Pythagorean - Hodograph Curves: Algebra and Geometry Inseparable

Size: px
Start display at page:

Download "Pythagorean - Hodograph Curves: Algebra and Geometry Inseparable"

Transcription

1 Rida T. Farouki Pythagorean - Hodograph Curves: Algebra and Geometry Inseparable With 204 Figures and 15 Tables 4y Springer

2 Contents 1 Introduction The Lure of Analytic Geometry Symbiosis of Algebra and Geometry Computer-aided Geometric Design Pythagorean-hodograph Curves Algorithms and Applications 7 Part I Algebra 2 Preamble A Historical Enigma Theorem of Pythagoras Al-Jabr wa'1-muqabala Fields, Rings, and Groups 25 3 Polynomials Basic Properties Polynomial Bases Roots of Polynomials Resultants and Discriminants Rational Functions 41 4 Complex Numbers Caspar Wessel Elementary Properties Functions of Complex Variables Differentiation and Integration Geometry of Conformal Maps Harmonic Functions 56

3 VIII Contents 4.7 Conformal Transplants Some Simple Mappings 58 5 Quaternions Multi-dimensional Numbers No Three-dimensional Numbers Sums and Products of Quaternions Quaternions and Spatial Rotations Rotations as Products of Reflections Families of Spatial Rotations Four-dimensional Rotations 74 6 Clifford Algebra Clifford Algebra Bases Algebra of Multivectors The Geometric Product Reflections and Rotations 85 Part II Geometry 7 Coordinate Systems Cartesian Coordinates Barycentric Coordinates Barycentric Coordinates on Intervals Barycentric Coordinates on Triangles Transformation of the Domain Barycentric Points and Vectors Directional Derivatives Polynomial Bases Over Triangles Un-normalized Barycentric Coordinates Three or More Dimensions Curvilinear Coordinates One-to-one Correspondence Distance and Angle Measurements Jacobian of the Transformation Example: Plane Polar Coordinates Three or More Dimensions Ill 7.4 Homogeneous Coordinates The Projective Plane Circular Points and Isotropic Lines The Principle of Duality Projective Transformations Invariance of the Cross Ratio Geometrical Figures and their Shadows Projective Geometry of Three Dimensions 127

4 Contents IX Differential Geometry Intrinsic Geometry of Plane Curves Tangent and Curvature The Circle of Curvature Vertices of Plane Curves The Intrinsic Equation Families of Plane Curves Envelopes of Curve Families Families of Implicit Curves Families of Parametric Curves Families of Lines and Circles Evolutes, Involutes, Parallel Curves Tangent Line and Osculating Circle Evolutes and Involutes The Horologium Oscillatorium Families of Parallel (Offset) Curves Trimming the Untrimmed Offset Intrinsic Geometry of Space Curves Curvature and Torsion The Frenet Frame Inflections of Space Curves Intrinsic Equations Intrinsic Geometry of Surfaces First Fundamental Form Second Fundamental Form Curves Lying on a Surface Normal Curvature of a Surface Principal Curvatures and Directions Local Surface Shape Gauss Map of a Surface Lines of Curvature Geodesies on a Surface 193 Algebraic Geometry Parametric and Implicit Forms Plane Algebraic Curves Singular Points Intersections with a Straight Line Double Points of Algebraic Curves Higher-order Singular Points Genus of an Algebraic Curve Resolution of Singularities Birational Transformations.' Pliicker Relations 212

5 X Contents Bezout's Theorem Implicitization and Parameterization Algebraic Surfaces Singular Points and Curves Rationality of Algebraic Surfaces Algebraic Space Curves Composite Surface Intersections Plane Projections of a Space Curve Genus of an Algebraic Space Curve Singularities of Space Curves Non-Euclidean Geometry The Metric Tensor Contravariant and Covariant Vectors Methods of Tensor Algebra The Geodesic Equations Differentiation of Tensors Parallel Transport of Vectors 243 Part III Computer Aided Geometric Design 11 The Bernstein Basis Theorem of Weierstrass Bernstein-form Properties The Control Polygon Transformation of Domain Degree Operations de Casteljau Algorithm Arithmetic Operations Computing Roots on (0,1) Numerical Condition Numerical Stability License to Compute Characterization of Errors Floating-point Computations Floating-point Numbers Floating-point Arithmetic Dangers of Digit Cancellation Models for Error Propagation Stability and Condition Numbers Condition of a Polynomial Value Condition of a Polynomial Root Wilkinson's Polynomial 277

6 Contents Vector and Matrix Norms Condition of a Linear Map Basis Transformations Subdivision Processes Ill-posed Problems Backward Error Analysis Equivalent Input Errors Example: Horner's Method Bezier Curves and Surfaces Convex-hull Confinement Variation-diminishing Property Degree Elevation de Casteljau Algorithm Bezier Curve Hodographs Rational Bezier Curves Conies as Bezier Curves Tensor-product Surface Patches Triangular Surface Patches C 2 Cubic Spline Curves Mechanical Splines Elastic Bending Energy Polynomial Interpolation The Lagrange Basis Convergence Behavior C 2 Cubic Spline Functions Cubic Hermite Form C 2 Continuity Equations Choice of End Conditions Solution of Tridiagonal Systems Minimum Energy Property Spline Approximation Convergence C 2 Cubic Spline Curves Choice of Knot Sequence Parametric or Geometric Continuity Geometric Hermite Interpolation Elastica or "Non-linear" Splines Spline Basis Functions Bases for Spline Functions ; The Cardinal Basis Construction of Cardinal Basis Bivariate Spline Functions Tensor-product Spline Surfaces 351 XI

7 XII Contents 15.3 The B-spline Basis The Knot Vector Cox-de Boor Algorithm Tensor-product B-spline Surfaces Rational B-spline Curves and Surfaces Bezier and B-spline Forms Compared Spline Basis Conversion Cardinal to B-spline Form Basis Conversion Matrix 365 Part IV Planar Pythagorean hodograph Curves 16 Arc-length Parameterization In Search of an Elusive Ideal The Rectification of Curves Polynomial Parametric Speed Algebraically-rectifiable Curves :5 Unit Speed Approximations Pythagorean hodograph Curves Planar Pythagorean Hodographs Bezier Control Points of PH Curves Parametric Speed and Arc Length Differential and Integral Properties Rational Offsets of PH Curves Tschirnhausen's Cubic Ehrenfried Walther von Tschirnhaus Tschirnhaus and Caustic Curves Unique Pythagorean-hodograph Cubic You Mean we Pay you to do ThatW Complex Representation Complex Curves and Hodographs One-to-one Correspondence Rotation Invariance of Hodographs Pythagorean-hodograph Cubics Revisited Characterization of the PH Quintics Geometry of the Control Polygon Intrinsic Features of Corresponding Curves 422

8 Contents XIII 20 Rational Pythagorean-hodograph Curves Construction of Rational PH Curves Dual Bezier Curve Representation Relation to Polynomial PH Curves Rational Arc Length Functions Geometrical Optics Interpretation Laguerre Geometry Formulation Improper Rational Parameterizations Rational Surfaces with Rational Offsets Minkowski Isoperimetric-hodograph Curves 451 Part V Spatial Pythagorean hodograph Curves 21 Pythagorean Hodographs in R Geometry of Spatial PH Cubics Spatial Pythagorean Hodographs Bezier Control Polygons Differential Properties Quaternion Representation Pythagorean Condition in K Degeneration of Spatial PH Curves Rotation Invariance of Hodographs Reflection Form of Hodographs One-to-one Correspondence? Helical Polynomial Curves Helical Curves and PH Curves? Morphology of Helical PH Quintics Monotone-helical PH Quintics General Helical PH Quintics Sufficient and Necessary Conditions Minkowski Pythagorean Hodographs The Minkowski Metric Medial Axis Transform Minkowski PH Curves in K Clifford Algebra Representation MAT Approximation by MPH Curves Generalization to the Space M 3 ' 1 519

9 XIV Contents Part VI Algorithms 25 Planar Hermite Interpolants Hermite Interpolation Problem Solution in Complex Representation The Absolute Rotation Index Comparison with "Ordinary" Cubics Higher-order Hermite Interpolants Monotone Curvature Segments Elastic Bending Energy Complex Form of the Integrand Energy of Tschirnhaus Segments Bending Energy of PH Quintics The "Gracefulness" of PH Quintics Minimal-energy Hermite Interpolants Planar C 2 PH Quintic Splines Construction of PH Splines C 2 PH Quintic Spline Equations End Conditions for PH Splines Number of Distinct Interpolants Solution by Homotopy Method Choice of Initial System Predictor-corrector Procedure Empirical Results and Examples Solution by Iterative Methods Choice of Starting Approximation Functional Iteration and Relaxation Newton-Raphson Method Computed Examples Generalizations of PH Splines Non-uniform Knot Sequences Shape-preserving PH Splines Control Polygons for PH Splines Equivalent Interpolation Problem Inclusion of Multiple Knots Emulating B-spline Curve Properties Illustrative Examples Spatial Hermite Interpolants G l Interpolation by Cubics C 1 Hermite Interpolation Problem Rotation Invariance of Interpolants Residual Degrees of Freedom. : 600

10 Contents 28.5 Integral Measures of Shape Clifford Algebra Formulation Helical PH Quintic Interpolants Higher-order Hermite Interpolants Spatial C 2 PH Quintic Splines 613 XV Part VII Applications 29 Real-time CNC Interpolators Digital Motion Control Taylor Series Interpolators PH Curve Interpolators Constant Feedrate Curvature-dependent Feedrate Offset Curve Interpolator Feedrate in Terms of Arc Length Linear Dependence on Arc Length Quadratic Dependence on Arc Length Time-dependent Feedrate Polynomial Time Dependence Acceleration/Deceleration Profiles Traversing a Single PH Curve Experimental Results Constant Material Removal Rate Form of Feedrate Function Interpolator Algorithm Experimental Results Contour Machining of Surfaces Tool Path Generation Optimal Contour Orientations Rotation minimizing Frames Introduction and Motivation Adapted Frames on Space Curves Euler-Rodrigues Frame for PH Curves Rotation-minimizing Frames Energy of Framed Space Curves Exact RMFs on PH Curves Integration of Rational Functions Frames for PH Cubics and Quintics Rational RMF Approximations Rational Hermite Interpolation Computed Examples Parameterization of Canal Surfaces 689

11 XVI Contents 31 Closure 693 References 697 Index 719

COMPUTER AIDED GEOMETRIC DESIGN. Thomas W. Sederberg

COMPUTER AIDED GEOMETRIC DESIGN. Thomas W. Sederberg COMPUTER AIDED GEOMETRIC DESIGN Thomas W. Sederberg January 31, 2011 ii T. W. Sederberg iii Preface This semester is the 24 th time I have taught a course at Brigham Young University titled, Computer Aided

More information

Curves and Surfaces for Computer-Aided Geometric Design

Curves and Surfaces for Computer-Aided Geometric Design Curves and Surfaces for Computer-Aided Geometric Design A Practical Guide Fourth Edition Gerald Farin Department of Computer Science Arizona State University Tempe, Arizona /ACADEMIC PRESS I San Diego

More information

Introduction p. 1 What Is Geometric Modeling? p. 1 Computer-aided geometric design Solid modeling Algebraic geometry Computational geometry

Introduction p. 1 What Is Geometric Modeling? p. 1 Computer-aided geometric design Solid modeling Algebraic geometry Computational geometry Introduction p. 1 What Is Geometric Modeling? p. 1 Computer-aided geometric design Solid modeling Algebraic geometry Computational geometry Representation Ab initio design Rendering Solid modelers Kinematic

More information

rational arc-length parameterization is impossible

rational arc-length parameterization is impossible rational arc-length parameterization is impossible Theorem. It is impossible to parameterize any plane curve, other than a straight line, by rational functions of its arc length. rational parameterization

More information

Design considerations

Design considerations Curves Design considerations local control of shape design each segment independently smoothness and continuity ability to evaluate derivatives stability small change in input leads to small change in

More information

Introduction to Pythagorean-hodograph curves

Introduction to Pythagorean-hodograph curves Introduction to Pythagorean-hodograph curves Rida T. Farouki Department of Mechanical & Aeronautical Engineering, University of California, Davis synopsis impossibility of rational arc-length parameterizations

More information

CS130 : Computer Graphics Curves (cont.) Tamar Shinar Computer Science & Engineering UC Riverside

CS130 : Computer Graphics Curves (cont.) Tamar Shinar Computer Science & Engineering UC Riverside CS130 : Computer Graphics Curves (cont.) Tamar Shinar Computer Science & Engineering UC Riverside Blending Functions Blending functions are more convenient basis than monomial basis canonical form (monomial

More information

Mathematical Tools in Computer Graphics with C# Implementations Table of Contents

Mathematical Tools in Computer Graphics with C# Implementations Table of Contents Mathematical Tools in Computer Graphics with C# Implementations by Hardy Alexandre, Willi-Hans Steeb, World Scientific Publishing Company, Incorporated, 2008 Table of Contents List of Figures Notation

More information

GEOMETRIC TOOLS FOR COMPUTER GRAPHICS

GEOMETRIC TOOLS FOR COMPUTER GRAPHICS GEOMETRIC TOOLS FOR COMPUTER GRAPHICS PHILIP J. SCHNEIDER DAVID H. EBERLY MORGAN KAUFMANN PUBLISHERS A N I M P R I N T O F E L S E V I E R S C I E N C E A M S T E R D A M B O S T O N L O N D O N N E W

More information

Curriculum Vitae of the Authors

Curriculum Vitae of the Authors Curriculum Vitae of the Authors Mario Hirz has been awarded an M.S. degree in mechanical engineering and economics, a Ph.D. in mechanical engineering, and a venia docendi in the area of virtual product

More information

Computer Graphics Curves and Surfaces. Matthias Teschner

Computer Graphics Curves and Surfaces. Matthias Teschner Computer Graphics Curves and Surfaces Matthias Teschner Outline Introduction Polynomial curves Bézier curves Matrix notation Curve subdivision Differential curve properties Piecewise polynomial curves

More information

Curve and Surface Basics

Curve and Surface Basics Curve and Surface Basics Implicit and parametric forms Power basis form Bezier curves Rational Bezier Curves Tensor Product Surfaces ME525x NURBS Curve and Surface Modeling Page 1 Implicit and Parametric

More information

08 - Designing Approximating Curves

08 - Designing Approximating Curves 08 - Designing Approximating Curves Acknowledgement: Olga Sorkine-Hornung, Alexander Sorkine-Hornung, Ilya Baran Last time Interpolating curves Monomials Lagrange Hermite Different control types Polynomials

More information

Central issues in modelling

Central issues in modelling Central issues in modelling Construct families of curves, surfaces and volumes that can represent common objects usefully; are easy to interact with; interaction includes: manual modelling; fitting to

More information

PS Geometric Modeling Homework Assignment Sheet I (Due 20-Oct-2017)

PS Geometric Modeling Homework Assignment Sheet I (Due 20-Oct-2017) Homework Assignment Sheet I (Due 20-Oct-2017) Assignment 1 Let n N and A be a finite set of cardinality n = A. By definition, a permutation of A is a bijective function from A to A. Prove that there exist

More information

ALGORITHMS FOR SPATIAL PYTHAGOREAN-HODOGRAPH CURVES

ALGORITHMS FOR SPATIAL PYTHAGOREAN-HODOGRAPH CURVES ALGORITHS FOR SPATIAL PYTHAGOREAN-HODOGRAPH CURVES Rida T Farouki and Chang Yong Han Department of echanical and Aeronautical Engineering, University of California, Davis, CA 95616, USA farouki@ucdavisedu,

More information

Know it. Control points. B Spline surfaces. Implicit surfaces

Know it. Control points. B Spline surfaces. Implicit surfaces Know it 15 B Spline Cur 14 13 12 11 Parametric curves Catmull clark subdivision Parametric surfaces Interpolating curves 10 9 8 7 6 5 4 3 2 Control points B Spline surfaces Implicit surfaces Bezier surfaces

More information

Handbook of Computer Aided Geometrie Design

Handbook of Computer Aided Geometrie Design Handbook of Computer Aided Geometrie Design Edited by Gerald Farin Josef Hoschek t Myung-Soo Kim 2002 ELSEVIER Amsterdam-Boston-London-New York-Oxford-Paris- San Diego-San Francisco-Singapore-Sydney-Tokyo

More information

MATLAB. Advanced Mathematics and Mechanics Applications Using. Third Edition. David Halpern University of Alabama CHAPMAN & HALL/CRC

MATLAB. Advanced Mathematics and Mechanics Applications Using. Third Edition. David Halpern University of Alabama CHAPMAN & HALL/CRC Advanced Mathematics and Mechanics Applications Using MATLAB Third Edition Howard B. Wilson University of Alabama Louis H. Turcotte Rose-Hulman Institute of Technology David Halpern University of Alabama

More information

Computer Aided Geometric Design

Computer Aided Geometric Design Brigham Young University BYU ScholarsArchive All Faculty Publications 2012-01-10 Computer Aided Geometric Design Thomas W. Sederberg tom@cs.byu.edu Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

More information

Shape Modeling and Geometry Processing

Shape Modeling and Geometry Processing 252-0538-00L, Spring 2018 Shape Modeling and Geometry Processing Discrete Differential Geometry Differential Geometry Motivation Formalize geometric properties of shapes Roi Poranne # 2 Differential Geometry

More information

Geometric Algebra for Computer Graphics

Geometric Algebra for Computer Graphics John Vince Geometric Algebra for Computer Graphics 4u Springer Contents Preface vii 1 Introduction 1 1.1 Aims and objectives of this book 1 1.2 Mathematics for CGI software 1 1.3 The book's structure 2

More information

Freeform Curves on Spheres of Arbitrary Dimension

Freeform Curves on Spheres of Arbitrary Dimension Freeform Curves on Spheres of Arbitrary Dimension Scott Schaefer and Ron Goldman Rice University 6100 Main St. Houston, TX 77005 sschaefe@rice.edu and rng@rice.edu Abstract Recursive evaluation procedures

More information

Envelopes Computational Theory and Applications

Envelopes Computational Theory and Applications Envelopes Computational Theory and Applications Category: survey Abstract for points, whose tangent plane maps to a line under the projection. These points form the so-called Based on classical geometric

More information

Motivation. Parametric Curves (later Surfaces) Outline. Tangents, Normals, Binormals. Arclength. Advanced Computer Graphics (Fall 2010)

Motivation. Parametric Curves (later Surfaces) Outline. Tangents, Normals, Binormals. Arclength. Advanced Computer Graphics (Fall 2010) Advanced Computer Graphics (Fall 2010) CS 283, Lecture 19: Basic Geometric Concepts and Rotations Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs283/fa10 Motivation Moving from rendering to simulation,

More information

Complex Numbers from A to... Z

Complex Numbers from A to... Z Titu Andreescu Dorin Andrica Complex Numbers from A to... Z Birkhauser Boston Basel Berlin Contents Preface Notation ix xiii 1 Complex Numbers in Algebraic Form 1 1.1 Algebraic Representation of Complex

More information

(Discrete) Differential Geometry

(Discrete) Differential Geometry (Discrete) Differential Geometry Motivation Understand the structure of the surface Properties: smoothness, curviness, important directions How to modify the surface to change these properties What properties

More information

GEOMETRY OF CURVES CHAPMAN & HALL/CRC. Boca Raton London New York Washington, D.C.

GEOMETRY OF CURVES CHAPMAN & HALL/CRC. Boca Raton London New York Washington, D.C. GEOMETRY OF CURVES JOHN W. RUTTER CHAPMAN & HALL/CRC Boca Raton London New York Washington, D.C. Contents Introduction 0.1 Cartesian coordinates 0.2 Polar coordinates 0.3 The Argand diagram 0.4 Polar equations

More information

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013 3D Modeling Parametric Curves & Surfaces Shandong University Spring 2013 3D Object Representations Raw data Point cloud Range image Polygon soup Surfaces Mesh Subdivision Parametric Implicit Solids Voxels

More information

Curve and Surface Fitting with Splines. PAUL DIERCKX Professor, Computer Science Department, Katholieke Universiteit Leuven, Belgium

Curve and Surface Fitting with Splines. PAUL DIERCKX Professor, Computer Science Department, Katholieke Universiteit Leuven, Belgium Curve and Surface Fitting with Splines PAUL DIERCKX Professor, Computer Science Department, Katholieke Universiteit Leuven, Belgium CLARENDON PRESS OXFORD 1995 - Preface List of Figures List of Tables

More information

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited.

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited. page v Preface xiii I Basics 1 1 Optimization Models 3 1.1 Introduction... 3 1.2 Optimization: An Informal Introduction... 4 1.3 Linear Equations... 7 1.4 Linear Optimization... 10 Exercises... 12 1.5

More information

CS3621 Midterm Solution (Fall 2005) 150 points

CS3621 Midterm Solution (Fall 2005) 150 points CS362 Midterm Solution Fall 25. Geometric Transformation CS362 Midterm Solution (Fall 25) 5 points (a) [5 points] Find the 2D transformation matrix for the reflection about the y-axis transformation (i.e.,

More information

Rational Bezier Curves

Rational Bezier Curves Rational Bezier Curves Use of homogeneous coordinates Rational spline curve: define a curve in one higher dimension space, project it down on the homogenizing variable Mathematical formulation: n P(u)

More information

Curves and Fractal Dimension

Curves and Fractal Dimension Claude Tricot Curves and Fractal Dimension With a Foreword by Michel Mendes France With 163 Illustrations Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona Budapest Contents

More information

Les Piegl Wayne Tiller. The NURBS Book. Second Edition with 334 Figures in 578 Parts. A) Springer

Les Piegl Wayne Tiller. The NURBS Book. Second Edition with 334 Figures in 578 Parts. A) Springer Les Piegl Wayne Tiller The NURBS Book Second Edition with 334 Figures in 578 Parts A) Springer CONTENTS Curve and Surface Basics 1.1 Implicit and Parametric Forms 1 1.2 Power Basis Form of a Curve 5 1.3

More information

Fall CSCI 420: Computer Graphics. 4.2 Splines. Hao Li.

Fall CSCI 420: Computer Graphics. 4.2 Splines. Hao Li. Fall 2014 CSCI 420: Computer Graphics 4.2 Splines Hao Li http://cs420.hao-li.com 1 Roller coaster Next programming assignment involves creating a 3D roller coaster animation We must model the 3D curve

More information

ECE 600, Dr. Farag, Summer 09

ECE 600, Dr. Farag, Summer 09 ECE 6 Summer29 Course Supplements. Lecture 4 Curves and Surfaces Aly A. Farag University of Louisville Acknowledgements: Help with these slides were provided by Shireen Elhabian A smile is a curve that

More information

Information Coding / Computer Graphics, ISY, LiTH. Splines

Information Coding / Computer Graphics, ISY, LiTH. Splines 28(69) Splines Originally a drafting tool to create a smooth curve In computer graphics: a curve built from sections, each described by a 2nd or 3rd degree polynomial. Very common in non-real-time graphics,

More information

MA 323 Geometric Modelling Course Notes: Day 14 Properties of Bezier Curves

MA 323 Geometric Modelling Course Notes: Day 14 Properties of Bezier Curves MA 323 Geometric Modelling Course Notes: Day 14 Properties of Bezier Curves David L. Finn In this section, we discuss the geometric properties of Bezier curves. These properties are either implied directly

More information

Curves and Surfaces 1

Curves and Surfaces 1 Curves and Surfaces 1 Representation of Curves & Surfaces Polygon Meshes Parametric Cubic Curves Parametric Bi-Cubic Surfaces Quadric Surfaces Specialized Modeling Techniques 2 The Teapot 3 Representing

More information

Lecture IV Bézier Curves

Lecture IV Bézier Curves Lecture IV Bézier Curves Why Curves? Why Curves? Why Curves? Why Curves? Why Curves? Linear (flat) Curved Easier More pieces Looks ugly Complicated Fewer pieces Looks smooth What is a curve? Intuitively:

More information

Modern Differential Geometry ofcurves and Surfaces

Modern Differential Geometry ofcurves and Surfaces K ALFRED GRAY University of Maryland Modern Differential Geometry ofcurves and Surfaces /, CRC PRESS Boca Raton Ann Arbor London Tokyo CONTENTS 1. Curves in the Plane 1 1.1 Euclidean Spaces 2 1.2 Curves

More information

Math 225 Scientific Computing II Outline of Lectures

Math 225 Scientific Computing II Outline of Lectures Math 225 Scientific Computing II Outline of Lectures Spring Semester 2003 I. Interpolating polynomials Lagrange formulation of interpolating polynomial Uniqueness of interpolating polynomial of degree

More information

Parametric Curves. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Parametric Curves. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Parametric Curves University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Parametric Representations 3 basic representation strategies: Explicit: y = mx + b Implicit: ax + by + c

More information

Surfacing using Creo Parametric 3.0

Surfacing using Creo Parametric 3.0 Surfacing using Creo Parametric 3.0 Overview Course Code Course Length TRN-4506-T 3 Days In this course, you will learn how to use various techniques to create complex surfaces with tangent and curvature

More information

Parallel Robots. Mechanics and Control H AMID D. TAG HI RAD. CRC Press. Taylor & Francis Group. Taylor & Francis Croup, Boca Raton London NewYoric

Parallel Robots. Mechanics and Control H AMID D. TAG HI RAD. CRC Press. Taylor & Francis Group. Taylor & Francis Croup, Boca Raton London NewYoric Parallel Robots Mechanics and Control H AMID D TAG HI RAD CRC Press Taylor & Francis Group Boca Raton London NewYoric CRC Press Is an Imprint of the Taylor & Francis Croup, an informs business Contents

More information

Construction and smoothing of triangular Coons patches with geodesic boundary curves

Construction and smoothing of triangular Coons patches with geodesic boundary curves Construction and smoothing of triangular Coons patches with geodesic boundary curves R. T. Farouki, (b) N. Szafran, (a) L. Biard (a) (a) Laboratoire Jean Kuntzmann, Université Joseph Fourier Grenoble,

More information

Parametric curves. Brian Curless CSE 457 Spring 2016

Parametric curves. Brian Curless CSE 457 Spring 2016 Parametric curves Brian Curless CSE 457 Spring 2016 1 Reading Required: Angel 10.1-10.3, 10.5.2, 10.6-10.7, 10.9 Optional Bartels, Beatty, and Barsky. An Introduction to Splines for use in Computer Graphics

More information

3D Modeling Parametric Curves & Surfaces

3D Modeling Parametric Curves & Surfaces 3D Modeling Parametric Curves & Surfaces Shandong University Spring 2012 3D Object Representations Raw data Point cloud Range image Polygon soup Solids Voxels BSP tree CSG Sweep Surfaces Mesh Subdivision

More information

Index. 3D reconstruction, point algorithm, point algorithm, point algorithm, point algorithm, 263

Index. 3D reconstruction, point algorithm, point algorithm, point algorithm, point algorithm, 263 Index 3D reconstruction, 125 5+1-point algorithm, 284 5-point algorithm, 270 7-point algorithm, 265 8-point algorithm, 263 affine point, 45 affine transformation, 57 affine transformation group, 57 affine

More information

Index. 3D reconstruction, point algorithm, point algorithm, point algorithm, point algorithm, 253

Index. 3D reconstruction, point algorithm, point algorithm, point algorithm, point algorithm, 253 Index 3D reconstruction, 123 5+1-point algorithm, 274 5-point algorithm, 260 7-point algorithm, 255 8-point algorithm, 253 affine point, 43 affine transformation, 55 affine transformation group, 55 affine

More information

Parameterization. Michael S. Floater. November 10, 2011

Parameterization. Michael S. Floater. November 10, 2011 Parameterization Michael S. Floater November 10, 2011 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to generate from point

More information

Curves and Surfaces. Shireen Elhabian and Aly A. Farag University of Louisville

Curves and Surfaces. Shireen Elhabian and Aly A. Farag University of Louisville Curves and Surfaces Shireen Elhabian and Aly A. Farag University of Louisville February 21 A smile is a curve that sets everything straight Phyllis Diller (American comedienne and actress, born 1917) Outline

More information

Bezier Curves, B-Splines, NURBS

Bezier Curves, B-Splines, NURBS Bezier Curves, B-Splines, NURBS Example Application: Font Design and Display Curved objects are everywhere There is always need for: mathematical fidelity high precision artistic freedom and flexibility

More information

VISUALIZING QUATERNIONS

VISUALIZING QUATERNIONS THE MORGAN KAUFMANN SERIES IN INTERACTIVE 3D TECHNOLOGY VISUALIZING QUATERNIONS ANDREW J. HANSON «WW m.-:ki -. " ;. *' AMSTERDAM BOSTON HEIDELBERG ^ M Ä V l LONDON NEW YORK OXFORD

More information

Parametric Curves. University of Texas at Austin CS384G - Computer Graphics

Parametric Curves. University of Texas at Austin CS384G - Computer Graphics Parametric Curves University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Parametric Representations 3 basic representation strategies: Explicit: y = mx + b Implicit: ax + by + c

More information

Integrated Algebra 2 and Trigonometry. Quarter 1

Integrated Algebra 2 and Trigonometry. Quarter 1 Quarter 1 I: Functions: Composition I.1 (A.42) Composition of linear functions f(g(x)). f(x) + g(x). I.2 (A.42) Composition of linear and quadratic functions II: Functions: Quadratic II.1 Parabola The

More information

Digital Geometry Processing Parameterization I

Digital Geometry Processing Parameterization I Problem Definition Given a surface (mesh) S in R 3 and a domain find a bective F: S Typical Domains Cutting to a Disk disk = genus zero + boundary sphere = closed genus zero Creates artificial boundary

More information

Bezier Curves. An Introduction. Detlef Reimers

Bezier Curves. An Introduction. Detlef Reimers Bezier Curves An Introduction Detlef Reimers detlefreimers@gmx.de http://detlefreimers.de September 1, 2011 Chapter 1 Bezier Curve Basics 1.1 Linear Interpolation This section will give you a basic introduction

More information

TO DUY ANH SHIP CALCULATION

TO DUY ANH SHIP CALCULATION TO DUY ANH SHIP CALCULATION Ship Calculattion (1)-Space Cuvers 3D-curves play an important role in the engineering, design and manufature in Shipbuilding. Prior of the development of mathematical and computer

More information

Spline Functions on Triangulations

Spline Functions on Triangulations Spline Functions on Triangulations MING-JUN LAI AND LARRY L. SCHUMAKER CAMBRIDGE UNIVERSITY PRESS Contents Preface xi Chapter 1. Bivariate Polynomials 1.1. Introduction 1 1.2. Norms of Polynomials on Triangles

More information

Representing Curves Part II. Foley & Van Dam, Chapter 11

Representing Curves Part II. Foley & Van Dam, Chapter 11 Representing Curves Part II Foley & Van Dam, Chapter 11 Representing Curves Polynomial Splines Bezier Curves Cardinal Splines Uniform, non rational B-Splines Drawing Curves Applications of Bezier splines

More information

Multiple View Geometry in Computer Vision Second Edition

Multiple View Geometry in Computer Vision Second Edition Multiple View Geometry in Computer Vision Second Edition Richard Hartley Australian National University, Canberra, Australia Andrew Zisserman University of Oxford, UK CAMBRIDGE UNIVERSITY PRESS Contents

More information

SCIENTIFIC PUBLICATIONS

SCIENTIFIC PUBLICATIONS SCIENTIFIC PUBLICATIONS 62. C. Bracco, C. Giannelli and A. Sestini, Adaptive scattered data fitting by extension of local polynomials to hierarchical splines, accepted for publication in CAGD, 2017. 61.

More information

Interactive Graphics. Lecture 9: Introduction to Spline Curves. Interactive Graphics Lecture 9: Slide 1

Interactive Graphics. Lecture 9: Introduction to Spline Curves. Interactive Graphics Lecture 9: Slide 1 Interactive Graphics Lecture 9: Introduction to Spline Curves Interactive Graphics Lecture 9: Slide 1 Interactive Graphics Lecture 13: Slide 2 Splines The word spline comes from the ship building trade

More information

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a coordinate system and then the measuring of the point with

More information

Geometric Modeling of Curves

Geometric Modeling of Curves Curves Locus of a point moving with one degree of freedom Locus of a one-dimensional parameter family of point Mathematically defined using: Explicit equations Implicit equations Parametric equations (Hermite,

More information

Splines. Parameterization of a Curve. Curve Representations. Roller coaster. What Do We Need From Curves in Computer Graphics? Modeling Complex Shapes

Splines. Parameterization of a Curve. Curve Representations. Roller coaster. What Do We Need From Curves in Computer Graphics? Modeling Complex Shapes CSCI 420 Computer Graphics Lecture 8 Splines Jernej Barbic University of Southern California Hermite Splines Bezier Splines Catmull-Rom Splines Other Cubic Splines [Angel Ch 12.4-12.12] Roller coaster

More information

Curves. Computer Graphics CSE 167 Lecture 11

Curves. Computer Graphics CSE 167 Lecture 11 Curves Computer Graphics CSE 167 Lecture 11 CSE 167: Computer graphics Polynomial Curves Polynomial functions Bézier Curves Drawing Bézier curves Piecewise Bézier curves Based on slides courtesy of Jurgen

More information

EXPERIENCING GEOMETRY

EXPERIENCING GEOMETRY EXPERIENCING GEOMETRY EUCLIDEAN AND NON-EUCLIDEAN WITH HISTORY THIRD EDITION David W. Henderson Daina Taimina Cornell University, Ithaca, New York PEARSON Prentice Hall Upper Saddle River, New Jersey 07458

More information

2D Spline Curves. CS 4620 Lecture 13

2D Spline Curves. CS 4620 Lecture 13 2D Spline Curves CS 4620 Lecture 13 2008 Steve Marschner 1 Motivation: smoothness In many applications we need smooth shapes [Boeing] that is, without discontinuities So far we can make things with corners

More information

04 - Normal Estimation, Curves

04 - Normal Estimation, Curves 04 - Normal Estimation, Curves Acknowledgements: Olga Sorkine-Hornung Normal Estimation Implicit Surface Reconstruction Implicit function from point clouds Need consistently oriented normals < 0 0 > 0

More information

Until now we have worked with flat entities such as lines and flat polygons. Fit well with graphics hardware Mathematically simple

Until now we have worked with flat entities such as lines and flat polygons. Fit well with graphics hardware Mathematically simple Curves and surfaces Escaping Flatland Until now we have worked with flat entities such as lines and flat polygons Fit well with graphics hardware Mathematically simple But the world is not composed of

More information

Spline Curves. Spline Curves. Prof. Dr. Hans Hagen Algorithmic Geometry WS 2013/2014 1

Spline Curves. Spline Curves. Prof. Dr. Hans Hagen Algorithmic Geometry WS 2013/2014 1 Spline Curves Prof. Dr. Hans Hagen Algorithmic Geometry WS 2013/2014 1 Problem: In the previous chapter, we have seen that interpolating polynomials, especially those of high degree, tend to produce strong

More information

Part II: OUTLINE. Visualizing Quaternions. Part II: Visualizing Quaternion Geometry. The Spherical Projection Trick: Visualizing unit vectors.

Part II: OUTLINE. Visualizing Quaternions. Part II: Visualizing Quaternion Geometry. The Spherical Projection Trick: Visualizing unit vectors. Visualizing Quaternions Part II: Visualizing Quaternion Geometry Andrew J. Hanson Indiana University Part II: OUTLINE The Spherical Projection Trick: Visualizing unit vectors. Quaternion Frames Quaternion

More information

Trajectory Planning for Automatic Machines and Robots

Trajectory Planning for Automatic Machines and Robots Luigi Biagiotti Claudio Melchiorri Trajectory Planning for Automatic Machines and Robots Springer 1 Trajectory Planning 1 1.1 A General Overview on Trajectory Planning 1 1.2 One-dimensional Trajectories

More information

Curves D.A. Forsyth, with slides from John Hart

Curves D.A. Forsyth, with slides from John Hart Curves D.A. Forsyth, with slides from John Hart Central issues in modelling Construct families of curves, surfaces and volumes that can represent common objects usefully; are easy to interact with; interaction

More information

2D Spline Curves. CS 4620 Lecture 18

2D Spline Curves. CS 4620 Lecture 18 2D Spline Curves CS 4620 Lecture 18 2014 Steve Marschner 1 Motivation: smoothness In many applications we need smooth shapes that is, without discontinuities So far we can make things with corners (lines,

More information

CSE 167: Introduction to Computer Graphics Lecture #11: Bezier Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016

CSE 167: Introduction to Computer Graphics Lecture #11: Bezier Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 CSE 167: Introduction to Computer Graphics Lecture #11: Bezier Curves Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 Announcements Project 3 due tomorrow Midterm 2 next

More information

Distance Functions 1

Distance Functions 1 Distance Functions 1 Distance function Given: geometric object F (curve, surface, solid, ) Assigns to each point the shortest distance from F Level sets of the distance function are trimmed offsets F p

More information

COMPUTER AIDED ENGINEERING DESIGN (BFF2612)

COMPUTER AIDED ENGINEERING DESIGN (BFF2612) COMPUTER AIDED ENGINEERING DESIGN (BFF2612) BASIC MATHEMATICAL CONCEPTS IN CAED by Dr. Mohd Nizar Mhd Razali Faculty of Manufacturing Engineering mnizar@ump.edu.my COORDINATE SYSTEM y+ y+ z+ z+ x+ RIGHT

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK M.E: CAD/CAM I SEMESTER ED5151 COMPUTER APPLICATIONS IN DESIGN Regulation 2017 Academic

More information

Curve Representation ME761A Instructor in Charge Prof. J. Ramkumar Department of Mechanical Engineering, IIT Kanpur

Curve Representation ME761A Instructor in Charge Prof. J. Ramkumar Department of Mechanical Engineering, IIT Kanpur Curve Representation ME761A Instructor in Charge Prof. J. Ramkumar Department of Mechanical Engineering, IIT Kanpur Email: jrkumar@iitk.ac.in Curve representation 1. Wireframe models There are three types

More information

PITSCO Math Individualized Prescriptive Lessons (IPLs)

PITSCO Math Individualized Prescriptive Lessons (IPLs) Orientation Integers 10-10 Orientation I 20-10 Speaking Math Define common math vocabulary. Explore the four basic operations and their solutions. Form equations and expressions. 20-20 Place Value Define

More information

MOS surfaces: Medial Surface Transforms with Rational Domain Boundaries

MOS surfaces: Medial Surface Transforms with Rational Domain Boundaries MOS surfaces: Medial Surface Transforms with Rational Domain Boundaries Jiří Kosinka and Bert Jüttler Johannes Kepler University, Institute of Applied Geometry, Altenberger Str. 69, A 4040 Linz, Austria,

More information

Keyword: Quadratic Bézier Curve, Bisection Algorithm, Biarc, Biarc Method, Hausdorff Distances, Tolerance Band.

Keyword: Quadratic Bézier Curve, Bisection Algorithm, Biarc, Biarc Method, Hausdorff Distances, Tolerance Band. Department of Computer Science Approximation Methods for Quadratic Bézier Curve, by Circular Arcs within a Tolerance Band Seminar aus Informatik Univ.-Prof. Dr. Wolfgang Pree Seyed Amir Hossein Siahposhha

More information

On Optimal Tolerancing in Computer-Aided Design

On Optimal Tolerancing in Computer-Aided Design On Optimal Tolerancing in Computer-Aided Design H. Pottmann a, B. Odehnal a, M. Peternell a, J. Wallner a, R. Ait Haddou b a Institute of Geometry, Vienna University of Technology, Wiedner Hauptstraße

More information

Curves and Surfaces. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd

Curves and Surfaces. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd Curves and Surfaces Computer Graphics COMP 770 (236) Spring 2007 Instructor: Brandon Lloyd 4/11/2007 Final projects Surface representations Smooth curves Subdivision Todays Topics 2 Final Project Requirements

More information

Approximating Curves and Their Offsets using Biarcs and Pythagorean Hodograph Quintics

Approximating Curves and Their Offsets using Biarcs and Pythagorean Hodograph Quintics Approximating Curves and Their Offsets using Biarcs and Pythagorean Hodograph Quintics Zbyněk Šír, Robert Feichtinger and Bert Jüttler Johannes Kepler University, Institute of Applied Geometry, Altenberger

More information

Spline Methods Draft. Tom Lyche and Knut Mørken

Spline Methods Draft. Tom Lyche and Knut Mørken Spline Methods Draft Tom Lyche and Knut Mørken January 5, 2005 2 Contents 1 Splines and B-splines an Introduction 3 1.1 Convex combinations and convex hulls.................... 3 1.1.1 Stable computations...........................

More information

Properties of Blending Functions

Properties of Blending Functions Chapter 5 Properties of Blending Functions We have just studied how the Bernstein polynomials serve very nicely as blending functions. We have noted that a degree n Bézier curve always begins at P 0 and

More information

Spline Methods Draft. Tom Lyche and Knut Mørken. Department of Informatics Centre of Mathematics for Applications University of Oslo

Spline Methods Draft. Tom Lyche and Knut Mørken. Department of Informatics Centre of Mathematics for Applications University of Oslo Spline Methods Draft Tom Lyche and Knut Mørken Department of Informatics Centre of Mathematics for Applications University of Oslo January 27, 2006 Contents 1 Splines and B-splines an Introduction 1 1.1

More information

East Penn School District Secondary Curriculum

East Penn School District Secondary Curriculum East Penn School District Secondary Curriculum A Planned Course Statement for Geometry (Honors) Course #350 Grade(s) 9-10 Department: Mathematics ength of Period (mins.) 42 Total Clock Hours 126 Periods

More information

Sung-Eui Yoon ( 윤성의 )

Sung-Eui Yoon ( 윤성의 ) CS480: Computer Graphics Curves and Surfaces Sung-Eui Yoon ( 윤성의 ) Course URL: http://jupiter.kaist.ac.kr/~sungeui/cg Today s Topics Surface representations Smooth curves Subdivision 2 Smooth Curves and

More information

Final Exam CS 184: Foundations of Computer Graphics! page 1 of 12!

Final Exam CS 184: Foundations of Computer Graphics! page 1 of 12! Final Exam CS 184: Foundations of Computer Graphics! page 1 of 12! Student Name:! Class Account Username: Instructions: Read them carefully!! The exam begins at 8:10pm and ends at 10:00pm. You must turn

More information

Geometric Programming for Computer-Aided Design

Geometric Programming for Computer-Aided Design Geometric Programming for Computer-Aided Design Alberto Paoluzzi Dip. Informatica e Automazione, Università Roma Tre, Rome Italy with contributions from Valerio Pascucci Center for Applied Scientific Computing,

More information

OUTLINE. Quadratic Bezier Curves Cubic Bezier Curves

OUTLINE. Quadratic Bezier Curves Cubic Bezier Curves BEZIER CURVES 1 OUTLINE Introduce types of curves and surfaces Introduce the types of curves Interpolating Hermite Bezier B-spline Quadratic Bezier Curves Cubic Bezier Curves 2 ESCAPING FLATLAND Until

More information

CSE 167: Introduction to Computer Graphics Lecture #13: Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2017

CSE 167: Introduction to Computer Graphics Lecture #13: Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2017 CSE 167: Introduction to Computer Graphics Lecture #13: Curves Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2017 Announcements Project 4 due Monday Nov 27 at 2pm Next Tuesday:

More information

Computer Graphics Splines and Curves

Computer Graphics Splines and Curves Computer Graphics 2015 9. Splines and Curves Hongxin Zhang State Key Lab of CAD&CG, Zhejiang University 2015-11-23 About homework 3 - an alternative solution with WebGL - links: - WebGL lessons http://learningwebgl.com/blog/?page_id=1217

More information

Geometric approximation of curves and singularities of secant maps Ghosh, Sunayana

Geometric approximation of curves and singularities of secant maps Ghosh, Sunayana University of Groningen Geometric approximation of curves and singularities of secant maps Ghosh, Sunayana IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish

More information