Spatial Alignment of Passive Radar and Infrared Image Data on Seeker

Size: px
Start display at page:

Download "Spatial Alignment of Passive Radar and Infrared Image Data on Seeker"

Transcription

1 Available online at Procedia Engineering 4 (011) International Conference on Advances in Engineering Spatial Alignment of Passive Radar and Infrared Image Data on Seeker Jin ang a, Rui Ding b, a* a Department of Automation, eijing University of Posts and elecommunications, eijing, China b Department of Electronic, Capital Normal University, eijing, China Abstract he line-of-sight (LOS) and LOS rate is essential for proportional navigation. However, on the hybrid seeker with passive radar sensor and infrared image sensor, they can not be obtained directly for they are observed in different observing space. hen, observations obtained from passive radar sensor and infrared image sensor need to be share a consistent index of space, that is spatial alignment. he exact LOS and LOS rate dynamic models of passive radar sensor and infrared image sensor are constructed respectively. 011 Published Elsevier Ltd. Open access under CC Y-NC-ND license. Selection and/or peer-review under responsibility of ICAE011. Keywords: LOS; LOS rate; Spatial Alignment 1. Introduction Most modern homing missiles make use of PN (proportional navigation) guidance law based on LOS (line of sight) vector and its rate [1][]. he hybrid seeker system utilizes passive radar sensor and infrared image sensor to get the information of LOS and LOS rate. More precise result can be obtained fusing data from the two kinds of sensor [3]. However, the observed signals from passive radar and for the infrared image sensor have different form and norm. o accomplish sensor fusion, it is necessa for different sensors to agree on a common notion of space. hat is, observations obtained from different sensors need to be share a consistent index of space.. LOS and LOS rate from passive radar he principle of angle measurement from passive radar is that, two or more independent antennae accept the signal from target in the same time, and then compare the measurements to get the relative * Corresponding author.el.: address: tangjin@bupt.edu.cn Published Elsevier Ltd. doi: /j.proeng Open access under CC Y-NC-ND license.

2 650 Jin ang and Rui Ding / Procedia Engineering 4 (011) angle information of the target. his angle measurement value is the vector relative the place where the antennae are located, while the LOS is relative to the missile body coordinate. herefore, the angle measurement need transformed to LOS, and then LOS rate is acquired for the proportional navigation [4]. First of all, the body coordinate frame OXYZ is built, which is glued on the missile body. Define a right-handed coordinate system as showed in the figure 1, where OX always points to the missile nose direction along the roll axes, OY is the axis of pitch, and OZ is the axis of row which completes the mutually orthogonal right-handed coordinate system. Providing that there is an inherent angleθ betwe en the signal reference plan of passive radar and the body coordinate frame, which is usually decided the mechanical position of antennae, then the radar signal coordinate frame OXYZ R R R can be built. One way to describe the rotation (the change in orientation) of a rigid body is means of Euler angles. hen, the radar signal coordinate frame can be described with that OXR has same direct ion with OX, while OYR and OZR can be regard as the rotated OY and OZ angle - θ (the rotation directio ns are represented the right hand rule). hen, the coordinate-transformation matrix from the radar signal coordinate frame OXYZ R R R to the body coordinate frame OXYZ is the following: LR = 0 cosθ sinθ 0 sinθ cosθ (1) It is quit convenient to get the position vector ( x,, ) b yb zb in the body coordinate frame from the target position vector ( x, y, z ) in the radar signal coordinate frame through the formula: r r r ( x, y, z ) = L R( x, y, z ) () b b b r r r However, through passive radar, the relative distance between the missile and its target is unobservable, and the only the angle bias vector (, ) is measurable. the angle bias vector (, ) means that the target direction can be reached twice successive rotation from the radar coordinate frame OXYZ R R R: first, rotate OXYZ R R R around the axes OZR with angle, and then rotate the new "OXYZ R R R" around it new axes "OY R" with angle to acquire the target coordinate frame OXYZ P P P (the rotation directions are represented the right hand rule), and the angle has relation to location vector ( x, y, z ), and comply to: r r r tan = y / x = z / x + y (3) r r, tan r r r Substitution of (3) in () lead to: x 1 b x r 1 yb 0 cos sin tan xr cos tan sin tan 1 tan = θ θ = θ + θ + xr = A xr z 0 sin cos b θ θ tan 1 tan x r sinθtan cosθtan 1 tan + + (4) he line of sight (LOS) between missile and target in the body coordinate frame is defined the same way as that in the radar signal coordinate frame, which is: tan = y / x = z / x + y (5) b b, tan b b b hen from formula (4) (5), the line of sight between missile and target is: arctan( ) A LOSradar = = arctan( / 1 + A ) (6)

3 Jin ang and Rui Ding / Procedia Engineering 4 (011) Since the coordinate frame OXYZ P P P is successively rotated from the radar coordinate frame OXYZ R R Rthrough the Euler angle (, ), then the coordinate-transformation matrix LPR is: cos 0 sin cos sin 0 LPR = R( ) R( ) = sin cos 0 (7) sin 0 cos hen with corresponding reverse rotate, the radar coordinate frame OXYZ R R R can also be 1 1 transformed from OXYZ P P P with matrix LRP : LRP = R ( ) R ( ).y the basic Euler angle equation [5, the relation between the Euler angle velocity and of the angular velocity vector is : ω x x ω n ) ω bp 0 (si rp 0 0 (si 0 n ) R y 1 y 1 ω ( ) ω + 0 = (cos RP = ωrp = R + 0 = (cos ), ωp = bp = R ( ) ) z z ω 0 ω rp bp 0 R RP,Where represents the angular velocity vector of the target coordinate relative to the radar coordinate, and ωp represents the angular velocity vector of the target coordinate relative to the missile body coordinate. From (), the equation between them is: ωp = LRωRP. Finally, the LOS rate can be got: (sin / sin ) LOSRradar = = (sinθcos ) (cos ) θ (8) + Figure 1. Geomet of passive radar Figure. Geomet of infrared image sensor 3. LOS and LOS rate from infrared image As the infrared image sensor is mounted on the two-degree-of-freedom (-DOF) gimbals, more parameters are need for the LOS and LOS rate [6][7]. he body coordinate frame OXYZ is built same as that in section ; the gimbals coordinate frame OXGYGZG, whose axes OXG points to the direction same with gimbals, can be reached twice successive rotation from the body coordinate frame OXYZ : first, rotate OXYZ around the axes OZ with angle η, and then rotate the new "OXYZ" around it new axes "OY" with angle λ (the rotation directions are represented the right hand rule).he infrared image sensor is fixed with the gimbals and the optical axis is regarded the same as the gimbals axis OXG for convenience. y using sensor information of the target position, the gimbals are controlled to point to the target. hat is the gimbals axis OXG always approaches the target direction OXP. However, Even if the target is tracked sensor pointing control, it is not necessarily on the optical axis [8]. he target and the seeker vehicle platform (i.e., the body) may be maneuvering and the sensor stabilization and pointing cannot be made perfect. Consequently, the target position may be somewhere off the optical axis, as illustrated in figure.

4 65 Jin ang and Rui Ding / Procedia Engineering 4 (011) A new coordinate system OXYZ P P P is introduced in such a way that the target is on the OXP axis. his system is further defined two Euler rotations of the gimbals system to the target: first (yaw) about the axis OZG, the (pitch) about the subsequent axis "OY G".he target is then on the axis "OX G", a condition that determines the size of the rotations. Since the OXp axis is pointing to the target permanently, we call this system the target coordinate frame. he target angular position (, ) is measured the sensor. For an IR sensor this is accomplished image processing in combination with a detection process. he angular position is then determined from the position of a certain detector element in the focal plane. With the Euler rotate angle( λη),, the coordinate-transformation matrix from the gimbals coordinate frame OXYZ to the body coordinate frame OXGYGZG is the following: cosλ 0 sin λcosη sin η 0 G ()( λ η) sin η cosη 0 (9) L = R R = sin λ 0 cosλ he coordinate-transformation matrix from the body coordinate frame OXGYGZG to the gimbals 1 1 coordinate frame OXYZ is reverse of (9): LG = R () η R () λ.if the target location can be defined as r G = ( xg, yg, zg) in the gimbals coordinate frame, while r (, b, b) = xb y z in the body coordinate frame, then we can get: r =L G r G.And the target angular (, ) observed can be deduced from the target position vector: tan = yg / xg, tan = - zg / xg + y,and then lead to: g (cos ηcos λ sin ηtan (cos ηsin λtan ) 1 tan ) xb cos ηcos λ sin η cos ηsin λ x g C y b sin ηcos λ cos η sin ηsin λ (tan ) x ( sin ηcos λ+ cos ηtan (sin ηsin g = = λtan ) 1+ tan ) x g= D x z g sin 0 cos b λ λ (tan ) 1+ tan x E g sin λ (cosλtan ) 1+ tan (10) he equation between the line of sight (LOS) between missile and target in the body coordinate frame and the position vector is presented in (5). From (5) and (10), we get : arctan( / ) arctan( / ) yb xb D C (11) LOSimage = = = arctan( zb / xb yb ) + arctan( E/ C + D ) With the Euler rotate angle (, OX Y ), the coordinate-transformation matrix between the gimbals OXYZ coordinate frame G GZG and the body coordinate frame P P P is the following: LPG = R ( ) R( ), 1 LGP = R ( ) 1 R ( ).From basic kinematics, the following equation holds: Where ω P G ωp = ωg + ωgp = ωg +LGωG P is the angle velocity of target relative to missile body in the body coordinate frame, is the angle velocity of gimbals relative to missile body in the body coordinate frame, ω GP velocity of target relative to gimbals in the body coordinate frame. On the other hand, the relation between the Euler angle velocity and of the angular velocity vector can be got from basic Euler angle (sin (sin ) ) ηλ (sin ) equation: G ω (13) P = (cos ), G (cos ηλ ), GP (cos ) ω = ω =. η Substitution of (13) in (1) lead (sin ) (sin (sin ) (cos cos sin sin cos ) (cos sin ) ) ηλ (sin ) ηλ+ η λ + η η λ F to: (cos ) (cos ) (cos ) (cos ) ηλ G ηλ+ ( sin ηcos λsin + cos ηcos = + L = = ) + (sinηsin λ) G (14) η η+ (sin λsin ) + (cos λ) H (1) ω G is the angle

5 Jin ang and Rui Ding / Procedia Engineering 4 (011) he LOS rate in the missile body coordinate frame is deduced from (14), and that is: G / cos LOSRimage = = H (15) 4. Conclusion Since hybrid seeker has passive radar and IR image sensor, the target s angle position could be estimated more precisely with data fusion. However, the observations from two kinds of sensor are different in space and time. hen the exact LOS and LOS rate dynamic models of passive radar sensor and infrared image sensor are constructed respectively. Form (6) and (11), the angle information of target from radar and IR image is transformed to LOS in the missile body coordinate; and form (8) and (15), the angle velocity information of target from radar and IR image is transformed to LOS rate in the missile body coordinate. For application, the simplifying of calculation need more work. References [1] R.R.Allen, and S.S.lackman, Angle-only racking with a MSC Filter, IEEE/AIAA 10th Digital Avionics Systems Conference, Los Angeles, pp , Oct [] aek lyul Song, and ae Yoon Um, Practical Guidance for Homing Missiles with earings-only Measurements, IEEE ransactions on Aerospace and Electronic Systems, Vol 3, No. 1, pp , [3] David L. Hall, An Introduction to Multi-sensor Data Fusion, Proceedings of the IEEE, VOL. 85, NO. 1, pp. 6-3, Janua 1997 [4] Nesline. F W, and Zarchan. P, Line-of-sight Reconstruction for Faster Homing Guidance, Journal of Guidance, Control, and Dynamics,Vol 8, pp. 3-8, [5] A. L. Schwab,J. P. Meijaard, How to draw Euler angles and utilize Euler parameters, Proc. IDEC/ CIE 006, ASME 006 International Design Engineering echnical Conferences &Computers and Information in Engineering Conference September 10-13, 006. [6] Jacques Waldmann, Line-of-sight Rate Estimation and linearizing Control of an Imaging Seeker in a actical Missile Guided Proportional Navigation, IEEE ransactions on control systems technolo, Vol.10, No. 4, pp , July 00. [7] ertil Ekstrand, racking Filters and Models for Seeker Applications, IEEE ransactions on aerospace and electronic systems Vol. 37, No. 3 July 001. [8] Zhe Lin, Yu Yao, Ke-mao Ma, he Design of LOS Reconstruction Filter for Strap-down Imaging Seeker, Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guanhou, 18-1 August 005.

3D Transformations. CS 4620 Lecture Kavita Bala w/ prior instructor Steve Marschner. Cornell CS4620 Fall 2015 Lecture 11

3D Transformations. CS 4620 Lecture Kavita Bala w/ prior instructor Steve Marschner. Cornell CS4620 Fall 2015 Lecture 11 3D Transformations CS 4620 Lecture 11 1 Announcements A2 due tomorrow Demos on Monday Please sign up for a slot Post on piazza 2 Translation 3 Scaling 4 Rotation about z axis 5 Rotation about x axis 6

More information

Modeling And Simulation Of Polar Coordinates Seeker Control System Based On Full-Map Plane

Modeling And Simulation Of Polar Coordinates Seeker Control System Based On Full-Map Plane International Conference on Software Engineering and Computer Science (ICSECS3) Modeling And Simulation Of Polar Coordinates Seeker Control System Based On Full-Map Plane Yufu Guo, Ping Zhang School of

More information

3D Transformations. CS 4620 Lecture 10. Cornell CS4620 Fall 2014 Lecture Steve Marschner (with previous instructors James/Bala)

3D Transformations. CS 4620 Lecture 10. Cornell CS4620 Fall 2014 Lecture Steve Marschner (with previous instructors James/Bala) 3D Transformations CS 4620 Lecture 10 1 Translation 2 Scaling 3 Rotation about z axis 4 Rotation about x axis 5 Rotation about y axis 6 Properties of Matrices Translations: linear part is the identity

More information

Trajectory Planning for Reentry Maneuverable Ballistic Missiles

Trajectory Planning for Reentry Maneuverable Ballistic Missiles International Conference on Manufacturing Science and Engineering (ICMSE 215) rajectory Planning for Reentry Maneuverable Ballistic Missiles XIE Yu1, a *, PAN Liang1,b and YUAN ianbao2,c 1 College of mechatronic

More information

Quaternions and Rotations

Quaternions and Rotations CSCI 420 Computer Graphics Lecture 20 and Rotations Rotations Motion Capture [Angel Ch. 3.14] Rotations Very important in computer animation and robotics Joint angles, rigid body orientations, camera parameters

More information

ME 597: AUTONOMOUS MOBILE ROBOTICS SECTION 2 COORDINATE TRANSFORMS. Prof. Steven Waslander

ME 597: AUTONOMOUS MOBILE ROBOTICS SECTION 2 COORDINATE TRANSFORMS. Prof. Steven Waslander ME 597: AUTONOMOUS MOILE ROOTICS SECTION 2 COORDINATE TRANSFORMS Prof. Steven Waslander OUTLINE Coordinate Frames and Transforms Rotation Matrices Euler Angles Quaternions Homogeneous Transforms 2 COORDINATE

More information

Autonomous Navigation for Flying Robots

Autonomous Navigation for Flying Robots Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 3.1: 3D Geometry Jürgen Sturm Technische Universität München Points in 3D 3D point Augmented vector Homogeneous

More information

A Genetic Algorithm for Mid-Air Target Interception

A Genetic Algorithm for Mid-Air Target Interception olume 14 No.1, January 011 A Genetic Algorithm for Mid-Air Target Interception Irfan Younas HITEC University Taxila cantt. Pakistan Atif Aqeel PMAS-AAUR Rawalpindi Pakistan ABSTRACT This paper presents

More information

Quaternions and Rotations

Quaternions and Rotations CSCI 520 Computer Animation and Simulation Quaternions and Rotations Jernej Barbic University of Southern California 1 Rotations Very important in computer animation and robotics Joint angles, rigid body

More information

CS354 Computer Graphics Rotations and Quaternions

CS354 Computer Graphics Rotations and Quaternions Slide Credit: Don Fussell CS354 Computer Graphics Rotations and Quaternions Qixing Huang April 4th 2018 Orientation Position and Orientation The position of an object can be represented as a translation

More information

CS 445 / 645 Introduction to Computer Graphics. Lecture 21 Representing Rotations

CS 445 / 645 Introduction to Computer Graphics. Lecture 21 Representing Rotations CS 445 / 645 Introduction to Computer Graphics Lecture 21 Representing Rotations Parameterizing Rotations Straightforward in 2D A scalar, θ, represents rotation in plane More complicated in 3D Three scalars

More information

Design of a Three-Axis Rotary Platform

Design of a Three-Axis Rotary Platform Design of a Three-Axis Rotary Platform William Mendez, Yuniesky Rodriguez, Lee Brady, Sabri Tosunoglu Mechanics and Materials Engineering, Florida International University 10555 W Flagler Street, Miami,

More information

12.1 Quaternions and Rotations

12.1 Quaternions and Rotations Fall 2015 CSCI 420 Computer Graphics 12.1 Quaternions and Rotations Hao Li http://cs420.hao-li.com 1 Rotations Very important in computer animation and robotics Joint angles, rigid body orientations, camera

More information

DD2429 Computational Photography :00-19:00

DD2429 Computational Photography :00-19:00 . Examination: DD2429 Computational Photography 202-0-8 4:00-9:00 Each problem gives max 5 points. In order to pass you need about 0-5 points. You are allowed to use the lecture notes and standard list

More information

Quaternions and Rotations

Quaternions and Rotations CSCI 480 Computer Graphics Lecture 20 and Rotations April 6, 2011 Jernej Barbic Rotations Motion Capture [Ch. 4.12] University of Southern California http://www-bcf.usc.edu/~jbarbic/cs480-s11/ 1 Rotations

More information

Available online at Procedia Engineering 7 (2010) Procedia Engineering 00 (2010)

Available online at   Procedia Engineering 7 (2010) Procedia Engineering 00 (2010) Available online at www.sciencedirect.com Procedia Engineering 7 (2010) 290 296 Procedia Engineering 00 (2010) 000 000 Procedia Engineering www.elsevier.com/locate/procedia www.elsevier.com/locate/procedia

More information

Orientation & Quaternions

Orientation & Quaternions Orientation & Quaternions Orientation Position and Orientation The position of an object can be represented as a translation of the object from the origin The orientation of an object can be represented

More information

Computational Geometry Algorithms for Animation of a Segmented Space Reflector Telescope

Computational Geometry Algorithms for Animation of a Segmented Space Reflector Telescope Computational Geometry Algorithms for Animation of a Segmented Space Reflector Telescope YULU CHEN, CHARLES W. LIU, JANE DONG, HELEN BOUSSALIS, KHOSROW RAD, CHARALAMBOS POULLIS Electrical and Computer

More information

DOUBLE CIRCULAR-TRIANGULAR SIX-DEGREES-OF- FREEDOM PARALLEL ROBOT

DOUBLE CIRCULAR-TRIANGULAR SIX-DEGREES-OF- FREEDOM PARALLEL ROBOT DOUBLE CIRCULAR-TRIANGULAR SIX-DEGREES-OF- FREEDOM PARALLEL ROBOT V. BRODSKY, D. GLOZMAN AND M. SHOHAM Department of Mechanical Engineering Technion-Israel Institute of Technology Haifa, 32000 Israel E-mail:

More information

DSP-Based Parallel Processing Model of Image Rotation

DSP-Based Parallel Processing Model of Image Rotation Available online at www.sciencedirect.com Procedia Engineering 5 (20) 2222 2228 Advanced in Control Engineering and Information Science DSP-Based Parallel Processing Model of Image Rotation ZHANG Shuang,2a,2b,

More information

CHAPTER 2 SENSOR DATA SIMULATION: A KINEMATIC APPROACH

CHAPTER 2 SENSOR DATA SIMULATION: A KINEMATIC APPROACH 27 CHAPTER 2 SENSOR DATA SIMULATION: A KINEMATIC APPROACH 2.1 INTRODUCTION The standard technique of generating sensor data for navigation is the dynamic approach. As revealed in the literature (John Blakelock

More information

MTRX4700 Experimental Robotics

MTRX4700 Experimental Robotics MTRX 4700 : Experimental Robotics Lecture 2 Stefan B. Williams Slide 1 Course Outline Week Date Content Labs Due Dates 1 5 Mar Introduction, history & philosophy of robotics 2 12 Mar Robot kinematics &

More information

Analysis of Euler Angles in a Simple Two-Axis Gimbals Set

Analysis of Euler Angles in a Simple Two-Axis Gimbals Set Vol:5, No:9, 2 Analysis of Euler Angles in a Simple Two-Axis Gimbals Set Ma Myint Myint Aye International Science Index, Mechanical and Mechatronics Engineering Vol:5, No:9, 2 waset.org/publication/358

More information

Linear algebra deals with matrixes: two-dimensional arrays of values. Here s a matrix: [ x + 5y + 7z 9x + 3y + 11z

Linear algebra deals with matrixes: two-dimensional arrays of values. Here s a matrix: [ x + 5y + 7z 9x + 3y + 11z Basic Linear Algebra Linear algebra deals with matrixes: two-dimensional arrays of values. Here s a matrix: [ 1 5 ] 7 9 3 11 Often matrices are used to describe in a simpler way a series of linear equations.

More information

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6 Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

Quaternions & Rotation in 3D Space

Quaternions & Rotation in 3D Space Quaternions & Rotation in 3D Space 1 Overview Quaternions: definition Quaternion properties Quaternions and rotation matrices Quaternion-rotation matrices relationship Spherical linear interpolation Concluding

More information

Keywords: UAV, Formation flight, Virtual Pursuit Point

Keywords: UAV, Formation flight, Virtual Pursuit Point DESIGN THE GUIDANCE LAW FOR FORMATION FLIGHT OF MULTIPLE UAVS Heemin Shin*, Hyungi Kim*, Jaehyun Lee*, David Hyunchul Shim* *Korea Advanced Institute of Science and Technology (KAIST) Keywords: UAV, Formation

More information

Gravity compensation in accelerometer measurements for robot navigation on inclined surfaces

Gravity compensation in accelerometer measurements for robot navigation on inclined surfaces Available online at www.sciencedirect.com Procedia Computer Science 6 (211) 413 418 Complex Adaptive Systems, Volume 1 Cihan H. Dagli, Editor in Chief Conference Organized by Missouri University of Science

More information

Development of a MATLAB Toolbox for 3-PRS Parallel Robot

Development of a MATLAB Toolbox for 3-PRS Parallel Robot International Journal of Hybrid Information echnology, pp.4-4 http://dx.doi.org/.457/ijhit.4.7.5.37 Development of a MALAB oolbox for 3-PRS Parallel Robot Guoqiang Chen and Jianli Kang * Henan Polytechnic

More information

Coordinate Frames and Transforms

Coordinate Frames and Transforms Coordinate Frames and Transforms 1 Specifiying Position and Orientation We need to describe in a compact way the position of the robot. In 2 dimensions (planar mobile robot), there are 3 degrees of freedom

More information

The Coordinate Transformation Method and Accuracy Analysis in GPS Measurement

The Coordinate Transformation Method and Accuracy Analysis in GPS Measurement Available online at www.sciencedirect.com Procedia Environmental Sciences (0 ) 3 37 0 International Conference on Environmental Science and Engineering (ICESE 0) The Coordinate Transformation Method and

More information

EEE 187: Robotics Summary 2

EEE 187: Robotics Summary 2 1 EEE 187: Robotics Summary 2 09/05/2017 Robotic system components A robotic system has three major components: Actuators: the muscles of the robot Sensors: provide information about the environment and

More information

An Improved Dynamic Modeling of a 3-RPS Parallel Manipulator using the concept of DeNOC Matrices

An Improved Dynamic Modeling of a 3-RPS Parallel Manipulator using the concept of DeNOC Matrices An Improved Dynamic Modeling of a 3-RPS Parallel Manipulator using the concept of DeNOC Matrices A. Rahmani Hanzaki, E. Yoosefi Abstract A recursive dynamic modeling of a three-dof parallel robot, namely,

More information

Introduction to quaternions. Mathematics. Operations

Introduction to quaternions. Mathematics. Operations Introduction to quaternions Topics: Definition Mathematics Operations Euler Angles (optional) intro to quaternions 1 noel.h.hughes@gmail.com Euler's Theorem y y Angle! rotation follows right hand rule

More information

Navigational Aids 1 st Semester/2007/TF 7:30 PM -9:00 PM

Navigational Aids 1 st Semester/2007/TF 7:30 PM -9:00 PM Glossary of Navigation Terms accelerometer. A device that senses inertial reaction to measure linear or angular acceleration. In its simplest form, it consists of a case-mounted spring and mass arrangement

More information

Available online at ScienceDirect. Procedia Engineering 99 (2015 )

Available online at   ScienceDirect. Procedia Engineering 99 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 99 (2015 ) 575 580 APISAT2014, 2014 Asia-Pacific International Symposium on Aerospace Technology, APISAT2014 A 3D Anisotropic

More information

Inertial Navigation Systems

Inertial Navigation Systems Inertial Navigation Systems Kiril Alexiev University of Pavia March 2017 1 /89 Navigation Estimate the position and orientation. Inertial navigation one of possible instruments. Newton law is used: F =

More information

FAST REGISTRATION OF TERRESTRIAL LIDAR POINT CLOUD AND SEQUENCE IMAGES

FAST REGISTRATION OF TERRESTRIAL LIDAR POINT CLOUD AND SEQUENCE IMAGES FAST REGISTRATION OF TERRESTRIAL LIDAR POINT CLOUD AND SEQUENCE IMAGES Jie Shao a, Wuming Zhang a, Yaqiao Zhu b, Aojie Shen a a State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing

More information

CS612 - Algorithms in Bioinformatics

CS612 - Algorithms in Bioinformatics Fall 2017 Structural Manipulation November 22, 2017 Rapid Structural Analysis Methods Emergence of large structural databases which do not allow manual (visual) analysis and require efficient 3-D search

More information

E80. Experimental Engineering. Lecture 9 Inertial Measurement

E80. Experimental Engineering. Lecture 9 Inertial Measurement Lecture 9 Inertial Measurement http://www.volker-doormann.org/physics.htm Feb. 19, 2013 Christopher M. Clark Where is the rocket? Outline Sensors People Accelerometers Gyroscopes Representations State

More information

Chapter 4 Dynamics. Part Constrained Kinematics and Dynamics. Mobile Robotics - Prof Alonzo Kelly, CMU RI

Chapter 4 Dynamics. Part Constrained Kinematics and Dynamics. Mobile Robotics - Prof Alonzo Kelly, CMU RI Chapter 4 Dynamics Part 2 4.3 Constrained Kinematics and Dynamics 1 Outline 4.3 Constrained Kinematics and Dynamics 4.3.1 Constraints of Disallowed Direction 4.3.2 Constraints of Rolling without Slipping

More information

DIMENSIONAL SYNTHESIS OF SPATIAL RR ROBOTS

DIMENSIONAL SYNTHESIS OF SPATIAL RR ROBOTS DIMENSIONAL SYNTHESIS OF SPATIAL RR ROBOTS ALBA PEREZ Robotics and Automation Laboratory University of California, Irvine Irvine, CA 9697 email: maperez@uci.edu AND J. MICHAEL MCCARTHY Department of Mechanical

More information

Visual Recognition: Image Formation

Visual Recognition: Image Formation Visual Recognition: Image Formation Raquel Urtasun TTI Chicago Jan 5, 2012 Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 1 / 61 Today s lecture... Fundamentals of image formation You should know

More information

+ i a y )( cosφ + isinφ) ( ) + i( a x. cosφ a y. = a x

+ i a y )( cosφ + isinφ) ( ) + i( a x. cosφ a y. = a x Rotation Matrices and Rotated Coordinate Systems Robert Bernecky April, 2018 Rotated Coordinate Systems is a confusing topic, and there is no one standard or approach 1. The following provides a simplified

More information

Calibration of Inertial Measurement Units Using Pendulum Motion

Calibration of Inertial Measurement Units Using Pendulum Motion Technical Paper Int l J. of Aeronautical & Space Sci. 11(3), 234 239 (2010) DOI:10.5139/IJASS.2010.11.3.234 Calibration of Inertial Measurement Units Using Pendulum Motion Keeyoung Choi* and Se-ah Jang**

More information

10. Cartesian Trajectory Planning for Robot Manipulators

10. Cartesian Trajectory Planning for Robot Manipulators V. Kumar 0. Cartesian rajectory Planning for obot Manipulators 0.. Introduction Given a starting end effector position and orientation and a goal position and orientation we want to generate a smooth trajectory

More information

Quaternions and Euler Angles

Quaternions and Euler Angles Quaternions and Euler Angles Revision #1 This document describes how the VR Audio Kit handles the orientation of the 3D Sound One headset using quaternions and Euler angles, and how to convert between

More information

Dynamics Analysis for a 3-PRS Spatial Parallel Manipulator-Wearable Haptic Thimble

Dynamics Analysis for a 3-PRS Spatial Parallel Manipulator-Wearable Haptic Thimble Dynamics Analysis for a 3-PRS Spatial Parallel Manipulator-Wearable Haptic Thimble Masoud Moeini, University of Hamburg, Oct 216 [Wearable Haptic Thimble,A Developing Guide and Tutorial,Francesco Chinello]

More information

Centre for Autonomous Systems

Centre for Autonomous Systems Robot Henrik I Centre for Autonomous Systems Kungl Tekniska Högskolan hic@kth.se 27th April 2005 Outline 1 duction 2 Kinematic and Constraints 3 Mobile Robot 4 Mobile Robot 5 Beyond Basic 6 Kinematic 7

More information

A Tracking algorithm for Super-speed Maneuvering Target Based on Velocity Measurement Yu-yuan ZHANG 1, a, *, Jian LIU 2 and Zhang-song SHI 3

A Tracking algorithm for Super-speed Maneuvering Target Based on Velocity Measurement Yu-yuan ZHANG 1, a, *, Jian LIU 2 and Zhang-song SHI 3 17 nd International Conference on Computer Science and echnology (CS 17) ISBN: 978-1-6595-461-5 A racking algorithm for Super-speed Maneuvering arget Based on Velocity Measurement Yu-yuan ZHANG 1, a, *,

More information

Forward kinematics and Denavit Hartenburg convention

Forward kinematics and Denavit Hartenburg convention Forward kinematics and Denavit Hartenburg convention Prof. Enver Tatlicioglu Department of Electrical & Electronics Engineering Izmir Institute of Technology Chapter 5 Dr. Tatlicioglu (EEE@IYTE) EE463

More information

Industrial Robots : Manipulators, Kinematics, Dynamics

Industrial Robots : Manipulators, Kinematics, Dynamics Industrial Robots : Manipulators, Kinematics, Dynamics z z y x z y x z y y x x In Industrial terms Robot Manipulators The study of robot manipulators involves dealing with the positions and orientations

More information

Transactions on Information and Communications Technologies vol 16, 1996 WIT Press, ISSN

Transactions on Information and Communications Technologies vol 16, 1996 WIT Press,   ISSN ransactions on Information and Communications echnologies vol 6, 996 WI Press, www.witpress.com, ISSN 743-357 Obstacle detection using stereo without correspondence L. X. Zhou & W. K. Gu Institute of Information

More information

Stereo Rectification for Equirectangular Images

Stereo Rectification for Equirectangular Images Stereo Rectification for Equirectangular Images Akira Ohashi, 1,2 Fumito Yamano, 1 Gakuto Masuyama, 1 Kazunori Umeda, 1 Daisuke Fukuda, 2 Kota Irie, 3 Shuzo Kaneko, 2 Junya Murayama, 2 and Yoshitaka Uchida

More information

To do this the end effector of the robot must be correctly positioned relative to the work piece.

To do this the end effector of the robot must be correctly positioned relative to the work piece. Spatial Descriptions and Transformations typical robotic task is to grasp a work piece supplied by a conveyer belt or similar mechanism in an automated manufacturing environment, transfer it to a new position

More information

Chapter 13. Vision Based Guidance. Beard & McLain, Small Unmanned Aircraft, Princeton University Press, 2012,

Chapter 13. Vision Based Guidance. Beard & McLain, Small Unmanned Aircraft, Princeton University Press, 2012, Chapter 3 Vision Based Guidance Beard & McLain, Small Unmanned Aircraft, Princeton University Press, 22, Chapter 3: Slide Architecture w/ Camera targets to track/avoid vision-based guidance waypoints status

More information

Robot Inverse Kinematics Asanga Ratnaweera Department of Mechanical Engieering

Robot Inverse Kinematics Asanga Ratnaweera Department of Mechanical Engieering PR 5 Robot Dynamics & Control /8/7 PR 5: Robot Dynamics & Control Robot Inverse Kinematics Asanga Ratnaweera Department of Mechanical Engieering The Inverse Kinematics The determination of all possible

More information

This was written by a designer of inertial guidance machines, & is correct. **********************************************************************

This was written by a designer of inertial guidance machines, & is correct. ********************************************************************** EXPLANATORY NOTES ON THE SIMPLE INERTIAL NAVIGATION MACHINE How does the missile know where it is at all times? It knows this because it knows where it isn't. By subtracting where it is from where it isn't

More information

Robotics (Kinematics) Winter 1393 Bonab University

Robotics (Kinematics) Winter 1393 Bonab University Robotics () Winter 1393 Bonab University : most basic study of how mechanical systems behave Introduction Need to understand the mechanical behavior for: Design Control Both: Manipulators, Mobile Robots

More information

Hand-Eye Calibration from Image Derivatives

Hand-Eye Calibration from Image Derivatives Hand-Eye Calibration from Image Derivatives Abstract In this paper it is shown how to perform hand-eye calibration using only the normal flow field and knowledge about the motion of the hand. The proposed

More information

CHAPTER - 10 STRAIGHT LINES Slope or gradient of a line is defined as m = tan, ( 90 ), where is angle which the line makes with positive direction of x-axis measured in anticlockwise direction, 0 < 180

More information

Distributed Vision-Aided Cooperative Navigation Based on Three-View Geometry

Distributed Vision-Aided Cooperative Navigation Based on Three-View Geometry Distributed Vision-Aided Cooperative Navigation Based on hree-view Geometry Vadim Indelman, Pini Gurfil Distributed Space Systems Lab, Aerospace Engineering, echnion Ehud Rivlin Computer Science, echnion

More information

Inertial Measurement Units II!

Inertial Measurement Units II! ! Inertial Measurement Units II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 10! stanford.edu/class/ee267/!! wikipedia! Polynesian Migration! Lecture Overview! short review of

More information

Measurement of period difference in grating pair based on analysis of grating phase shift

Measurement of period difference in grating pair based on analysis of grating phase shift Measurement of period difference in grating pair based on analysis of grating phase shift Chao Guo, Lijiang Zeng State Key Laboratory of Precision Measurement Technology and Instruments Department of Precision

More information

Lecture Note 3: Rotational Motion

Lecture Note 3: Rotational Motion ECE5463: Introduction to Robotics Lecture Note 3: Rotational Motion Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA Spring 2018 Lecture 3 (ECE5463

More information

DEVELOPMENT OF CAMERA MODEL AND GEOMETRIC CALIBRATION/VALIDATION OF XSAT IRIS IMAGERY

DEVELOPMENT OF CAMERA MODEL AND GEOMETRIC CALIBRATION/VALIDATION OF XSAT IRIS IMAGERY DEVELOPMENT OF CAMERA MODEL AND GEOMETRIC CALIBRATION/VALIDATION OF XSAT IRIS IMAGERY Leong Keong Kwoh, Xiaojing Huang, Wee Juan Tan Centre for Remote, Imaging Sensing and Processing (CRISP), National

More information

The Controlled Human Gyroscope Virtual Reality Motion Base Simulator

The Controlled Human Gyroscope Virtual Reality Motion Base Simulator Volume 04 - Issue 09 September 2018 PP. 25-32 The Controlled Human Gyroscope Virtual Reality Motion Base Simulator Randy C. Arjunsingh 1, Matthew J. Jensen 1, Razvan Rusovici 2, Ondrej Doule 3 1 (Mechanical

More information

METR 4202: Advanced Control & Robotics

METR 4202: Advanced Control & Robotics Position & Orientation & State t home with Homogenous Transformations METR 4202: dvanced Control & Robotics Drs Surya Singh, Paul Pounds, and Hanna Kurniawati Lecture # 2 July 30, 2012 metr4202@itee.uq.edu.au

More information

Collision Detection of Cylindrical Rigid Bodies for Motion Planning

Collision Detection of Cylindrical Rigid Bodies for Motion Planning Proceedings of the 2006 IEEE International Conference on Robotics and Automation Orlando, Florida - May 2006 Collision Detection of Cylindrical Rigid Bodies for Motion Planning John Ketchel Department

More information

A Practical Adaptive Proportional-Derivative Guidance Law

A Practical Adaptive Proportional-Derivative Guidance Law Engineering Letters, 2:3, EL_2_3_15 A Practical Adaptive Proportional-Derivative Guidance Law Yongwei Zhang, Min Gao, Suochang Yang, Baochen Li, Xue Gao Abstract The well-known proportional navigation

More information

CMPUT 412 Motion Control Wheeled robots. Csaba Szepesvári University of Alberta

CMPUT 412 Motion Control Wheeled robots. Csaba Szepesvári University of Alberta CMPUT 412 Motion Control Wheeled robots Csaba Szepesvári University of Alberta 1 Motion Control (wheeled robots) Requirements Kinematic/dynamic model of the robot Model of the interaction between the wheel

More information

MDP646: ROBOTICS ENGINEERING. Mechanical Design & Production Department Faculty of Engineering Cairo University Egypt. Prof. Said M.

MDP646: ROBOTICS ENGINEERING. Mechanical Design & Production Department Faculty of Engineering Cairo University Egypt. Prof. Said M. MDP646: ROBOTICS ENGINEERING Mechanical Design & Production Department Faculty of Engineering Cairo University Egypt Prof. Said M. Megahed APPENDIX A: PROBLEM SETS AND PROJECTS Problem Set # Due 3 rd week

More information

Kinematics. Kinematics analyzes the geometry of a manipulator, robot or machine motion. The essential concept is a position.

Kinematics. Kinematics analyzes the geometry of a manipulator, robot or machine motion. The essential concept is a position. Kinematics Kinematics analyzes the geometry of a manipulator, robot or machine motion. The essential concept is a position. 1/31 Statics deals with the forces and moments which are aplied on the mechanism

More information

Transformations Week 9, Lecture 18

Transformations Week 9, Lecture 18 CS 536 Computer Graphics Transformations Week 9, Lecture 18 2D Transformations David Breen, William Regli and Maxim Peysakhov Department of Computer Science Drexel University 1 3 2D Affine Transformations

More information

Camera Projection Models We will introduce different camera projection models that relate the location of an image point to the coordinates of the

Camera Projection Models We will introduce different camera projection models that relate the location of an image point to the coordinates of the Camera Projection Models We will introduce different camera projection models that relate the location of an image point to the coordinates of the corresponding 3D points. The projection models include:

More information

MAJOR IMPROVEMENTS IN STORES SEPARATION ANALYSIS USING FLEXIBLE AIRCRAFT

MAJOR IMPROVEMENTS IN STORES SEPARATION ANALYSIS USING FLEXIBLE AIRCRAFT 27 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES MAJOR IMPROVEMENTS IN STORES SEPARATION ANALYSIS USING FLEXIBLE AIRCRAFT Hans Wallenius, Anders Lindberg Saab AB, SE-581 88 Linkoping, Sweden Keywords:

More information

10/11/07 1. Motion Control (wheeled robots) Representing Robot Position ( ) ( ) [ ] T

10/11/07 1. Motion Control (wheeled robots) Representing Robot Position ( ) ( ) [ ] T 3 3 Motion Control (wheeled robots) Introduction: Mobile Robot Kinematics Requirements for Motion Control Kinematic / dynamic model of the robot Model of the interaction between the wheel and the ground

More information

autorob.github.io Inverse Kinematics UM EECS 398/598 - autorob.github.io

autorob.github.io Inverse Kinematics UM EECS 398/598 - autorob.github.io autorob.github.io Inverse Kinematics Objective (revisited) Goal: Given the structure of a robot arm, compute Forward kinematics: predicting the pose of the end-effector, given joint positions. Inverse

More information

Bias Estimation for Optical Sensor Measurements with Targets of Opportunity

Bias Estimation for Optical Sensor Measurements with Targets of Opportunity Bias Estimation for Optical Measurements with s of Opportunity Djedjiga Belfadel, Richard W Osborne, III and Yaakov Bar-Shalom Electrical and Computer Engineering University of Connecticut Storrs, CT,

More information

Homogeneous Coordinates

Homogeneous Coordinates COMS W4172 3D Math 2 Steven Feiner Department of Computer Science Columbia Universit New York, NY 127 www.cs.columbia.edu/graphics/courses/csw4172 Februar 1, 218 1 Homogeneous Coordinates w X W Y X W Y

More information

Synopsis and Discussion of "Derivation of Lineof-Sight Stabilization Equations for Gimbaled-Mirror Optical Systems

Synopsis and Discussion of Derivation of Lineof-Sight Stabilization Equations for Gimbaled-Mirror Optical Systems Synopsis and Discussion of "Derivation of Lineof-Sight Stabilization Equations for Gimbaled-Mirror Optical Systems Keith B. Powell OPTI-51 Project 1 Steward Observatory, University of Arizona Abstract

More information

Transformations. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Transformations. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Transformations Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Angel: Interactive Computer Graphics 4E Addison-Wesley 25 1 Objectives

More information

Quaternions and Rotations

Quaternions and Rotations CSCI 520 Computer Animation and Simulation Quaternions and Rotations Jernej Barbic University of Southern California 1 Rotations Very important in computer animation and robotics Joint angles, rigid body

More information

Chapter 4: Kinematics of Rigid Bodies

Chapter 4: Kinematics of Rigid Bodies Chapter 4: Kinematics of Rigid Bodies Advanced Dynamics Lecturer: Hossein Nejat Fall 2016 A rigid body is defined to be a collection of particles whose distance of separation is invariant. In this circumstance,

More information

Performance Study of Quaternion and Matrix Based Orientation for Camera Calibration

Performance Study of Quaternion and Matrix Based Orientation for Camera Calibration Performance Study of Quaternion and Matrix Based Orientation for Camera Calibration Rigoberto Juarez-Salazar 1, Carlos Robledo-Sánchez 2, Fermín Guerrero-Sánchez 2, J. Jacobo Oliveros-Oliveros 2, C. Meneses-Fabian

More information

Extraction of surface normal and index of refraction using a pair of passive infrared polarimetric sensors

Extraction of surface normal and index of refraction using a pair of passive infrared polarimetric sensors Extraction of surface normal and index of refraction using a pair of passive infrared polarimetric sensors Firooz Sadjadi Lockheed Martin Corporation Saint Paul, Minnesota firooz.sadjadi@ieee.org Farzad

More information

Strapdown Inertial Navigation Technology

Strapdown Inertial Navigation Technology Strapdown Inertial Navigation Technology 2nd Edition David Titterton and John Weston The Institution of Engineering and Technology Preface xv 1 Introduction 1 1.1 Navigation 1 1.2 Inertial navigation 2

More information

Computer Vision. Coordinates. Prof. Flávio Cardeal DECOM / CEFET- MG.

Computer Vision. Coordinates. Prof. Flávio Cardeal DECOM / CEFET- MG. Computer Vision Coordinates Prof. Flávio Cardeal DECOM / CEFET- MG cardeal@decom.cefetmg.br Abstract This lecture discusses world coordinates and homogeneous coordinates, as well as provides an overview

More information

Experiment 9. Law of reflection and refraction of light

Experiment 9. Law of reflection and refraction of light Experiment 9. Law of reflection and refraction of light 1. Purpose Invest light passing through two mediums boundary surface in order to understand reflection and refraction of light 2. Principle As shown

More information

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below:

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below: Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

Finding Reachable Workspace of a Robotic Manipulator by Edge Detection Algorithm

Finding Reachable Workspace of a Robotic Manipulator by Edge Detection Algorithm International Journal of Advanced Mechatronics and Robotics (IJAMR) Vol. 3, No. 2, July-December 2011; pp. 43-51; International Science Press, ISSN: 0975-6108 Finding Reachable Workspace of a Robotic Manipulator

More information

MEM380 Applied Autonomous Robots Winter Robot Kinematics

MEM380 Applied Autonomous Robots Winter Robot Kinematics MEM38 Applied Autonomous obots Winter obot Kinematics Coordinate Transformations Motivation Ultimatel, we are interested in the motion of the robot with respect to a global or inertial navigation frame

More information

APN-065: Determining Rotations for Inertial Explorer and SPAN

APN-065: Determining Rotations for Inertial Explorer and SPAN APN-065 Rev A APN-065: Determining Rotations for Inertial Explorer and SPAN Page 1 May 5, 2014 Both Inertial Explorer (IE) and SPAN use intrinsic -order Euler angles to define the rotation between the

More information

DETC APPROXIMATE MOTION SYNTHESIS OF SPHERICAL KINEMATIC CHAINS

DETC APPROXIMATE MOTION SYNTHESIS OF SPHERICAL KINEMATIC CHAINS Proceedings of the ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2007 September 4-7, 2007, Las Vegas, Nevada, USA DETC2007-34372

More information

Geometric Transformations

Geometric Transformations Geometric Transformations CS 4620 Lecture 9 2017 Steve Marschner 1 A little quick math background Notation for sets, functions, mappings Linear and affine transformations Matrices Matrix-vector multiplication

More information

Quaternion Kalman Filter Design Based on MEMS Sensors

Quaternion Kalman Filter Design Based on MEMS Sensors , pp.93-97 http://dx.doi.org/10.14257/astl.2014.76.20 Quaternion Kalman Filter Design Based on MEMS Sensors Su zhongbin,yanglei, Kong Qingming School of Electrical and Information. Northeast Agricultural

More information

Open Access The Kinematics Analysis and Configuration Optimize of Quadruped Robot. Jinrong Zhang *, Chenxi Wang and Jianhua Zhang

Open Access The Kinematics Analysis and Configuration Optimize of Quadruped Robot. Jinrong Zhang *, Chenxi Wang and Jianhua Zhang Send Orders for Reprints to reprints@benthamscience.ae The Open Automation and Control Systems Journal, 014, 6, 1685-1690 1685 Open Access The Kinematics Analysis and Configuration Optimize of Quadruped

More information

CAMERA GIMBAL PERFORMANCE IMPROVEMENT WITH SPINNING-MASS MECHANICAL GYROSCOPES

CAMERA GIMBAL PERFORMANCE IMPROVEMENT WITH SPINNING-MASS MECHANICAL GYROSCOPES 8th International DAAAM Baltic Conference "INDUSTRIAL ENGINEERING 19-21 April 2012, Tallinn, Estonia CAMERA GIMBAL PERFORMANCE IMPROVEMENT WITH SPINNING-MASS MECHANICAL GYROSCOPES Tiimus, K. & Tamre, M.

More information

Integrated Estimation, Guidance & Control II

Integrated Estimation, Guidance & Control II Optimal Control, Guidance and Estimation Lecture 32 Integrated Estimation, Guidance & Control II Prof. Radhakant Padhi Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Motivation

More information

Horizontal Flight Dynamics Simulations using a Simplified Airplane Model and Considering Wind Perturbation

Horizontal Flight Dynamics Simulations using a Simplified Airplane Model and Considering Wind Perturbation Horizontal Flight Dynamics Simulations using a Simplified Airplane Model and Considering Wind Perturbation Dan N. DUMITRIU*,1,2, Andrei CRAIFALEANU 2, Ion STROE 2 *Corresponding author *,1 SIMULTEC INGINERIE

More information