010) CS 283, Lecture 3: Sampling and Reconstruction Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs283/fa10 Some slides courtesy Thomas Funkhouser and Pat Hanrahan

More information

6. Fast Fourier Transform

6. Fast Fourier Transform x[] X[] x[] x[] x[6] X[] X[] X[3] x[] x[5] x[3] x[7] 3 X[] X[5] X[6] X[7] A Historical Perspective The Cooley and Tukey Fast Fourier Transform (FFT) algorithm is a turning point to the computation of DFT

More information

Outline. Foundations of Computer Graphics (Spring 2012)

Outline. Foundations of Computer Graphics (Spring 2012) Foundations of Computer Graphics (Spring 2012) CS 184, Lectures 19: Sampling and Reconstruction http://inst.eecs.berkeley.edu/~cs184 Basic ideas of sampling, reconstruction, aliasing Signal processing

More information

Lecture 2: 2D Fourier transforms and applications

Lecture 2: 2D Fourier transforms and applications Lecture 2: 2D Fourier transforms and applications B14 Image Analysis Michaelmas 2017 Dr. M. Fallon Fourier transforms and spatial frequencies in 2D Definition and meaning The Convolution Theorem Applications

More information

Outline. Sampling and Reconstruction. Sampling and Reconstruction. Foundations of Computer Graphics (Fall 2012)

Outline. Sampling and Reconstruction. Sampling and Reconstruction. Foundations of Computer Graphics (Fall 2012) Foundations of Computer Graphics (Fall 2012) CS 184, Lectures 19: Sampling and Reconstruction http://inst.eecs.berkeley.edu/~cs184 Outline Basic ideas of sampling, reconstruction, aliasing Signal processing

More information

C2: Medical Image Processing Linwei Wang

C2: Medical Image Processing Linwei Wang C2: Medical Image Processing 4005-759 Linwei Wang Content Enhancement Improve visual quality of the image When the image is too dark, too light, or has low contrast Highlight certain features of the image

More information

Fatima Michael College of Engineering & Technology

Fatima Michael College of Engineering & Technology DEPARTMENT OF ECE V SEMESTER ECE QUESTION BANK EC6502 PRINCIPLES OF DIGITAL SIGNAL PROCESSING UNIT I DISCRETE FOURIER TRANSFORM PART A 1. Obtain the circular convolution of the following sequences x(n)

More information

Drawing a Triangle (and an Intro to Sampling)

Drawing a Triangle (and an Intro to Sampling) Lecture 4: Drawing a Triangle (and an Intro to Sampling) Computer Graphics CMU 15-462/15-662, Spring 2018 HW 0.5 Due, HW 1 Out Today! GOAL: Implement a basic rasterizer - (Topic of today s lecture) - We

More information

Image Filtering, Warping and Sampling

Image Filtering, Warping and Sampling Image Filtering, Warping and Sampling Connelly Barnes CS 4810 University of Virginia Acknowledgement: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David

More information

Signals and Sampling. CMPT 461/761 Image Synthesis Torsten Möller. Machiraju/Möller

Signals and Sampling. CMPT 461/761 Image Synthesis Torsten Möller. Machiraju/Möller Signals and Sampling CMPT 461/761 Image Synthesis Torsten Möller Reading Chapter 7 of Physically Based Rendering by Pharr&Humphreys Chapter 14.10 of CG: Principles & Practice by Foley, van Dam et al. Chapter

More information

Image processing in frequency Domain

Image processing in frequency Domain Image processing in frequency Domain Introduction to Frequency Domain Deal with images in: -Spatial domain -Frequency domain Frequency Domain In the frequency or Fourier domain, the value and location

More information

Digital Image Processing. Prof. P. K. Biswas. Department of Electronic & Electrical Communication Engineering

Digital Image Processing. Prof. P. K. Biswas. Department of Electronic & Electrical Communication Engineering Digital Image Processing Prof. P. K. Biswas Department of Electronic & Electrical Communication Engineering Indian Institute of Technology, Kharagpur Lecture - 21 Image Enhancement Frequency Domain Processing

More information

Sampling: Application to 2D Transformations

Sampling: Application to 2D Transformations Sampling: Application to 2D Transformations University of the Philippines - Diliman August Diane Lingrand lingrand@polytech.unice.fr http://www.essi.fr/~lingrand Sampling Computer images are manipulated

More information

Introduction to Sampled Signals and Fourier Transforms

Introduction to Sampled Signals and Fourier Transforms Introduction to Sampled Signals and Fourier Transforms Physics116C, 4/28/06 D. Pellett References: Essick, Advanced LabVIEW Labs Press et al., Numerical Recipes, Ch. 12 Brigham, The Fast Fourier Transform

More information

Computational Aspects of MRI

Computational Aspects of MRI David Atkinson Philip Batchelor David Larkman Programme 09:30 11:00 Fourier, sampling, gridding, interpolation. Matrices and Linear Algebra 11:30 13:00 MRI Lunch (not provided) 14:00 15:30 SVD, eigenvalues.

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Third Edition Rafael C. Gonzalez University of Tennessee Richard E. Woods MedData Interactive PEARSON Prentice Hall Pearson Education International Contents Preface xv Acknowledgments

More information

To Do. Advanced Computer Graphics. Discrete Convolution. Outline. Outline. Implementing Discrete Convolution

To Do. Advanced Computer Graphics. Discrete Convolution. Outline. Outline. Implementing Discrete Convolution Advanced Computer Graphics CSE 163 [Spring 2018], Lecture 4 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir To Do Assignment 1, Due Apr 27. Please START EARLY This lecture completes all the material you

More information

Filterbanks and transforms

Filterbanks and transforms Filterbanks and transforms Sources: Zölzer, Digital audio signal processing, Wiley & Sons. Saramäki, Multirate signal processing, TUT course. Filterbanks! Introduction! Critical sampling, half-band filter!

More information

To Do. Advanced Computer Graphics. Sampling and Reconstruction. Outline. Sign up for Piazza

To Do. Advanced Computer Graphics. Sampling and Reconstruction. Outline. Sign up for Piazza Advanced Computer Graphics CSE 63 [Spring 207], Lecture 3 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir Sign up for Piazza To Do Assignment, Due Apr 28. Anyone need help finding partners? Any issues with

More information

Lecture 6 Basic Signal Processing

Lecture 6 Basic Signal Processing Lecture 6 Basic Signal Processing Copyright c1996, 1997 by Pat Hanrahan Motivation Many aspects of computer graphics and computer imagery differ from aspects of conventional graphics and imagery because

More information

Sampling, Aliasing, & Mipmaps

Sampling, Aliasing, & Mipmaps Sampling, Aliasing, & Mipmaps Last Time? Monte-Carlo Integration Importance Sampling Ray Tracing vs. Path Tracing source hemisphere Sampling sensitive to choice of samples less sensitive to choice of samples

More information

Image Sampling and Quantisation

Image Sampling and Quantisation Image Sampling and Quantisation Introduction to Signal and Image Processing Prof. Dr. Philippe Cattin MIAC, University of Basel 1 of 46 22.02.2016 09:17 Contents Contents 1 Motivation 2 Sampling Introduction

More information

Aliasing And Anti-Aliasing Sampling and Reconstruction

Aliasing And Anti-Aliasing Sampling and Reconstruction Aliasing And Anti-Aliasing Sampling and Reconstruction An Introduction Computer Overview Intro - Aliasing Problem definition, Examples Ad-hoc Solutions Sampling theory Fourier transform Convolution Reconstruction

More information

Image Sampling & Quantisation

Image Sampling & Quantisation Image Sampling & Quantisation Biomedical Image Analysis Prof. Dr. Philippe Cattin MIAC, University of Basel Contents 1 Motivation 2 Sampling Introduction and Motivation Sampling Example Quantisation Example

More information

Reconstruction of Images Distorted by Water Waves

Reconstruction of Images Distorted by Water Waves Reconstruction of Images Distorted by Water Waves Arturo Donate and Eraldo Ribeiro Computer Vision Group Outline of the talk Introduction Analysis Background Method Experiments Conclusions Future Work

More information

Sampling and Reconstruction

Sampling and Reconstruction Sampling and Reconstruction Sampling and Reconstruction Sampling and Spatial Resolution Spatial Aliasing Problem: Spatial aliasing is insufficient sampling of data along the space axis, which occurs because

More information

Filtering Images in the Spatial Domain Chapter 3b G&W. Ross Whitaker (modified by Guido Gerig) School of Computing University of Utah

Filtering Images in the Spatial Domain Chapter 3b G&W. Ross Whitaker (modified by Guido Gerig) School of Computing University of Utah Filtering Images in the Spatial Domain Chapter 3b G&W Ross Whitaker (modified by Guido Gerig) School of Computing University of Utah 1 Overview Correlation and convolution Linear filtering Smoothing, kernels,

More information

Digital Signal Processing Lecture Notes 22 November 2010

Digital Signal Processing Lecture Notes 22 November 2010 Digital Signal Processing Lecture otes 22 ovember 2 Topics: Discrete Cosine Transform FFT Linear and Circular Convolution Rate Conversion Includes review of Fourier transforms, properties of Fourier transforms,

More information

Image Transformation Techniques Dr. Rajeev Srivastava Dept. of Computer Engineering, ITBHU, Varanasi

Image Transformation Techniques Dr. Rajeev Srivastava Dept. of Computer Engineering, ITBHU, Varanasi Image Transformation Techniques Dr. Rajeev Srivastava Dept. of Computer Engineering, ITBHU, Varanasi 1. Introduction The choice of a particular transform in a given application depends on the amount of

More information

Scaled representations

Scaled representations Scaled representations Big bars (resp. spots, hands, etc.) and little bars are both interesting Stripes and hairs, say Inefficient to detect big bars with big filters And there is superfluous detail in

More information

Fourier transform of images

Fourier transform of images Fourier transform of images Stefano Ferrari Università degli Studi di Milano stefano.ferrari@unimi.it Methods for Image Processing academic year 2014 2015 Extension to bidimensional domain The concepts

More information

Computer Graphics. Texture Filtering & Sampling Theory. Hendrik Lensch. Computer Graphics WS07/08 Texturing

Computer Graphics. Texture Filtering & Sampling Theory. Hendrik Lensch. Computer Graphics WS07/08 Texturing Computer Graphics Texture Filtering & Sampling Theory Hendrik Lensch Overview Last time Texture Parameterization Procedural Shading Today Texturing Filtering 2D Texture Mapping Forward mapping Object surface

More information

Biomedical Image Processing

Biomedical Image Processing Biomedical Image Processing Jason Thong Gabriel Grant 1 2 Motivation from the Medical Perspective MRI, CT and other biomedical imaging devices were designed to assist doctors in their diagnosis and treatment

More information

Computer Vision I. Announcements. Fourier Tansform. Efficient Implementation. Edge and Corner Detection. CSE252A Lecture 13.

Computer Vision I. Announcements. Fourier Tansform. Efficient Implementation. Edge and Corner Detection. CSE252A Lecture 13. Announcements Edge and Corner Detection HW3 assigned CSE252A Lecture 13 Efficient Implementation Both, the Box filter and the Gaussian filter are separable: First convolve each row of input image I with

More information

Computer Vision: 4. Filtering. By I-Chen Lin Dept. of CS, National Chiao Tung University

Computer Vision: 4. Filtering. By I-Chen Lin Dept. of CS, National Chiao Tung University Computer Vision: 4. Filtering By I-Chen Lin Dept. of CS, National Chiao Tung University Outline Impulse response and convolution. Linear filter and image pyramid. Textbook: David A. Forsyth and Jean Ponce,

More information

Sampling and Reconstruction

Sampling and Reconstruction Page 1 Sampling and Reconstruction The sampling and reconstruction process Real world: continuous Digital world: discrete Basic signal processing Fourier transforms The convolution theorem The sampling

More information

Sampling, Aliasing, & Mipmaps

Sampling, Aliasing, & Mipmaps Last Time? Sampling, Aliasing, & Mipmaps 2D Texture Mapping Perspective Correct Interpolation Common Texture Coordinate Projections Bump Mapping Displacement Mapping Environment Mapping Texture Maps for

More information

Point and Spatial Processing

Point and Spatial Processing Filtering 1 Point and Spatial Processing Spatial Domain g(x,y) = T[ f(x,y) ] f(x,y) input image g(x,y) output image T is an operator on f Defined over some neighborhood of (x,y) can operate on a set of

More information

The main goal of Computer Graphics is to generate 2D images 2D images are continuous 2D functions (or signals)

The main goal of Computer Graphics is to generate 2D images 2D images are continuous 2D functions (or signals) Motivation The main goal of Computer Graphics is to generate 2D images 2D images are continuous 2D functions (or signals) monochrome f(x,y) or color r(x,y), g(x,y), b(x,y) These functions are represented

More information

EEM 561 Machine Vision. Week 3: Fourier Transform and Image Pyramids

EEM 561 Machine Vision. Week 3: Fourier Transform and Image Pyramids EEM 561 Machine Vision Week 3: Fourier Transform and Image Pyramids Spring 2015 Instructor: Hatice Çınar Akakın, Ph.D. haticecinarakakin@anadolu.edu.tr Anadolu University Linear Image Transformations In

More information

Sampling, Aliasing, & Mipmaps

Sampling, Aliasing, & Mipmaps Sampling, Aliasing, & Mipmaps Last Time? Monte-Carlo Integration Importance Sampling Ray Tracing vs. Path Tracing source hemisphere What is a Pixel? Sampling & Reconstruction Filters in Computer Graphics

More information

Digital Signal Processing. Soma Biswas

Digital Signal Processing. Soma Biswas Digital Signal Processing Soma Biswas 2017 Partial credit for slides: Dr. Manojit Pramanik Outline What is FFT? Types of FFT covered in this lecture Decimation in Time (DIT) Decimation in Frequency (DIF)

More information

Lecture 4: Spatial Domain Transformations

Lecture 4: Spatial Domain Transformations # Lecture 4: Spatial Domain Transformations Saad J Bedros sbedros@umn.edu Reminder 2 nd Quiz on the manipulator Part is this Fri, April 7 205, :5 AM to :0 PM Open Book, Open Notes, Focus on the material

More information

CPSC 425: Computer Vision

CPSC 425: Computer Vision CPSC 425: Computer Vision Image Credit: https://docs.adaptive-vision.com/4.7/studio/machine_vision_guide/templatematching.html Lecture 9: Template Matching (cont.) and Scaled Representations ( unless otherwise

More information

Digital Signal Processing and Filter Design using Scilab

Digital Signal Processing and Filter Design using Scilab Digital Signal Processing and Filter Design using Scilab Department of Electrical Engineering, IIT Bombay December 1, 2010 Outline 1 Basic signal processing tools Discrete Fourier Transform Fast Fourier

More information

EECS 556 Image Processing W 09. Image enhancement. Smoothing and noise removal Sharpening filters

EECS 556 Image Processing W 09. Image enhancement. Smoothing and noise removal Sharpening filters EECS 556 Image Processing W 09 Image enhancement Smoothing and noise removal Sharpening filters What is image processing? Image processing is the application of 2D signal processing methods to images Image

More information

Spatial Enhancement Definition

Spatial Enhancement Definition Spatial Enhancement Nickolas Faust The Electro- Optics, Environment, and Materials Laboratory Georgia Tech Research Institute Georgia Institute of Technology Definition Spectral enhancement relies on changing

More information

Image preprocessing in spatial domain

Image preprocessing in spatial domain Image preprocessing in spatial domain Sampling theorem, aliasing, interpolation, geometrical transformations Revision:.4, dated: May 25, 26 Tomáš Svoboda Czech Technical University, Faculty of Electrical

More information

Image preprocessing in spatial domain

Image preprocessing in spatial domain Image preprocessing in spatial domain Sampling theorem, aliasing, interpolation, geometrical transformations Revision:.3, dated: December 7, 25 Tomáš Svoboda Czech Technical University, Faculty of Electrical

More information

Motivation. The main goal of Computer Graphics is to generate 2D images. 2D images are continuous 2D functions (or signals)

Motivation. The main goal of Computer Graphics is to generate 2D images. 2D images are continuous 2D functions (or signals) Motivation The main goal of Computer Graphics is to generate 2D images 2D images are continuous 2D functions (or signals) monochrome f(x,y) or color r(x,y), g(x,y), b(x,y) These functions are represented

More information

BME I5000: Biomedical Imaging

BME I5000: Biomedical Imaging 1 Lucas Parra, CCNY BME I5000: Biomedical Imaging Lecture 11 Point Spread Function, Inverse Filtering, Wiener Filtering, Sharpening,... Lucas C. Parra, parra@ccny.cuny.edu Blackboard: http://cityonline.ccny.cuny.edu/

More information

Assignment 3: Edge Detection

Assignment 3: Edge Detection Assignment 3: Edge Detection - EE Affiliate I. INTRODUCTION This assignment looks at different techniques of detecting edges in an image. Edge detection is a fundamental tool in computer vision to analyse

More information

Templates, Image Pyramids, and Filter Banks

Templates, Image Pyramids, and Filter Banks Templates, Image Pyramids, and Filter Banks Computer Vision James Hays, Brown Slides: Hoiem and others Reminder Project due Friday Fourier Bases Teases away fast vs. slow changes in the image. This change

More information

Anno accademico 2006/2007. Davide Migliore

Anno accademico 2006/2007. Davide Migliore Robotica Anno accademico 6/7 Davide Migliore migliore@elet.polimi.it Today What is a feature? Some useful information The world of features: Detectors Edges detection Corners/Points detection Descriptors?!?!?

More information

Sampling and Reconstruction. Most slides from Steve Marschner

Sampling and Reconstruction. Most slides from Steve Marschner Sampling and Reconstruction Most slides from Steve Marschner 15-463: Computational Photography Alexei Efros, CMU, Fall 2008 Sampling and Reconstruction Sampled representations How to store and compute

More information

ENT 315 Medical Signal Processing CHAPTER 3 FAST FOURIER TRANSFORM. Dr. Lim Chee Chin

ENT 315 Medical Signal Processing CHAPTER 3 FAST FOURIER TRANSFORM. Dr. Lim Chee Chin ENT 315 Medical Signal Processing CHAPTER 3 FAST FOURIER TRANSFORM Dr. Lim Chee Chin Outline Definition and Introduction FFT Properties of FFT Algorithm of FFT Decimate in Time (DIT) FFT Steps for radix

More information

Michael Moody School of Pharmacy University of London 29/39 Brunswick Square London WC1N 1AX, U.K.

Michael Moody School of Pharmacy University of London 29/39 Brunswick Square London WC1N 1AX, U.K. This material is provided for educational use only. The information in these slides including all data, images and related materials are the property of : Michael Moody School of Pharmacy University of

More information

Lecture Image Enhancement and Spatial Filtering

Lecture Image Enhancement and Spatial Filtering Lecture Image Enhancement and Spatial Filtering Harvey Rhody Chester F. Carlson Center for Imaging Science Rochester Institute of Technology rhody@cis.rit.edu September 29, 2005 Abstract Applications of

More information

Image Warping: A Review. Prof. George Wolberg Dept. of Computer Science City College of New York

Image Warping: A Review. Prof. George Wolberg Dept. of Computer Science City College of New York Image Warping: A Review Prof. George Wolberg Dept. of Computer Science City College of New York Objectives In this lecture we review digital image warping: - Geometric transformations - Forward inverse

More information

Michael Moody School of Pharmacy University of London 29/39 Brunswick Square London WC1N 1AX, U.K.

Michael Moody School of Pharmacy University of London 29/39 Brunswick Square London WC1N 1AX, U.K. This material is provided for educational use only. The information in these slides including all data, images and related materials are the property of : Michael Moody School of Pharmacy University of

More information

CHAPTER 3 DIFFERENT DOMAINS OF WATERMARKING. domain. In spatial domain the watermark bits directly added to the pixels of the cover

CHAPTER 3 DIFFERENT DOMAINS OF WATERMARKING. domain. In spatial domain the watermark bits directly added to the pixels of the cover 38 CHAPTER 3 DIFFERENT DOMAINS OF WATERMARKING Digital image watermarking can be done in both spatial domain and transform domain. In spatial domain the watermark bits directly added to the pixels of the

More information

Frequency analysis, pyramids, texture analysis, applications (face detection, category recognition)

Frequency analysis, pyramids, texture analysis, applications (face detection, category recognition) Frequency analysis, pyramids, texture analysis, applications (face detection, category recognition) Outline Measuring frequencies in images: Definitions, properties Sampling issues Relation with Gaussian

More information

Extracting Wavefront Error From Shack-Hartmann Images Using Spatial Demodulation

Extracting Wavefront Error From Shack-Hartmann Images Using Spatial Demodulation Etracting Wavefront Error From Shack-Hartmann Images Using Spatial Demodulation Edwin J. Sarver, PhD; Jim Schwiegerling, PhD; Raymond A. Applegate, OD, PhD ABSTRACT PURPOSE: To determine whether the spatial

More information

Image Processing. Application area chosen because it has very good parallelism and interesting output.

Image Processing. Application area chosen because it has very good parallelism and interesting output. Chapter 11 Slide 517 Image Processing Application area chosen because it has very good parallelism and interesting output. Low-level Image Processing Operates directly on stored image to improve/enhance

More information

Sampling functions and sparse reconstruction methods

Sampling functions and sparse reconstruction methods Sampling functions and sparse reconstruction methods Mostafa Naghizadeh and Mauricio Sacchi Signal Analysis and Imaging Group Department of Physics, University of Alberta EAGE 2008 Rome, Italy Outlines:

More information

ANALYSIS OF GEOPHYSICAL POTENTIAL FIELDS A Digital Signal Processing Approach

ANALYSIS OF GEOPHYSICAL POTENTIAL FIELDS A Digital Signal Processing Approach ADVANCES IN EXPLORATION GEOPHYSICS 5 ANALYSIS OF GEOPHYSICAL POTENTIAL FIELDS A Digital Signal Processing Approach PRABHAKAR S. NAIDU Indian Institute of Science, Bangalore 560012, India AND M.P. MATHEW

More information

Digital Image Processing COSC 6380/4393

Digital Image Processing COSC 6380/4393 Digital Image Processing COSC 6380/4393 Lecture 21 Nov 16 th, 2017 Pranav Mantini Ack: Shah. M Image Processing Geometric Transformation Point Operations Filtering (spatial, Frequency) Input Restoration/

More information

TOPICS PIPELINE IMPLEMENTATIONS OF THE FAST FOURIER TRANSFORM (FFT) DISCRETE FOURIER TRANSFORM (DFT) INVERSE DFT (IDFT) Consulted work:

TOPICS PIPELINE IMPLEMENTATIONS OF THE FAST FOURIER TRANSFORM (FFT) DISCRETE FOURIER TRANSFORM (DFT) INVERSE DFT (IDFT) Consulted work: 1 PIPELINE IMPLEMENTATIONS OF THE FAST FOURIER TRANSFORM (FFT) Consulted work: Chiueh, T.D. and P.Y. Tsai, OFDM Baseband Receiver Design for Wireless Communications, John Wiley and Sons Asia, (2007). Second

More information

Image Restoration and Reconstruction

Image Restoration and Reconstruction Image Restoration and Reconstruction Image restoration Objective process to improve an image Recover an image by using a priori knowledge of degradation phenomenon Exemplified by removal of blur by deblurring

More information

CoE4TN3 Medical Image Processing

CoE4TN3 Medical Image Processing CoE4TN3 Medical Image Processing Image Restoration Noise Image sensor might produce noise because of environmental conditions or quality of sensing elements. Interference in the image transmission channel.

More information

Overview. Spectral Processing of Point- Sampled Geometry. Introduction. Introduction. Fourier Transform. Fourier Transform

Overview. Spectral Processing of Point- Sampled Geometry. Introduction. Introduction. Fourier Transform. Fourier Transform Overview Spectral Processing of Point- Sampled Geometry Introduction Fourier transform Spectral processing pipeline Spectral filtering Adaptive subsampling Summary Point-Based Computer Graphics Markus

More information

What will we learn? Neighborhood processing. Convolution and correlation. Neighborhood processing. Chapter 10 Neighborhood Processing

What will we learn? Neighborhood processing. Convolution and correlation. Neighborhood processing. Chapter 10 Neighborhood Processing What will we learn? Lecture Slides ME 4060 Machine Vision and Vision-based Control Chapter 10 Neighborhood Processing By Dr. Debao Zhou 1 What is neighborhood processing and how does it differ from point

More information

Image Restoration and Reconstruction

Image Restoration and Reconstruction Image Restoration and Reconstruction Image restoration Objective process to improve an image, as opposed to the subjective process of image enhancement Enhancement uses heuristics to improve the image

More information

XRDUG Seminar III Edward Laitila 3/1/2009

XRDUG Seminar III Edward Laitila 3/1/2009 XRDUG Seminar III Edward Laitila 3/1/2009 XRDUG Seminar III Computer Algorithms Used for XRD Data Smoothing, Background Correction, and Generating Peak Files: Some Features of Interest in X-ray Diffraction

More information

Computer Vision. Fourier Transform. 20 January Copyright by NHL Hogeschool and Van de Loosdrecht Machine Vision BV All rights reserved

Computer Vision. Fourier Transform. 20 January Copyright by NHL Hogeschool and Van de Loosdrecht Machine Vision BV All rights reserved Van de Loosdrecht Machine Vision Computer Vision Fourier Transform 20 January 2017 Copyright 2001 2017 by NHL Hogeschool and Van de Loosdrecht Machine Vision BV All rights reserved j.van.de.loosdrecht@nhl.nl,

More information

Aliasing. Can t draw smooth lines on discrete raster device get staircased lines ( jaggies ):

Aliasing. Can t draw smooth lines on discrete raster device get staircased lines ( jaggies ): (Anti)Aliasing and Image Manipulation for (y = 0; y < Size; y++) { for (x = 0; x < Size; x++) { Image[x][y] = 7 + 8 * sin((sqr(x Size) + SQR(y Size)) / 3.0); } } // Size = Size / ; Aliasing Can t draw

More information

Broad field that includes low-level operations as well as complex high-level algorithms

Broad field that includes low-level operations as well as complex high-level algorithms Image processing About Broad field that includes low-level operations as well as complex high-level algorithms Low-level image processing Computer vision Computational photography Several procedures and

More information

Filtering, scale, orientation, localization, and texture. Nuno Vasconcelos ECE Department, UCSD (with thanks to David Forsyth)

Filtering, scale, orientation, localization, and texture. Nuno Vasconcelos ECE Department, UCSD (with thanks to David Forsyth) Filtering, scale, orientation, localization, and texture Nuno Vasconcelos ECE Department, UCSD (with thanks to David Forsyth) Beyond edges we have talked a lot about edges while they are important, it

More information

Brightness and geometric transformations

Brightness and geometric transformations Brightness and geometric transformations Václav Hlaváč Czech Technical University in Prague Czech Institute of Informatics, Robotics and Cybernetics 166 36 Prague 6, Jugoslávských partyzánů 1580/3, Czech

More information

Image processing. Reading. What is an image? Brian Curless CSE 457 Spring 2017

Image processing. Reading. What is an image? Brian Curless CSE 457 Spring 2017 Reading Jain, Kasturi, Schunck, Machine Vision. McGraw-Hill, 1995. Sections 4.2-4.4, 4.5(intro), 4.5.5, 4.5.6, 5.1-5.4. [online handout] Image processing Brian Curless CSE 457 Spring 2017 1 2 What is an

More information

PSD2B Digital Image Processing. Unit I -V

PSD2B Digital Image Processing. Unit I -V PSD2B Digital Image Processing Unit I -V Syllabus- Unit 1 Introduction Steps in Image Processing Image Acquisition Representation Sampling & Quantization Relationship between pixels Color Models Basics

More information

FOURIER TRANSFORM GABOR FILTERS. and some textons

FOURIER TRANSFORM GABOR FILTERS. and some textons FOURIER TRANSFORM GABOR FILTERS and some textons Thank you for the slides. They come mostly from the following sources Alexei Efros CMU Martial Hebert CMU Image sub-sampling 1/8 1/4 Throw away every other

More information

Module 9 AUDIO CODING. Version 2 ECE IIT, Kharagpur

Module 9 AUDIO CODING. Version 2 ECE IIT, Kharagpur Module 9 AUDIO CODING Lesson 29 Transform and Filter banks Instructional Objectives At the end of this lesson, the students should be able to: 1. Define the three layers of MPEG-1 audio coding. 2. Define

More information