Parsing Part II. (Ambiguity, Topdown parsing, Leftrecursion Removal)


 Kerry Hudson
 2 years ago
 Views:
Transcription
1 Parsing Part II (Ambiguity, Topdown parsing, Leftrecursion Removal)
2 Ambiguous Grammars Definitions If a grammar has more than one leftmost derivation for a single sentential form, the grammar is ambiguous If a grammar has more than one rightmost derivation for a single sentential form, the grammar is ambiguous The leftmost and rightmost derivations for a sentential form may differ, even in an unambiguous grammar Classic example the ifthenelse problem Stmt if then Stmt if then Stmt else Stmt other stmts This ambiguity is entirely grammatical in nature from Cooper & Torczon 2
3 Ambiguity This sentential form has two derivations (If a derivation has more than 1 parse tree, the grammar is ambiguous if 1 then if 2 then Stmt 1 else Stmt 2 if if E 1 then else E 1 then if S 2 if E 2 then E 2 then else S 1 S 1 S 2 production 2, then production 1 production 1, then production 2 from Cooper & Torczon 3
4 Ambiguity Removing the ambiguity Must rewrite the grammar to avoid generating the problem Match each else to innermost unmatched if (common sense rule) 1 S tmt Wi th E lse 2 N o E ls e 3 Wi th E lse If E xpr t he n Wi th E lse el s e Wi th E lse 4 o t h er s t mt s 5 N o E ls e If E xpr t he n S tmt 6 If E xpr t he n Wi th E lse el s e N o E ls e With this grammar, the example has only one derivation from Cooper & Torczon 4
5 Ambiguity if 1 then if 2 then Stmt 1 else Stmt 2 R u le S e n te n t ia l Fo rm St m t 2 N oe ls e 5 if E x p r th e n St m t? if E 1 th e n St m t 1 if E 1 th e n W ith E ls e 3 if E 1 th e n if E x p r th e n W ith E ls e e ls e W ith E ls e? if E 1 th e n if E 2 th e n W ith E ls e e ls e W ith E ls e 4 if E 1 th e n if E 2 th e n S 1 e ls e W ith E ls e 4 if E 1 th e n if E 2 th e n S 1 e ls e S 2 This binds the else controlling S 2 to the inner if from Cooper & Torczon 5
6 Deeper Ambiguity Ambiguity usually refers to confusion in the CFG Overloading can create deeper ambiguity a = f(17) In some languages, f could be either a function or a subscripted variable Disambiguating this one requires context Need values of declarations Really an issue of type, not contextfree syntax Requires an extragrammatical solution (not in CFG) Must to handle these with a different mechanism > Step outside grammar rather than use a more complex grammar from Cooper & Torczon 6
7 Ambiguity  the Final Word Ambiguity arises from two distinct sources Confusion in the contextfree syntax (ifthenelse) Confusion that requires context to resolve (overloading) Resolving ambiguity To remove contextfree ambiguity, rewrite the grammar To handle contextsensitive ambiguity takes cooperation > Knowledge of declarations, types, > Accept a superset of L(G) & check it with other means > This is a language design problem Sometimes, the compiler writer accepts an ambiguous grammar > Parsing techniques that do the right thing See Chapter 4 from Cooper & Torczon 7
8 Parsing Techniques Topdown parsers (LL(1), recursive descent) Start at the root of the parse tree and grow toward leaves Pick a production & try to match the input Bad pick may need to backtrack Some grammars are backtrackfree (predictive parsing) Bottomup parsers (LR(1), operator precedence) Start at the leaves and grow toward root As input is consumed, encode possibilities in an internal state Start in a state valid for legal first tokens Bottomup parsers handle a large class of grammars from Cooper & Torczon 8
9 Topdown Parsing A topdown parser starts with the root of the parse tree The root node is labeled with the goal symbol of the grammar Topdown parsing algorithm: Construct the root node of the parse tree Repeat until the fringe of the parse tree matches the input string 1 At a node labeled A, select a production with A on its lhs and, for each symbol on its rhs, construct the appropriate child 2 When a terminal symbol is added to the fringe and it doesn t match the fringe, backtrack 3 Find the next node to be expanded (label NT) The key is picking the right production in step 1 > That choice should be guided by the input string from Cooper & Torczon 9
10 Remember the expression grammar? Version with precedence derived last lecture 1 G oa l E xpr 2 E xpr E xpr + Ter m 3 E xpr Ter m 4 Ter m 5 Ter m Ter m * Fact o r 6 Ter m / Fact o r 7 Fact o r 8 Fact o r n u m ber 9 id And the input x  2 * y from Cooper & Torczon 10
11 Example Let s try x  2 * y : Goal R u le S en t e n tial For m In pu t G oa l x  2 * y 1 E xpr x  2 * y + 2 E xpr + Ter m x  2 * y 4 Ter m + Ter m x  2 * y 7 Fact o r + Ter m x  2 * y 9 <id, x> + Ter m x  2 * y Fact. 9 <id, x> + Ter m x  2 * y <id,x> from Cooper & Torczon 11
12 Example Let s try x  2 * y : Goal R u le S en t e n tial For m In pu t G oa l x  2 * y 1 E xpr x  2 * y + 2 E xpr + Ter m x  2 * y 4 Ter m + Ter m x  2 * y 7 Fact o r + Ter m x  2 * y 9 <id, x> + Ter m x  2 * y Fact. 9 <id, x> + Ter m x  2 * y <id,x> This worked well, except that  doesn t match + The parser must backtrack to here from Cooper & Torczon 12
13 Example Continuing with x  2 * y : Goal R u le S en t e n tial For m In pu t G oa l x  2 * y 1 E xpr x  2 * y 3 E xpr  Ter m x  2 * y  4 Ter m  Ter m x  2 * y 7 Fact o r  Ter m x  2 * y 9 <id, x>  Ter m x  2 * y Fact. 9 <id, x>  Ter m x  2 * y <id, x>  Ter m x  2 * y <id,x> from Cooper & Torczon 13
14 Example Continuing with x  2 * y : Goal R u le S en t e n tial For m In pu t G oa l x  2 * y 1 E xpr x  2 * y 3 E xpr  Ter m x  2 * y  4 Ter m  Ter m x  2 * y 7 Fact o r  Ter m x  2 * y 9 <id, x>  Ter m x  2 * y Fact. 9 <id, x>  Ter m x  2 * y <id, x>  Ter m x  2 * y <id,x> This time,  and  matched We can advance past  to look at 2 Now, we need to expand  the last NT on the fringe from Cooper & Torczon 14
15 Example Trying to match the 2 in x  2 * y : Goal R u le S en t e n tial For m In pu t <id, x>  Ter m x  2 * y 7 <id, x>  Fact o r x  2 * y  9 <id, x>  <n um,2> x  2 * y <id, x>  <n um,2> x  2 * y Fact. Fact. <num,2> <id,x> from Cooper & Torczon 15
16 Example Trying to match the 2 in x  2 * y : Goal R u le S en t e n tial For m In pu t <id, x>  Ter m x  2 * y 7 <id, x>  Fact o r x  2 * y  9 <id, x>  <n um,2> x  2 * y <id, x>  <n um,2> x  2 * y Fact. Where are we? Fact. <num,2> 2 matches 2 <id,x> We have more input, but no NTs left to expand The expansion terminated too soon Need to backtrack from Cooper & Torczon 16
17 Example Trying again with 2 in x  2 * y : Goal R u le S en t e n tial For m In pu t <id, x>  Ter m x  2 * y 5 <id, x>  Ter m * Fact o r x  2 * y 7 <id, x>  Fact o r * Fact o r x  2 * y  8 <id, x>  <n um,2> * Fact o r x  2 * y <id, x>  <n um,2> * Fact o r x  2 * y * Fact. <id, x>  <n um,2> * Fact o r x  2 * y Fact. Fact. <id,y> 9 <id, x>  <n um,2> * < id, y > x  2 * y <id, x>  <n um,2> * < id, y > x  2 * y <id,x> <num,2> This time, we matched & consumed all the input Success! from Cooper & Torczon 17
18 Another possible parse Other choices for expansion are possible R u le S en t e n tial For m In pu t G oa l x  2 * y 1 E xpr x  2 * y 2 E xpr + Ter m x  2 * y 2 E xpr + Ter m +Ter m x  2 * y 2 E xpr + Ter m + Ter m +Ter m x  2 * y 2 E xpr +Ter m + Ter m + +Ter m x  2 * y consuming no input! This doesn t terminate (obviously) Wrong choice of expansion leads to nontermination Nontermination is a bad property for a parser to have Parser must make the right choice from Cooper & Torczon 18
19 Left Recursion Topdown parsers cannot handle leftrecursive grammars Formally, A grammar is left recursive if A NT such that a derivation A + Aα, for some string α (NT T ) + Our expression grammar is left recursive This can lead to nontermination in a topdown parser For a topdown parser, any recursion must be right recursion We would like to convert the left recursion to right recursion Nontermination is a bad property in any part of a compiler from Cooper & Torczon 19
20 Eliminating Left Recursion To remove left recursion, we can transform the grammar Consider a grammar fragment of the form Fee Fee α β where neither α nor β start with Fee We can rewrite this as Fee β Fie Fie α Fie ε where Fie is a new nonterminal This accepts the same language, but uses only right recursion from Cooper & Torczon 20
21 Eliminating Left Recursion The expression grammar contains two cases of left recursion Ex pr Ex pr + T e rm Ex pr T e rm T e rm T e rm T e rm * Fa c t o r T e rm / F a c t o r Fa c t o r Applying the transformation yields Ex pr T e rm Ex pr Ex pr + Ter m Ex pr  T e rm Ex pr ε T e rm Fa c t o r T e rm T e rm * Fa c t o r T e rm / Fa c t o r T e rm ε These fragments use only right recursion They retains the original left associativity from Cooper & Torczon 21
22 Eliminating Left Recursion Substituting back into the grammar yields 1 G o a l Ex pr 2 Ex pr Te rm E x p r 3 + Te rm Exp r 4  Te rm Exp r 5 ε 6 Te rm Fac to r Te rm 7 * Fa ct or T e rm 8 / Fa ct or T e rm 9 ε 10 Fac to r nu mb er 11 id This grammar is correct, if somewhat nonintuitive. It is left associative, as was the original A topdown parser will terminate using it. A topdown parser may need to backtrack with it. from Cooper & Torczon 22
23 Eliminating Left Recursion The transformation eliminates immediate left recursion What about more general, indirect left recursion The general algorithm: arrange the NTs into some order A 1, A 2,, A n for i 1 to n replace each production A i A s γ with A i δ 1 γ δ 2 γ δ k γ, where A s δ 1 δ 2 δ k are all the current productions for A s eliminate any immediate left recursion on A i using the direct transformation This assumes that the initial grammar has no cycles (A i + A i ), and no epsilon productions from Cooper & Torczon 23
24 Eliminating Left Recursion How does this algorithm work? 1. Impose arbitrary order on the nonterminals 2. Outer loop cycles through NT in order 3. Inner loop ensures that a production expanding A i has no nonterminal A s in its rhs, for s < I 4. Last step in outer loop converts any direct recursion on A i to right recursion using the transformation showed earlier 5. New nonterminals are added at the end of the order & have no left recursion At the start of the i th outer loop iteration For all k < I, no production that expands A k contains a nonterminal A s in its rhs, for s < k from Cooper & Torczon 24
CS 406/534 Compiler Construction Parsing Part I
CS 406/534 Compiler Construction Parsing Part I Prof. Li Xu Dept. of Computer Science UMass Lowell Fall 2004 Part of the course lecture notes are based on Prof. Keith Cooper, Prof. Ken Kennedy and Dr.
More informationCS415 Compilers. Syntax Analysis. These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University
CS415 Compilers Syntax Analysis These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University Limits of Regular Languages Advantages of Regular Expressions
More informationParsing II Topdown parsing. Comp 412
COMP 412 FALL 2018 Parsing II Topdown parsing Comp 412 source code IR Front End Optimizer Back End IR target code Copyright 2018, Keith D. Cooper & Linda Torczon, all rights reserved. Students enrolled
More informationIntroduction to Parsing
Introduction to Parsing The Front End Source code Scanner tokens Parser IR Errors Parser Checks the stream of words and their parts of speech (produced by the scanner) for grammatical correctness Determines
More informationParsing Part II (Topdown parsing, leftrecursion removal)
Parsing Part II (Topdown parsing, leftrecursion removal) Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit
More informationComputer Science 160 Translation of Programming Languages
Computer Science 160 Translation of Programming Languages Instructor: Christopher Kruegel TopDown Parsing Parsing Techniques Topdown parsers (LL(1), recursive descent parsers) Start at the root of the
More informationSyntax Analysis, III Comp 412
COMP 412 FALL 2017 Syntax Analysis, III Comp 412 source code IR Front End Optimizer Back End IR target code Copyright 2017, Keith D. Cooper & Linda Torczon, all rights reserved. Students enrolled in Comp
More informationParsing. Note by Baris Aktemur: Our slides are adapted from Cooper and Torczon s slides that they prepared for COMP 412 at Rice.
Parsing Note by Baris Aktemur: Our slides are adapted from Cooper and Torczon s slides that they prepared for COMP 412 at Rice. Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved. Students
More informationTypes of parsing. CMSC 430 Lecture 4, Page 1
Types of parsing Topdown parsers start at the root of derivation tree and fill in picks a production and tries to match the input may require backtracking some grammars are backtrackfree (predictive)
More informationSyntactic Analysis. TopDown Parsing
Syntactic Analysis TopDown Parsing Copyright 2017, Pedro C. Diniz, all rights reserved. Students enrolled in Compilers class at University of Southern California (USC) have explicit permission to make
More informationCSCI312 Principles of Programming Languages
Copyright 2006 The McGrawHill Companies, Inc. CSCI312 Principles of Programming Languages! LL Parsing!! Xu Liu Derived from Keith Cooper s COMP 412 at Rice University Recap Copyright 2006 The McGrawHill
More informationSyntax Analysis, III Comp 412
Updated algorithm for removal of indirect left recursion to match EaC3e (3/2018) COMP 412 FALL 2018 Midterm Exam: Thursday October 18, 7PM Herzstein Amphitheater Syntax Analysis, III Comp 412 source code
More informationParsing. Roadmap. > Contextfree grammars > Derivations and precedence > Topdown parsing > Leftrecursion > Lookahead > Tabledriven parsing
Roadmap > Contextfree grammars > Derivations and precedence > Topdown parsing > Leftrecursion > Lookahead > Tabledriven parsing The role of the parser > performs contextfree syntax analysis > guides
More informationEECS 6083 Intro to Parsing Context Free Grammars
EECS 6083 Intro to Parsing Context Free Grammars Based on slides from text web site: Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved. 1 Parsing sequence of tokens parser
More informationParsing II Topdown parsing. Comp 412
COMP 412 FALL 2017 Parsing II Topdown parsing Comp 412 source code IR Front End OpMmizer Back End IR target code Copyright 2017, Keith D. Cooper & Linda Torczon, all rights reserved. Students enrolled
More information3. Parsing. Oscar Nierstrasz
3. Parsing Oscar Nierstrasz Thanks to Jens Palsberg and Tony Hosking for their kind permission to reuse and adapt the CS132 and CS502 lecture notes. http://www.cs.ucla.edu/~palsberg/ http://www.cs.purdue.edu/homes/hosking/
More informationIntroduction to Parsing. Comp 412
COMP 412 FALL 2010 Introduction to Parsing Comp 412 Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit permission to make
More informationSyntactic Analysis. TopDown Parsing. Parsing Techniques. TopDown Parsing. Remember the Expression Grammar? Example. Example
Syntactic Analysis opdown Parsing Parsing echniques opdown Parsers (LL(1), recursive descent) Start at the root of the parse tree and grow toward leaves Pick a production & try to match the input Bad
More informationParsing III. CS434 Lecture 8 Spring 2005 Department of Computer Science University of Alabama Joel Jones
Parsing III (Topdown parsing: recursive descent & LL(1) ) (Bottomup parsing) CS434 Lecture 8 Spring 2005 Department of Computer Science University of Alabama Joel Jones Copyright 2003, Keith D. Cooper,
More informationCS 314 Principles of Programming Languages
CS 314 Principles of Programming Languages Lecture 5: Syntax Analysis (Parsing) Zheng (Eddy) Zhang Rutgers University January 31, 2018 Class Information Homework 1 is being graded now. The sample solution
More informationIntroduction to Parsing. Lecture 5
Introduction to Parsing Lecture 5 1 Outline Regular languages revisited Parser overview Contextfree grammars (CFG s) Derivations Ambiguity 2 Languages and Automata Formal languages are very important
More informationCompilers. Yannis Smaragdakis, U. Athens (original slides by Sam
Compilers Parsing Yannis Smaragdakis, U. Athens (original slides by Sam Guyer@Tufts) Next step text chars Lexical analyzer tokens Parser IR Errors Parsing: Organize tokens into sentences Do tokens conform
More informationFormal Languages and Compilers Lecture V: Parse Trees and Ambiguous Gr
Formal Languages and Compilers Lecture V: Parse Trees and Ambiguous Grammars Free University of BozenBolzano Faculty of Computer Science POS Building, Room: 2.03 artale@inf.unibz.it http://www.inf.unibz.it/
More informationCA Compiler Construction
CA4003  Compiler Construction David Sinclair A topdown parser starts with the root of the parse tree, labelled with the goal symbol of the grammar, and repeats the following steps until the fringe of
More informationSyntax Analysis, V Bottomup Parsing & The Magic of Handles Comp 412
Midterm Exam: Thursday October 18, 7PM Herzstein Amphitheater Syntax Analysis, V Bottomup Parsing & The Magic of Handles Comp 412 COMP 412 FALL 2018 source code IR Front End Optimizer Back End IR target
More informationCompiler Design Concepts. Syntax Analysis
Compiler Design Concepts Syntax Analysis Introduction First task is to break up the text into meaningful words called tokens. newval=oldval+12 id = id + num Token Stream Lexical Analysis Source Code (High
More informationIntroduction to Parsing. Lecture 5
Introduction to Parsing Lecture 5 1 Outline Regular languages revisited Parser overview Contextfree grammars (CFG s) Derivations Ambiguity 2 Languages and Automata Formal languages are very important
More informationSyntax Analysis Check syntax and construct abstract syntax tree
Syntax Analysis Check syntax and construct abstract syntax tree if == = ; b 0 a b Error reporting and recovery Model using context free grammars Recognize using Push down automata/table Driven Parsers
More informationPart 5 Program Analysis Principles and Techniques
1 Part 5 Program Analysis Principles and Techniques Front end 2 source code scanner tokens parser il errors Responsibilities: Recognize legal programs Report errors Produce il Preliminary storage map Shape
More informationSyntax Analysis. Prof. James L. Frankel Harvard University. Version of 6:43 PM 6Feb2018 Copyright 2018, 2015 James L. Frankel. All rights reserved.
Syntax Analysis Prof. James L. Frankel Harvard University Version of 6:43 PM 6Feb2018 Copyright 2018, 2015 James L. Frankel. All rights reserved. ContextFree Grammar (CFG) terminals nonterminals start
More informationOutline. Regular languages revisited. Introduction to Parsing. Parser overview. Contextfree grammars (CFG s) Lecture 5. Derivations.
Outline Regular languages revisited Introduction to Parsing Lecture 5 Parser overview Contextfree grammars (CFG s) Derivations Prof. Aiken CS 143 Lecture 5 1 Ambiguity Prof. Aiken CS 143 Lecture 5 2 Languages
More informationAmbiguity, Precedence, Associativity & TopDown Parsing. Lecture 910
Ambiguity, Precedence, Associativity & TopDown Parsing Lecture 910 (From slides by G. Necula & R. Bodik) 9/18/06 Prof. Hilfinger CS164 Lecture 9 1 Administrivia Please let me know if there are continued
More informationAmbiguity. Grammar E E + E E * E ( E ) int. The string int * int + int has two parse trees. * int
Administrivia Ambiguity, Precedence, Associativity & opdown Parsing eam assignments this evening for all those not listed as having one. HW#3 is now available, due next uesday morning (Monday is a holiday).
More informationPrelude COMP 181 Tufts University Computer Science Last time Grammar issues Key structure meaning Tufts University Computer Science
Prelude COMP Lecture Topdown Parsing September, 00 What is the Tufts mascot? Jumbo the elephant Why? P. T. Barnum was an original trustee of Tufts : donated $0,000 for a natural museum on campus Barnum
More informationIntroduction to Parsing. Lecture 5. Professor Alex Aiken Lecture #5 (Modified by Professor Vijay Ganesh)
Introduction to Parsing Lecture 5 (Modified by Professor Vijay Ganesh) 1 Outline Regular languages revisited Parser overview Contextfree grammars (CFG s) Derivations Ambiguity 2 Languages and Automata
More informationParsing III. (Topdown parsing: recursive descent & LL(1) )
Parsing III (Topdown parsing: recursive descent & LL(1) ) Roadmap (Where are we?) Previously We set out to study parsing Specifying syntax Contextfree grammars Ambiguity Topdown parsers Algorithm &
More informationSyntax Analysis: Contextfree Grammars, Pushdown Automata and Parsing Part  4. Y.N. Srikant
Syntax Analysis: Contextfree Grammars, Pushdown Automata and Part  4 Department of Computer Science and Automation Indian Institute of Science Bangalore 560 012 NPTEL Course on Principles of Compiler
More information( ) i 0. Outline. Regular languages revisited. Introduction to Parsing. Parser overview. Contextfree grammars (CFG s) Lecture 5.
Outline Regular languages revisited Introduction to Parsing Lecture 5 Parser overview Contextfree grammars (CFG s) Derivations Prof. Aiken CS 143 Lecture 5 1 Ambiguity Prof. Aiken CS 143 Lecture 5 2 Languages
More informationContextFree Grammars
CFG2: Ambiguity ContextFree Grammars CMPT 379: Compilers Instructor: Anoop Sarkar anoopsarkar.github.io/compilersclass Ambiguity  /  / ( )  / /  160622 2 Ambiguity Grammar is ambiguous if more
More informationCOMP 181. Prelude. Next step. Parsing. Study of parsing. Specifying syntax with a grammar
COMP Lecture Parsing September, 00 Prelude What is the common name of the fruit Synsepalum dulcificum? Miracle fruit from West Africa What is special about miracle fruit? Contains a protein called miraculin
More informationOutline. Parser overview Contextfree grammars (CFG s) Derivations SyntaxDirected Translation
Outline Introduction to Parsing (adapted from CS 164 at Berkeley) Parser overview Contextfree grammars (CFG s) Derivations SyntaxDirected ranslation he Functionality of the Parser Input: sequence of
More informationTopDown Parsing and Intro to BottomUp Parsing. Lecture 7
TopDown Parsing and Intro to BottomUp Parsing Lecture 7 1 Predictive Parsers Like recursivedescent but parser can predict which production to use Predictive parsers are never wrong Always able to guess
More informationDefining syntax using CFGs
Defining syntax using CFGs Roadmap Last time Defined contextfree grammar This time CFGs for specifying a language s syntax Language membership List grammars Resolving ambiguity CFG Review G = (N,Σ,P,S)
More informationIntroduction to Parsing. Lecture 8
Introduction to Parsing Lecture 8 Adapted from slides by G. Necula Outline Limitations of regular languages Parser overview Contextfree grammars (CFG s) Derivations Languages and Automata Formal languages
More informationCompilers Course Lecture 4: Context Free Grammars
Compilers Course Lecture 4: Context Free Grammars Example: attempt to define simple arithmetic expressions using named regular expressions: num = [09]+ sum = expr "+" expr expr = "(" sum ")" num Appears
More informationCOP4020 Programming Languages. Syntax Prof. Robert van Engelen
COP4020 Programming Languages Syntax Prof. Robert van Engelen Overview n Tokens and regular expressions n Syntax and contextfree grammars n Grammar derivations n More about parse trees n Topdown and
More informationContextfree grammars
Contextfree grammars Section 4.2 Formal way of specifying rules about the structure/syntax of a program terminals  tokens nonterminals  represent higherlevel structures of a program start symbol,
More informationOutline. Limitations of regular languages. Introduction to Parsing. Parser overview. Contextfree grammars (CFG s)
Outline Limitations of regular languages Introduction to Parsing Parser overview Lecture 8 Adapted from slides by G. Necula Contextfree grammars (CFG s) Derivations Languages and Automata Formal languages
More informationThe Parsing Problem (cont d) RecursiveDescent Parsing. RecursiveDescent Parsing (cont d) ICOM 4036 Programming Languages. The Complexity of Parsing
ICOM 4036 Programming Languages Lexical and Syntax Analysis Lexical Analysis The Parsing Problem RecursiveDescent Parsing BottomUp Parsing This lecture covers review questions 1427 This lecture covers
More informationContextFree Languages and Parse Trees
ContextFree Languages and Parse Trees Mridul Aanjaneya Stanford University July 12, 2012 Mridul Aanjaneya Automata Theory 1/ 41 ContextFree Grammars A contextfree grammar is a notation for describing
More informationFront End. Hwansoo Han
Front nd Hwansoo Han Traditional Twopass Compiler Source code Front nd IR Back nd Machine code rrors High level functions Recognize legal program, generate correct code (OS & linker can accept) Manage
More informationAdministrativia. PA2 assigned today. WA1 assigned today. Building a Parser II. CS164 3:305:00 TT 10 Evans. First midterm. Grammars.
Administrativia Building a Parser II CS164 3:305:00 TT 10 Evans PA2 assigned today due in 12 days WA1 assigned today due in a week it s a practice for the exam First midterm Oct 5 will contain some projectinspired
More informationCompiler Construction: Parsing
Compiler Construction: Parsing Mandar Mitra Indian Statistical Institute M. Mitra (ISI) Parsing 1 / 33 Contextfree grammars. Reference: Section 4.2 Formal way of specifying rules about the structure/syntax
More informationSometimes an ambiguous grammar can be rewritten to eliminate the ambiguity.
Eliminating Ambiguity Sometimes an ambiguous grammar can be rewritten to eliminate the ambiguity. Example: consider the following grammar stat if expr then stat if expr then stat else stat other One can
More informationIntroduction to Parsing Ambiguity and Syntax Errors
Introduction to Parsing Ambiguity and Syntax rrors Outline Regular languages revisited Parser overview Contextfree grammars (CFG s) Derivations Ambiguity Syntax errors Compiler Design 1 (2011) 2 Languages
More informationSYNTAX ANALYSIS 1. Define parser. Hierarchical analysis is one in which the tokens are grouped hierarchically into nested collections with collective meaning. Also termed as Parsing. 2. Mention the basic
More informationMA513: Formal Languages and Automata Theory Topic: Contextfree Grammars (CFG) Lecture Number 18 Date: September 12, 2011
MA53: Formal Languages and Automata Theory Topic: Contextfree Grammars (CFG) Lecture Number 8 Date: September 2, 20 xercise: Define a contextfree grammar that represents (a simplification of) expressions
More informationSyntax Analysis Part I
Syntax Analysis Part I Chapter 4: ContextFree Grammars Slides adapted from : Robert van Engelen, Florida State University Position of a Parser in the Compiler Model Source Program Lexical Analyzer Token,
More informationIntroduction to Parsing Ambiguity and Syntax Errors
Introduction to Parsing Ambiguity and Syntax rrors Outline Regular languages revisited Parser overview Contextfree grammars (CFG s) Derivations Ambiguity Syntax errors 2 Languages and Automata Formal
More informationChapter 4. Lexical and Syntax Analysis
Chapter 4 Lexical and Syntax Analysis Chapter 4 Topics Introduction Lexical Analysis The Parsing Problem RecursiveDescent Parsing BottomUp Parsing Copyright 2012 AddisonWesley. All rights reserved.
More informationWhere We Are. CMSC 330: Organization of Programming Languages. This Lecture. Programming Languages. Motivation for Grammars
CMSC 330: Organization of Programming Languages Context Free Grammars Where We Are Programming languages Ruby OCaml Implementing programming languages Scanner Uses regular expressions Finite automata Parser
More informationAmbiguity. Lecture 8. CS 536 Spring
Ambiguity Lecture 8 CS 536 Spring 2001 1 Announcement Reading Assignment ContextFree Grammars (Sections 4.1, 4.2) Programming Assignment 2 due Friday! Homework 1 due in a week (Wed Feb 21) not Feb 25!
More informationTopDown Parsing and Intro to BottomUp Parsing. Lecture 7
TopDown Parsing and Intro to BottomUp Parsing Lecture 7 1 Predictive Parsers Like recursivedescent but parser can predict which production to use Predictive parsers are never wrong Always able to guess
More informationParsing: Derivations, Ambiguity, Precedence, Associativity. Lecture 8. Professor Alex Aiken Lecture #5 (Modified by Professor Vijay Ganesh)
Parsing: Derivations, Ambiguity, Precedence, Associativity Lecture 8 (Modified by Professor Vijay Ganesh) 1 Topics covered so far Regular languages and Finite automaton Parser overview Contextfree grammars
More informationChapter 4: LR Parsing
Chapter 4: LR Parsing 110 Some definitions Recall For a grammar G, with start symbol S, any string α such that S called a sentential form α is If α Vt, then α is called a sentence in L G Otherwise it is
More information4. Lexical and Syntax Analysis
4. Lexical and Syntax Analysis 4.1 Introduction Language implementation systems must analyze source code, regardless of the specific implementation approach Nearly all syntax analysis is based on a formal
More informationCOP4020 Programming Languages. Syntax Prof. Robert van Engelen
COP4020 Programming Languages Syntax Prof. Robert van Engelen Overview Tokens and regular expressions Syntax and contextfree grammars Grammar derivations More about parse trees Topdown and bottomup
More informationIntroduction to Syntax Analysis. The Second Phase of FrontEnd
Compiler Design IIIT Kalyani, WB 1 Introduction to Syntax Analysis The Second Phase of FrontEnd Compiler Design IIIT Kalyani, WB 2 Syntax Analysis The syntactic or the structural correctness of a program
More informationConcepts Introduced in Chapter 4
Concepts Introduced in Chapter 4 Grammars ContextFree Grammars Derivations and Parse Trees Ambiguity, Precedence, and Associativity Top Down Parsing Recursive Descent, LL Bottom Up Parsing SLR, LR, LALR
More informationS Y N T A X A N A L Y S I S LR
LR parsing There are three commonly used algorithms to build tables for an LR parser: 1. SLR(1) = LR(0) plus use of FOLLOW set to select between actions smallest class of grammars smallest tables (number
More informationParsing #1. Leonidas Fegaras. CSE 5317/4305 L3: Parsing #1 1
Parsing #1 Leonidas Fegaras CSE 5317/4305 L3: Parsing #1 1 Parser source file get next character scanner get token parser AST token A parser recognizes sequences of tokens according to some grammar and
More informationTop down vs. bottom up parsing
Parsing A grammar describes the strings that are syntactically legal A recogniser simply accepts or rejects strings A generator produces sentences in the language described by the grammar A parser constructs
More informationSection A. A grammar that produces more than one parse tree for some sentences is said to be ambiguous.
Section A 1. What do you meant by parser and its types? A parser for grammar G is a program that takes as input a string w and produces as output either a parse tree for w, if w is a sentence of G, or
More informationGrammars and ambiguity. CS164 3:305:00 TT 10 Evans. Prof. Bodik CS 164 Lecture 8 1
Grammars and ambiguity CS164 3:305:00 TT 10 vans 1 Overview derivations and parse trees different derivations produce may produce same parse tree ambiguous grammars what they are and how to fix them 2
More information4. Lexical and Syntax Analysis
4. Lexical and Syntax Analysis 4.1 Introduction Language implementation systems must analyze source code, regardless of the specific implementation approach Nearly all syntax analysis is based on a formal
More informationCMSC 330: Organization of Programming Languages
CMSC 330: Organization of Programming Languages Context Free Grammars and Parsing 1 Recall: Architecture of Compilers, Interpreters Source Parser Static Analyzer Intermediate Representation Front End Back
More informationCS2210: Compiler Construction Syntax Analysis Syntax Analysis
Comparison with Lexical Analysis The second phase of compilation Phase Input Output Lexer string of characters string of tokens Parser string of tokens Parse tree/ast What Parse Tree? CS2210: Compiler
More informationMore on Syntax. Agenda for the Day. Administrative Stuff. More on Syntax InClass Exercise Using parse trees
More on Syntax Judy Stafford Comp 80 Meeting February, 00 Agenda for the Day Administrative Stuff Moodle Classlist at without waiting list More on Syntax InClass Exercise Using parse trees Last time Syntax
More informationCompiler Construction 2016/2017 Syntax Analysis
Compiler Construction 2016/2017 Syntax Analysis Peter Thiemann November 2, 2016 Outline 1 Syntax Analysis Recursive topdown parsing Nonrecursive topdown parsing Bottomup parsing Syntax Analysis tokens
More informationCMSC 330: Organization of Programming Languages. ContextFree Grammars Ambiguity
CMSC 330: Organization of Programming Languages ContextFree Grammars Ambiguity Review Why should we study CFGs? What are the four parts of a CFG? How do we tell if a string is accepted by a CFG? What
More informationBottomup parsing. BottomUp Parsing. Recall. Goal: For a grammar G, withstartsymbols, any string α such that S α is called a sentential form
Bottomup parsing Bottomup parsing Recall Goal: For a grammar G, withstartsymbols, any string α such that S α is called a sentential form If α V t,thenα is called a sentence in L(G) Otherwise it is just
More informationChapter 3. Parsing #1
Chapter 3 Parsing #1 Parser source file get next character scanner get token parser AST token A parser recognizes sequences of tokens according to some grammar and generates Abstract Syntax Trees (ASTs)
More informationDerivations vs Parses. Example. Parse Tree. Ambiguity. Different Parse Trees. Context Free Grammars 9/18/2012
Derivations vs Parses Grammar is used to derive string or construct parser Context ree Grammars A derivation is a sequence of applications of rules Starting from the start symbol S......... (sentence)
More informationIntroduction to Syntax Analysis
Compiler Design 1 Introduction to Syntax Analysis Compiler Design 2 Syntax Analysis The syntactic or the structural correctness of a program is checked during the syntax analysis phase of compilation.
More informationSyntax Analysis. Amitabha Sanyal. (www.cse.iitb.ac.in/ as) Department of Computer Science and Engineering, Indian Institute of Technology, Bombay
Syntax Analysis (www.cse.iitb.ac.in/ as) Department of Computer Science and Engineering, Indian Institute of Technology, Bombay September 2007 College of Engineering, Pune Syntax Analysis: 2/124 Syntax
More informationCMSC 330: Organization of Programming Languages. Architecture of Compilers, Interpreters
: Organization of Programming Languages Context Free Grammars 1 Architecture of Compilers, Interpreters Source Scanner Parser Static Analyzer Intermediate Representation Front End Back End Compiler / Interpreter
More informationParsing. source code. while (k<=n) {sum = sum+k; k=k+1;}
Compiler Construction Grammars Parsing source code scanner tokens regular expressions lexical analysis Lennart Andersson parser context free grammar Revision 2012 01 23 2012 parse tree AST builder (implicit)
More informationParser Generation. BottomUp Parsing. Constructing LR Parser. LR Parsing. Construct parse tree bottomup  from leaves to the root
Parser Generation Main Problem: given a grammar G, how to build a topdown parser or a bottomup parser for it? parser : a program that, given a sentence, reconstructs a derivation for that sentence 
More informationLexical and Syntax Analysis. TopDown Parsing
Lexical and Syntax Analysis TopDown Parsing Easy for humans to write and understand String of characters Lexemes identified String of tokens Easy for programs to transform Data structure Syntax A syntax
More informationAnnouncements. Written Assignment 1 out, due Friday, July 6th at 5PM.
Syntax Analysis Announcements Written Assignment 1 out, due Friday, July 6th at 5PM. xplore the theoretical aspects of scanning. See the limits of maximalmunch scanning. Class mailing list: There is an
More informationCSE 3302 Programming Languages Lecture 2: Syntax
CSE 3302 Programming Languages Lecture 2: Syntax (based on slides by Chengkai Li) Leonidas Fegaras University of Texas at Arlington CSE 3302 L2 Spring 2011 1 How do we define a PL? Specifying a PL: Syntax:
More informationSyntax Analysis. Martin Sulzmann. Martin Sulzmann Syntax Analysis 1 / 38
Syntax Analysis Martin Sulzmann Martin Sulzmann Syntax Analysis 1 / 38 Syntax Analysis Objective Recognize individual tokens as sentences of a language (beyond regular languages). Example 1 (OK) Program
More informationPlan for Today. Regular Expressions: repetition and choice. Syntax and Semantics. Context Free Grammars
Plan for Today Context Free s models for specifying programming languages syntax semantics example grammars derivations Parse trees yntaxdirected translation Used syntaxdirected translation to interpret
More information3. Syntax Analysis. Andrea Polini. Formal Languages and Compilers Master in Computer Science University of Camerino
3. Syntax Analysis Andrea Polini Formal Languages and Compilers Master in Computer Science University of Camerino (Formal Languages and Compilers) 3. Syntax Analysis CS@UNICAM 1 / 54 Syntax Analysis: the
More informationCompilers. Bottomup Parsing. (original slides by Sam
Compilers Bottomup Parsing Yannis Smaragdakis U Athens Yannis Smaragdakis, U. Athens (original slides by Sam Guyer@Tufts) BottomUp Parsing More general than topdown parsing And just as efficient Builds
More informationBuilding a Parser II. CS164 3:305:00 TT 10 Evans. Prof. Bodik CS 164 Lecture 6 1
Building a Parser II CS164 3:305:00 TT 10 Evans 1 Grammars Programming language constructs have recursive structure. which is why our handwritten parser had this structure, too An expression is either:
More informationParsing Wrapup. Roadmap (Where are we?) Last lecture Shiftreduce parser LR(1) parsing. This lecture LR(1) parsing
Parsing Wrapup Roadmap (Where are we?) Last lecture Shiftreduce parser LR(1) parsing LR(1) items Computing closure Computing goto LR(1) canonical collection This lecture LR(1) parsing Building ACTION
More informationPART 3  SYNTAX ANALYSIS. F. Wotawa TU Graz) Compiler Construction Summer term / 309
PART 3  SYNTAX ANALYSIS F. Wotawa (IST @ TU Graz) Compiler Construction Summer term 2016 64 / 309 Goals Definition of the syntax of a programming language using context free grammars Methods for parsing
More informationBottomUp Parsing. Lecture 1112
BottomUp Parsing Lecture 1112 (From slides by G. Necula & R. Bodik) 2/20/08 Prof. Hilfinger CS164 Lecture 11 1 Administrivia Test I during class on 10 March. 2/20/08 Prof. Hilfinger CS164 Lecture 11
More informationLL(1) predictive parsing
LL(1) predictive parsing Informatics 2A: Lecture 11 John Longley School of Informatics University of Edinburgh jrl@staffmail.ed.ac.uk 13 October, 2011 1 / 12 1 LL(1) grammars and parse tables 2 3 2 / 12
More information