Generating 50cm elevation contours from space PhotoSat s s new stereo satellite elevation processing system

Size: px
Start display at page:

Download "Generating 50cm elevation contours from space PhotoSat s s new stereo satellite elevation processing system"

Transcription

1 Generating 50cm elevation contours from space PhotoSat s s new stereo satellite elevation processing system Gerry Mitchell PhotoSat November 2009

2 PhotoSat stereo satellite processing history PhotoSat has completed over 100 high definition stereo satellite elevation mapping projects since high resolution stereo satellite photos first became commercially available in From 2004 to t 2007 we used photogrammetric processes to map the elevations. Since 2007 we have been developing and improving our own stereo satellite geophysical elevation mapping system.

3 Elevation processing results GeoEye-1 satellite photo Elevation Image Indonesia Open Pit. Stereo GeoEye-1 satellite photo and elevation image processed in September 2009.

4 Elevation processing results GeoEye-1 satellite photo Elevation Image A GeoEye-1 stereo photo and elevation image of the Indonesia open pit showing a slide area on the NE pit wall

5 The elevation mapping accuracy Stereo satellite elevation RMSE of 19cm determined by 1,115 surveyed check points. 90% of the survey check point elevations are within 28cm of the mapped stereo satellite elevations. Stereo WorldView-1, 260 km 2 elevation mapping in Chihuahua, Mexico, October 2009.

6 The elevation mapping accuracy Stereo WorldView-1 1 elevation mapping in Chihuahua, Mexico. The 260 km 2 mapping area was referenced to a single ground survey point. The accuracy was checked using 1,115 survey points.

7 The elevation mapping accuracy The reference point for the entire 260 km 2 stereo satellite elevation mapping area in Chihuahua Mexico.

8 The elevation mapping resolution 750m GeoEye-1 satellite photo Elevation Image The one meter high terraces on this hillside in Peru show clearly on the stereo satellite elevation image on the right.

9 Elevation mapping resolution GeoEye-1 satellite photo Elevation Image These stone fences in Peru show clearly on the stereo satellite elevation mapping. Stone fences are typically less than 1m wide and 1.5m high.

10 Elevation mapping resolution GeoEye-1 satellite photo draped on the stereo satellite DEM shows a good match between the elevation data and the satellite photo at this bridge.

11 Elevation mapping resolution GeoEye-1 satellite photo draped on the stereo satellite DEM shows the good match between the satellite photo and the elevation mapping at this clearly defined road cut.

12 Three key technical components enabling 50cm elevation contouring from space High resolution stereo satellite photos Adaptation of seismic processing systems Graphics Processing Units ( GPUs )

13 High resolution stereo satellites IKONOS 1m colour 2004 WorldView cm greyscale 2008 GeoEye cm colour 2009 WorldView cm colour 2010

14 High resolution stereo satellites GeoEye cm colour photo

15 High resolution stereo satellites Same pass stereo satellite photos. Only about 30 seconds of time elapse between the photos. Each photo is 10 km to 15 km wide. The near uniform look direction to the satellite for every pixel of each photo facilitates the automatic elevation processing.

16 Adapting seismic processing algorithms and processes Moore et al., 2007 Offshore 3D seismic data cube. In the development our stereo satellite processing system we have made extensive use of processing algorithms and processes developed for 3D seismic processing. 3D seismic cubes such as the one shown above can involve the co registration of 100 or more individual seismic images. A large array of processing techniques for correlating images and attenuating noise and processing artefacts have been developed by the seismic industry over the past 50 years. To our knowledge many of these processes have never before been applied to the processing of stereo satellite data.

17 Adapting seismic interpretation systems 3D seismic workstation For mapping the ground surface elevations we are employing techniques developed for 3D seismic interpretation workstations and, in some cases, the workstations themselves. Seismic interpreters map the elevations of subsurface rock formations. The slide above shows an underground rock formation surface interpreted in the OpendTect seismic workstation. We are using this technology to map the ground surface elevations.

18 Graphic Processing Units ( GPUs ) 240 parallel processors 4 gigabytes RAM One teraflop C program compiler The automatic processing of surface elevations at one meter intervals from stereo satellite photos, using seismic processing algorithms, requires the computation of hundreds of millions of forward and inverse 2D Fourier transforms for a 100 km 2 mapping project. GPUs perform numerical processing up to 100 times faster than CPUs, enabling us to automatically produce one meter Digital Surface Models from stereo satellite photos in reasonable times.

19 Digital photogrammetry With conventional photogrammetric methods elevations are mapped interactively on stereo workstations or mapped automatically with significant interactive editing. Elevation accuracies are typically two to three times the photo pixel size.

20 Geophysical processing Ground Surface Stereo photo correlation profiles The PhotoSat geophysical processing system automatically calculates vertical profiles of the correlations between the stereo satellite photos. The elevation mapping accuracy is typically ½ of the photo pixel size.

21 Geophysical processing Cross section of stereo satellite correlation profiles across a hill in Eritrea.

22 Geophysical processing Cross section of stereo satellite correlation profiles across a hill in Eritrea.

23 Geophysical mapping Cross section of stereo satellite correlation profiles going from a bare ground upland through a valley with a stand of trees. Dark colours indicate strong correlations. This cross section is displayed in the OpendTect stereo seismic workstation.

24 Geophysical mapping Two cross sections and a horizontal section of stereo satellite correlation profiles. Dark colours indicate strong correlations.

25 Geophysical mapping Cross section of stereo satellite correlation profiles in greyscale.

26 Geophysical mapping Cross section of correlation profiles with the Digital Surface Model (DSM) picked automatically to within about 5cm of elevation.

27 Geophysical mapping. 3D display of the Digital Surface Model coloured with the correlation amplitudes. The correlations are weaker in the trees than for the bare ground.

28 Geophysical mapping Digital Surface Model Interpreted bare ground elevations Cross section of correlation profiles showing interactive interpretation of the bare ground elevations. The mapping of bare ground elevations beneath tree canopy and buildings necessarily involves interpretation and interpolation. We are using techniques developed for mapping geological unconformities on 3D seismic data to map the bare ground elevations on cross sections of vertical stereo satellite correlation profiles.

29 Elevation mapping in steep terrain IKONOS satellite photo IKONOS elevation Image Himalayas IKONOS and Stereo IKONOS elevation image processed in August The access roads show clearly in the elevation image. The south facing slope is 45 degrees.

30 Elevation mapping in steep terrain IKONOS satellite photo IKONOS elevation Image Himalayas IKONOS and Stereo IKONOS DEM with a 45 degree slope.

31 Steep terrain Himalayas IKONOS draped over the Stereo IKONOS elevations.

32 Steep terrain Himalayas IKONOS draped over the Stereo IKONOS elevations.

33 Steep terrain Himalayas IKONOS draped over the Stereo IKONOS elevations.

34 Mine site mapping WorldView-1 greyscale photo of a 10 km x 10 km area over a Athabasca tar sands mine in NE Alberta, Canada

35 Mine site mapping Stereo WorldView-1 elevation image of a 10 km x 10 km area over a Athabasca tar sands mine in NE Alberta, Canada

36 Mine site mapping Stereo WorldView-1 elevation image of a 5 km x 2.5 km area over an Athabasca tar sands mine in NE Alberta, Canada

37 Mine site mapping Stereo WorldView-1 elevation image of a 500m x 250m area over an Athabasca tar sands mine in NE Alberta, Canada

38 Mine site mapping WorldView-1 satellite photo WorldView-1 elevation Image Stereo WorldView-1 photo and elevation image of a 300m x 300m area over an Athabasca tar sands mine in NE Alberta, Canada

Over 15 PhotoSat Kurdistan stereo satellite topographic mapping projects

Over 15 PhotoSat Kurdistan stereo satellite topographic mapping projects Using highly accurate satellite topographic mapping to accelerate oil and gas projects in Kurdistan Over 15 PhotoSat Kurdistan stereo satellite topographic mapping projects Gerry Mitchell PhotoSat President

More information

Satellite surveying. Presentation for ISCWSA. Over 550 global PhotoSat stereo satellite topographic mapping projects.

Satellite surveying. Presentation for ISCWSA. Over 550 global PhotoSat stereo satellite topographic mapping projects. Satellite surveying Presentation for ISCWSA Over 550 global PhotoSat stereo satellite topographic mapping projects Basic proposition Satellite surveying has improved to a level where it may be used as

More information

Digital Elevation Models (DEM)

Digital Elevation Models (DEM) Digital Elevation Models (DEM) Digital representation of the terrain surface also referred to as Digital Terrain Models (DTM) Digital Elevation Models (DEM) How has relief depiction changed with digital

More information

VALIDATION OF A NEW 30 METER GROUND SAMPLED GLOBAL DEM USING ICESAT LIDARA ELEVATION REFERENCE DATA

VALIDATION OF A NEW 30 METER GROUND SAMPLED GLOBAL DEM USING ICESAT LIDARA ELEVATION REFERENCE DATA VALIDATION OF A NEW 30 METER GROUND SAMPLED GLOBAL DEM USING ICESAT LIDARA ELEVATION REFERENCE DATA M. Lorraine Tighe Director, Geospatial Solutions Intermap Session: Photogrammetry & Image Processing

More information

PROBLEMS AND LIMITATIONS OF SATELLITE IMAGE ORIENTATION FOR DETERMINATION OF HEIGHT MODELS

PROBLEMS AND LIMITATIONS OF SATELLITE IMAGE ORIENTATION FOR DETERMINATION OF HEIGHT MODELS PROBLEMS AND LIMITATIONS OF SATELLITE IMAGE ORIENTATION FOR DETERMINATION OF HEIGHT MODELS K. Jacobsen Institute of Photogrammetry and GeoInformation, Leibniz University Hannover, Germany jacobsen@ipi.uni-hannover.de

More information

Digital photogrammetry project with very high-resolution stereo pairs acquired by DigitalGlobe, Inc. satellite Worldview-2

Digital photogrammetry project with very high-resolution stereo pairs acquired by DigitalGlobe, Inc. satellite Worldview-2 White PAPER Greater area of the City of La Paz, Bolivia Digital photogrammetry project with very high-resolution stereo pairs acquired by DigitalGlobe, Inc. satellite Worldview-2 By: Engineers Nelson Mattie,

More information

Scalability for Large Photogrammetry Projects

Scalability for Large Photogrammetry Projects Scalability for Large Photogrammetry Projects Dr. Philippe Simard President SimActive Inc. IMAGE About SimActive Founded in 2003, SimActive is the developer of Correlator3D software, a patented end-to-end

More information

Surpac Google Earth Tools

Surpac Google Earth Tools Surpac Google Earth Tools Google Earth is a free software program that lets you fly anywhere on Earth to view satellite imagery, maps, terrain and 3D buildings. When used in conjunction with SURPAC, it

More information

National Science Foundation Engineering Research Center. Bingcai Zhang BAE Systems San Diego, CA

National Science Foundation Engineering Research Center. Bingcai Zhang BAE Systems San Diego, CA Bingcai Zhang BAE Systems San Diego, CA 92127 Bingcai.zhang@BAESystems.com Introduction It is a trivial task for a five-year-old child to recognize and name an object such as a car, house or building.

More information

Light Detection and Ranging (LiDAR)

Light Detection and Ranging (LiDAR) Light Detection and Ranging (LiDAR) http://code.google.com/creative/radiohead/ Types of aerial sensors passive active 1 Active sensors for mapping terrain Radar transmits microwaves in pulses determines

More information

Automatic DEM Extraction

Automatic DEM Extraction Automatic DEM Extraction The Automatic DEM Extraction module allows you to create Digital Elevation Models (DEMs) from stereo airphotos, stereo images and RADAR data. Image correlation is used to extract

More information

Title: Improving Your InRoads DTM. Mats Dahlberg Consultant Civil

Title: Improving Your InRoads DTM. Mats Dahlberg Consultant Civil Title: Improving Your InRoads DTM Mats Dahlberg Consultant Civil Improving Your InRoads Digital Terrain Model (DTM) Digital Terrain Model A digital representation of a surface topography or terrain composed

More information

Improving wide-area DEMs through data fusion - chances and limits

Improving wide-area DEMs through data fusion - chances and limits Improving wide-area DEMs through data fusion - chances and limits Konrad Schindler Photogrammetry and Remote Sensing, ETH Zürich How to get a DEM for your job? for small projects (or rich people) contract

More information

Automatic DEM Extraction

Automatic DEM Extraction Technical Specifications Automatic DEM Extraction The Automatic DEM Extraction module allows you to create Digital Elevation Models (DEMs) from stereo airphotos, stereo images and RADAR data. Image correlation

More information

Investigation of Sampling and Interpolation Techniques for DEMs Derived from Different Data Sources

Investigation of Sampling and Interpolation Techniques for DEMs Derived from Different Data Sources Investigation of Sampling and Interpolation Techniques for DEMs Derived from Different Data Sources FARRAG ALI FARRAG 1 and RAGAB KHALIL 2 1: Assistant professor at Civil Engineering Department, Faculty

More information

Lecture 4: Digital Elevation Models

Lecture 4: Digital Elevation Models Lecture 4: Digital Elevation Models GEOG413/613 Dr. Anthony Jjumba 1 Digital Terrain Modeling Terms: DEM, DTM, DTEM, DSM, DHM not synonyms. The concepts they illustrate are different Digital Terrain Modeling

More information

Accuracy Assessment of an ebee UAS Survey

Accuracy Assessment of an ebee UAS Survey Accuracy Assessment of an ebee UAS Survey McCain McMurray, Remote Sensing Specialist mmcmurray@newfields.com July 2014 Accuracy Assessment of an ebee UAS Survey McCain McMurray Abstract The ebee unmanned

More information

Datamine Solutions for Industrial Minerals and Construction Materials, including Dimension Stones.

Datamine Solutions for Industrial Minerals and Construction Materials, including Dimension Stones. Datamine Solutions for Industrial Minerals and Construction Materials, including Dimension Stones. Datamine Overview Global Presence 250 staff in 12 countries Canada, USA, Peru, Chile, Mexico, Brazil,

More information

GEOMETRIC AND MAPPING POTENTIAL OF WORLDVIEW-1 IMAGES

GEOMETRIC AND MAPPING POTENTIAL OF WORLDVIEW-1 IMAGES GEOMETRIC AND MAPPING POTENTIAL OF WORLDVIEW-1 IMAGES G. Buyuksalih*, I. Baz*, S. Bayburt*, K. Jacobsen**, M. Alkan *** * BIMTAS, Tophanelioglu Cad. ISKI Hizmet Binasi No:62 K.3-4 34460 Altunizade-Istanbul,

More information

DEM creation using 3D vectors Geomatica 2014 tutorial

DEM creation using 3D vectors Geomatica 2014 tutorial The following tutorial demonstrates how to create a raster digital elevation model (DEM) by interpolating elevation values from millions of points and 3-D structure lines commonly referred to as breaklines.

More information

EVALUATION OF WORLDVIEW-1 STEREO SCENES AND RELATED 3D PRODUCTS

EVALUATION OF WORLDVIEW-1 STEREO SCENES AND RELATED 3D PRODUCTS EVALUATION OF WORLDVIEW-1 STEREO SCENES AND RELATED 3D PRODUCTS Daniela POLI, Kirsten WOLFF, Armin GRUEN Swiss Federal Institute of Technology Institute of Geodesy and Photogrammetry Wolfgang-Pauli-Strasse

More information

Combining Airborne LIDAR and Satellite RADAR for a Dynamic DEM. Ramon Hanssen, Delft University of Technology

Combining Airborne LIDAR and Satellite RADAR for a Dynamic DEM. Ramon Hanssen, Delft University of Technology Combining Airborne LIDAR and Satellite RADAR for a Dynamic DEM Ramon Hanssen, Delft University of Technology 1 Release 27 September 2 Land surface elevation H(t) = H(t 0 ) + dh(dt) dt Elevation at time

More information

DIGITAL SURFACE MODELS OF CITY AREAS BY VERY HIGH RESOLUTION SPACE IMAGERY

DIGITAL SURFACE MODELS OF CITY AREAS BY VERY HIGH RESOLUTION SPACE IMAGERY DIGITAL SURFACE MODELS OF CITY AREAS BY VERY HIGH RESOLUTION SPACE IMAGERY Jacobsen, K. University of Hannover, Institute of Photogrammetry and Geoinformation, Nienburger Str.1, D30167 Hannover phone +49

More information

Exploiting Composite Features in Robot Navigation

Exploiting Composite Features in Robot Navigation EXPLOITING COMPOSITE FEATURES IN ROBOT NAVIGATION 69 Exploiting Composite Features in Robot Navigation Jennifer Davison, Kelly Hasler Faculty Sponsor: Karen T. Sutherland, Department of Computer Science

More information

Terrain Modeling and Mapping for Telecom Network Installation Using Scanning Technology. Maziana Muhamad

Terrain Modeling and Mapping for Telecom Network Installation Using Scanning Technology. Maziana Muhamad Terrain Modeling and Mapping for Telecom Network Installation Using Scanning Technology Maziana Muhamad Summarising LiDAR (Airborne Laser Scanning) LiDAR is a reliable survey technique, capable of: acquiring

More information

ACCURACY COMPARISON OF VHR SYSTEMATIC-ORTHO SATELLITE IMAGERIES AGAINST VHR ORTHORECTIFIED IMAGERIES USING GCP

ACCURACY COMPARISON OF VHR SYSTEMATIC-ORTHO SATELLITE IMAGERIES AGAINST VHR ORTHORECTIFIED IMAGERIES USING GCP ACCURACY COMPARISON OF VHR SYSTEMATIC-ORTHO SATELLITE IMAGERIES AGAINST VHR ORTHORECTIFIED IMAGERIES USING GCP E. Widyaningrum a, M. Fajari a, J. Octariady a * a Geospatial Information Agency (BIG), Cibinong,

More information

UAV s in Surveying: Integration/processes/deliverables A-Z. 3Dsurvey.si

UAV s in Surveying: Integration/processes/deliverables A-Z. 3Dsurvey.si UAV s in Surveying: Integration/processes/deliverables A-Z Info@eGPS.net TODAY S PROGRAM Introduction to photogrammetry and 3Dsurvey Theoretical facts about the technology and basics of 3dsurvey Introduction

More information

LiDAR Applications. Examples of LiDAR applications. forestry hydrology geology urban applications

LiDAR Applications. Examples of LiDAR applications. forestry hydrology geology urban applications LiDAR Applications Examples of LiDAR applications forestry hydrology geology urban applications 1 Forestry applications canopy heights individual tree and crown mapping estimated DBH and leaf area index

More information

2. POINT CLOUD DATA PROCESSING

2. POINT CLOUD DATA PROCESSING Point Cloud Generation from suas-mounted iphone Imagery: Performance Analysis A. D. Ladai, J. Miller Towill, Inc., 2300 Clayton Road, Suite 1200, Concord, CA 94520-2176, USA - (andras.ladai, jeffrey.miller)@towill.com

More information

TERRESTRIAL AND NUMERICAL PHOTOGRAMMETRY 1. MID -TERM EXAM Question 4

TERRESTRIAL AND NUMERICAL PHOTOGRAMMETRY 1. MID -TERM EXAM Question 4 TERRESTRIAL AND NUMERICAL PHOTOGRAMMETRY 1. MID -TERM EXAM Question 4 23 November 2001 Two-camera stations are located at the ends of a base, which are 191.46m long, measured horizontally. Photographs

More information

Vegetation height maps derived from digital elevation models the next innovation in the production of orienteering maps?

Vegetation height maps derived from digital elevation models the next innovation in the production of orienteering maps? Vegetation height maps derived from digital elevation models the next innovation in the production of orienteering maps? Development of Orienteering Maps. 1. Revolution 20 years ago: Digital Cartography

More information

AUTOMATING THE CORRECTION OF USGS DIGITAL ELEVATION MODELS USING FOURIER ANALYSIS AND THE MEAN PROFILE FILTER INTRODUCTION AND BACKGROUND

AUTOMATING THE CORRECTION OF USGS DIGITAL ELEVATION MODELS USING FOURIER ANALYSIS AND THE MEAN PROFILE FILTER INTRODUCTION AND BACKGROUND AUTOMATING THE CORRECTION OF USGS DIGITAL ELEVATION MODELS USING FOURIER ANALYSIS AND THE MEAN PROFILE FILTER Yusuf Siddiqui, Senior Solutions Engineer i-cubed: information integration & imaging LLC 201

More information

3D modeling of the Quest Projects Geophysical Datasets. Nigel Phillips

3D modeling of the Quest Projects Geophysical Datasets. Nigel Phillips 3D modeling of the Quest Projects Geophysical Datasets Nigel Phillips Advanced Geophysical Interpretation Centre Undercover Exploration workshop KEG-25 April 2012 Mineral Physical Properties: density sus.

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 13. TERRAIN MAPPING AND ANALYSIS 13.1 Data for Terrain Mapping and Analysis 13.1.1 DEM 13.1.2 TIN Box 13.1 Terrain Data Format 13.2 Terrain Mapping 13.2.1 Contouring 13.2.2 Vertical Profiling 13.2.3

More information

NEXTMap World 30 Digital Surface Model

NEXTMap World 30 Digital Surface Model NEXTMap World 30 Digital Surface Model Intermap Technologies, Inc. 8310 South Valley Highway, Suite 400 Englewood, CO 80112 083013v3 NEXTMap World 30 (top) provides an improvement in vertical accuracy

More information

Files Used in this Tutorial

Files Used in this Tutorial Generate Point Clouds and DSM Tutorial This tutorial shows how to generate point clouds and a digital surface model (DSM) from IKONOS satellite stereo imagery. You will view the resulting point clouds

More information

CHAPTER 5 OBJECT ORIENTED IMAGE ANALYSIS

CHAPTER 5 OBJECT ORIENTED IMAGE ANALYSIS 85 CHAPTER 5 OBJECT ORIENTED IMAGE ANALYSIS 5.1 GENERAL Urban feature mapping is one of the important component for the planning, managing and monitoring the rapid urbanized growth. The present conventional

More information

Chapters 1 7: Overview

Chapters 1 7: Overview Chapters 1 7: Overview Photogrammetric mapping: introduction, applications, and tools GNSS/INS-assisted photogrammetric and LiDAR mapping LiDAR mapping: principles, applications, mathematical model, and

More information

Automatic DEM Extraction

Automatic DEM Extraction Technical Specifications Automatic DEM Extraction The Automatic DEM Extraction module allows you to create Digital Elevation Models (DEMs) from stereo airphotos, stereo images and RADAR data. Image correlation

More information

An Introduction to Lidar & Forestry May 2013

An Introduction to Lidar & Forestry May 2013 An Introduction to Lidar & Forestry May 2013 Introduction to Lidar & Forestry Lidar technology Derivatives from point clouds Applied to forestry Publish & Share Futures Lidar Light Detection And Ranging

More information

Using Similarity Attribute as a Quality Control Tool in 5D Interpolation

Using Similarity Attribute as a Quality Control Tool in 5D Interpolation Using Similarity Attribute as a Quality Control Tool in 5D Interpolation Muyi Kola-Ojo Launch Out Geophysical Services, Calgary, Alberta, Canada Summary Seismic attributes in the last two decades have

More information

This is a sample of what you get after it is processed. The yellow colors in this view come from the Classify Vegetation Height.tif background map.

This is a sample of what you get after it is processed. The yellow colors in this view come from the Classify Vegetation Height.tif background map. This is a sample of what you get after it is processed. The yellow colors in this view come from the Classify Vegetation Height.tif background map. Yellow indicates places where the first and second return

More information

Qualitative Depth Estimation by Differencing Upward Continuations

Qualitative Depth Estimation by Differencing Upward Continuations Qualitative Depth Estimation by Differencing Upward Continuations Jacobsen (1987) made a strong case for using upward continuation filtering as a method for separating causative sources from various depths.

More information

fraction of Nyquist

fraction of Nyquist differentiator 4 2.1.2.3.4.5.6.7.8.9 1 1 1/integrator 5.1.2.3.4.5.6.7.8.9 1 1 gain.5.1.2.3.4.5.6.7.8.9 1 fraction of Nyquist Figure 1. (top) Transfer functions of differential operators (dotted ideal derivative,

More information

Accuracy Assessment of Ames Stereo Pipeline Derived DEMs Using a Weighted Spatial Dependence Model

Accuracy Assessment of Ames Stereo Pipeline Derived DEMs Using a Weighted Spatial Dependence Model Accuracy Assessment of Ames Stereo Pipeline Derived DEMs Using a Weighted Spatial Dependence Model Intro Problem Statement A successful lunar mission requires accurate, high resolution data products to

More information

We Solutions for Scattered Surface-wave Attenuation in the Western Desert of Egypt

We Solutions for Scattered Surface-wave Attenuation in the Western Desert of Egypt We-14-11 Solutions for Scattered Surface-wave Attenuation in the Western Desert of Egypt D. Yanchak* (Apache Corporation), D. Monk (Apache Corporation), A.V. Zarkhidze (WesternGeco), P. Blair (WesternGeco),

More information

Contents of Lecture. Surface (Terrain) Data Models. Terrain Surface Representation. Sampling in Surface Model DEM

Contents of Lecture. Surface (Terrain) Data Models. Terrain Surface Representation. Sampling in Surface Model DEM Lecture 13: Advanced Data Models: Terrain mapping and Analysis Contents of Lecture Surface Data Models DEM GRID Model TIN Model Visibility Analysis Geography 373 Spring, 2006 Changjoo Kim 11/29/2006 1

More information

3D Terrain Modelling of the Amyntaio Ptolemais Basin

3D Terrain Modelling of the Amyntaio Ptolemais Basin 2nd International Workshop in Geoenvironment and 1 3D Terrain Modelling of the Amyntaio Ptolemais Basin G. Argyris, I. Kapageridis and A. Triantafyllou Department of Geotechnology and Environmental Engineering,

More information

Dense DSM Generation Using the GPU

Dense DSM Generation Using the GPU Photogrammetric Week '13 Dieter Fritsch (Ed.) Wichmann/VDE Verlag, Belin & Offenbach, 2013 Rotenberg et al. 285 Dense DSM Generation Using the GPU KIRILL ROTENBERG, LOUIS SIMARD, PHILIPPE SIMARD, Montreal

More information

Should Contours Be Generated from Lidar Data, and Are Breaklines Required? Lidar data provides the most

Should Contours Be Generated from Lidar Data, and Are Breaklines Required? Lidar data provides the most Should Contours Be Generated from Lidar Data, and Are Breaklines Required? Lidar data provides the most accurate and reliable representation of the topography of the earth. As lidar technology advances

More information

Applications of LiDAR in seismic acquisition and processing Mark Wagaman and Ron Sfara, Veritas DGC

Applications of LiDAR in seismic acquisition and processing Mark Wagaman and Ron Sfara, Veritas DGC Applications of LiDAR in seismic acquisition and processing Mark Wagaman and Ron Sfara, Veritas DGC Abstract With its ability to provide accurate land surface elevations, the LiDAR (Light Detection And

More information

Wednesday, July 15, Author: Eldris Ferrer Gonzalez, M.Sc. Engineering CSA Group

Wednesday, July 15, Author: Eldris Ferrer Gonzalez, M.Sc. Engineering CSA Group Twenty ninth Annual ESRI International User Conference Wednesday, July 15, 2009 Author: Eldris Ferrer Gonzalez, M.Sc. Engineering CSA Group Introduction to Valenciano Project LIDAR Survey for Valenciano

More information

Automated Feature Extraction from Aerial Imagery for Forestry Projects

Automated Feature Extraction from Aerial Imagery for Forestry Projects Automated Feature Extraction from Aerial Imagery for Forestry Projects Esri UC 2015 UC706 Tuesday July 21 Bart Matthews - Photogrammetrist US Forest Service Southwestern Region Brad Weigle Sr. Program

More information

A NEW STRATEGY FOR DSM GENERATION FROM HIGH RESOLUTION STEREO SATELLITE IMAGES BASED ON CONTROL NETWORK INTEREST POINT MATCHING

A NEW STRATEGY FOR DSM GENERATION FROM HIGH RESOLUTION STEREO SATELLITE IMAGES BASED ON CONTROL NETWORK INTEREST POINT MATCHING A NEW STRATEGY FOR DSM GENERATION FROM HIGH RESOLUTION STEREO SATELLITE IMAGES BASED ON CONTROL NETWORK INTEREST POINT MATCHING Z. Xiong a, Y. Zhang a a Department of Geodesy & Geomatics Engineering, University

More information

New Requirements for the Relief in the Topographic Databases of the Institut Cartogràfic de Catalunya

New Requirements for the Relief in the Topographic Databases of the Institut Cartogràfic de Catalunya New Requirements for the Relief in the Topographic Databases of the Institut Cartogràfic de Catalunya Blanca Baella, Maria Pla Institut Cartogràfic de Catalunya, Barcelona, Spain Abstract Since 1983 the

More information

DETECTION AND QUANTIFICATION OF ROCK GLACIER. DEFORMATION USING ERS D-InSAR DATA

DETECTION AND QUANTIFICATION OF ROCK GLACIER. DEFORMATION USING ERS D-InSAR DATA DETECTION AND QUANTIFICATION OF ROCK GLACIER DEFORMATION USING ERS D-InSAR DATA Lado W. Kenyi 1 and Viktor Kaufmann 2 1 Institute of Digital Image Processing, Joanneum Research Wastiangasse 6, A-8010 Graz,

More information

DEVELOPMENT OF ORIENTATION AND DEM/ORTHOIMAGE GENERATION PROGRAM FOR ALOS PRISM

DEVELOPMENT OF ORIENTATION AND DEM/ORTHOIMAGE GENERATION PROGRAM FOR ALOS PRISM DEVELOPMENT OF ORIENTATION AND DEM/ORTHOIMAGE GENERATION PROGRAM FOR ALOS PRISM Izumi KAMIYA Geographical Survey Institute 1, Kitasato, Tsukuba 305-0811 Japan Tel: (81)-29-864-5944 Fax: (81)-29-864-2655

More information

SPOT-1 stereo images taken from different orbits with one month difference

SPOT-1 stereo images taken from different orbits with one month difference DSM Generation Almost all HR sensors are stereo capable. Some can produce even triplettes within the same strip (facilitating multi-image matching). Mostly SPOT (1-5) used for stereo and Ikonos (in spite

More information

W D-0049/004 EN

W D-0049/004 EN September 21, 2011 Contact Ground Survey Report, Lidar Accuracy Report, & Project Report New Madrid Seismic Zone Northeast of Memphis, Tennessee Contract Number: W91278-09D-0049/004 EN Project: C-10-026

More information

We N Depth Domain Inversion Case Study in Complex Subsalt Area

We N Depth Domain Inversion Case Study in Complex Subsalt Area We N104 12 Depth Domain Inversion Case Study in Complex Subsalt Area L.P. Letki* (Schlumberger), J. Tang (Schlumberger) & X. Du (Schlumberger) SUMMARY Geophysical reservoir characterisation in a complex

More information

P071 Land Data Regularization and Interpolation Using Azimuth Moveout (AMO)

P071 Land Data Regularization and Interpolation Using Azimuth Moveout (AMO) P071 Land Data Regularization and Interpolation Using Azimuth Moveout (AMO) A.M. Popovici* (3DGeo Development Inc.), S. Crawley (3DGeo), D. Bevc (3DGeo) & D. Negut (Arcis Processing) SUMMARY Azimuth Moveout

More information

Automated Extraction of Buildings from Aerial LiDAR Point Cloud and Digital Imaging Datasets for 3D Cadastre - Preliminary Results

Automated Extraction of Buildings from Aerial LiDAR Point Cloud and Digital Imaging Datasets for 3D Cadastre - Preliminary Results Automated Extraction of Buildings from Aerial LiDAR Point Cloud and Digital Imaging Datasets for 3D Pankaj Kumar 1*, Alias Abdul Rahman 1 and Gurcan Buyuksalih 2 ¹Department of Geoinformation Universiti

More information

Municipal Projects in Cambridge Using a LiDAR Dataset. NEURISA Day 2012 Sturbridge, MA

Municipal Projects in Cambridge Using a LiDAR Dataset. NEURISA Day 2012 Sturbridge, MA Municipal Projects in Cambridge Using a LiDAR Dataset NEURISA Day 2012 Sturbridge, MA October 15, 2012 Jeff Amero, GIS Manager, City of Cambridge Presentation Overview Background on the LiDAR dataset Solar

More information

AEC Logic. AEC Terrain. A program to manage earth works in a construction project. Yudhishtirudu Gaddipati 29-Jun-13

AEC Logic. AEC Terrain. A program to manage earth works in a construction project. Yudhishtirudu Gaddipati 29-Jun-13 AEC Logic AEC Terrain A program to manage earth works in a construction project Yudhishtirudu Gaddipati 29-Jun-13 Contents 1 Introduction:... 5 2 Program Launch... 5 2.1 How to Launch Program... 5 2.2

More information

AUTOMATIC EXTRACTION OF TERRAIN SKELETON LINES FROM DIGITAL ELEVATION MODELS

AUTOMATIC EXTRACTION OF TERRAIN SKELETON LINES FROM DIGITAL ELEVATION MODELS AUTOMATIC EXTRACTION OF TERRAIN SKELETON LINES FROM DIGITAL ELEVATION MODELS F. Gülgen, T. Gökgöz Yildiz Technical University, Department of Geodetic and Photogrammetric Engineering, 34349 Besiktas Istanbul,

More information

MULTI-TEMPORAL INTERFEROMETRIC POINT TARGET ANALYSIS

MULTI-TEMPORAL INTERFEROMETRIC POINT TARGET ANALYSIS MULTI-TEMPORAL INTERFEROMETRIC POINT TARGET ANALYSIS U. WEGMÜLLER, C. WERNER, T. STROZZI, AND A. WIESMANN Gamma Remote Sensing AG. Thunstrasse 130, CH-3074 Muri (BE), Switzerland wegmuller@gamma-rs.ch,

More information

Seismic Reflection Method

Seismic Reflection Method Seismic Reflection Method 1/GPH221L9 I. Introduction and General considerations Seismic reflection is the most widely used geophysical technique. It can be used to derive important details about the geometry

More information

Lecture 21 - Chapter 8 (Raster Analysis, part2)

Lecture 21 - Chapter 8 (Raster Analysis, part2) GEOL 452/552 - GIS for Geoscientists I Lecture 21 - Chapter 8 (Raster Analysis, part2) Today: Digital Elevation Models (DEMs), Topographic functions (surface analysis): slope, aspect hillshade, viewshed,

More information

Generate Digital Elevation Models Using Laser Altimetry (LIDAR) Data

Generate Digital Elevation Models Using Laser Altimetry (LIDAR) Data Generate Digital Elevation Models Using Laser Altimetry (LIDAR) Data Literature Survey Christopher Weed October 2000 Abstract Laser altimetry (LIDAR) data must be processed to generate a digital elevation

More information

Geometric Accuracy Evaluation, DEM Generation and Validation for SPOT-5 Level 1B Stereo Scene

Geometric Accuracy Evaluation, DEM Generation and Validation for SPOT-5 Level 1B Stereo Scene Geometric Accuracy Evaluation, DEM Generation and Validation for SPOT-5 Level 1B Stereo Scene Buyuksalih, G.*, Oruc, M.*, Topan, H.*,.*, Jacobsen, K.** * Karaelmas University Zonguldak, Turkey **University

More information

DIGITAL TERRAIN MODELS

DIGITAL TERRAIN MODELS DIGITAL TERRAIN MODELS 1 Digital Terrain Models Dr. Mohsen Mostafa Hassan Badawy Remote Sensing Center GENERAL: A Digital Terrain Models (DTM) is defined as the digital representation of the spatial distribution

More information

a Geo-Odyssey of UAS LiDAR Mapping Henno Morkel UAS Segment Specialist DroneCon 17 May 2018

a Geo-Odyssey of UAS LiDAR Mapping Henno Morkel UAS Segment Specialist DroneCon 17 May 2018 a Geo-Odyssey of UAS LiDAR Mapping Henno Morkel UAS Segment Specialist DroneCon 17 May 2018 Abbreviations UAS Unmanned Aerial Systems LiDAR Light Detection and Ranging UAV Unmanned Aerial Vehicle RTK Real-time

More information

CO-REGISTERING AND NORMALIZING STEREO-BASED ELEVATION DATA TO SUPPORT BUILDING DETECTION IN VHR IMAGES

CO-REGISTERING AND NORMALIZING STEREO-BASED ELEVATION DATA TO SUPPORT BUILDING DETECTION IN VHR IMAGES CO-REGISTERING AND NORMALIZING STEREO-BASED ELEVATION DATA TO SUPPORT BUILDING DETECTION IN VHR IMAGES Alaeldin Suliman, Yun Zhang, Raid Al-Tahir Department of Geodesy and Geomatics Engineering, University

More information

Onshore remote sensing applications: an overview

Onshore remote sensing applications: an overview Onshore remote sensing applications: an overview Dr. Richard Teeuw and Dr. Malcolm Whitworth School of Earth and Environmental Sciences, University of Portsmouth, UK. Overview Presentation on the applications

More information

CHAPTER 10. Digital Mapping and Earthwork

CHAPTER 10. Digital Mapping and Earthwork CHAPTER 10 Digital Mapping and Earthwork www.terrainmap.com/rm22.html CE 316 March 2012 348 10.1 Introduction 349 10.2 Single Images 10.2.1 Rectified Photograph With a single photograph, X,Y data can be

More information

LIDAR MAPPING FACT SHEET

LIDAR MAPPING FACT SHEET 1. LIDAR THEORY What is lidar? Lidar is an acronym for light detection and ranging. In the mapping industry, this term is used to describe an airborne laser profiling system that produces location and

More information

Merging LiDAR Data with Softcopy Photogrammetry Data

Merging LiDAR Data with Softcopy Photogrammetry Data Merging LiDAR Data with Softcopy Photogrammetry Data Cindy McCallum WisDOT\Bureau of Technical Services Surveying & Mapping Section Photogrammetry Unit Overview Terms and processes Why use data from LiDAR

More information

Digital Elevation Models (DEMs)

Digital Elevation Models (DEMs) Digital Elevation Models (DEM) - Terrain Models (DTM) How has relief depiction on maps and online changed with digital mapping/ GIS?.. Perhaps more than the other map elements / layers Digital Elevation

More information

N.J.P.L.S. An Introduction to LiDAR Concepts and Applications

N.J.P.L.S. An Introduction to LiDAR Concepts and Applications N.J.P.L.S. An Introduction to LiDAR Concepts and Applications Presentation Outline LIDAR Data Capture Advantages of Lidar Technology Basics Intensity and Multiple Returns Lidar Accuracy Airborne Laser

More information

Digital Elevation Models

Digital Elevation Models Digital Elevation Models National Elevation Dataset 1 Data Sets US DEM series 7.5, 30, 1 o for conterminous US 7.5, 15 for Alaska US National Elevation Data (NED) GTOPO30 Global Land One-kilometer Base

More information

SimActive and PhaseOne Workflow case study. By François Riendeau and Dr. Yuri Raizman Revision 1.0

SimActive and PhaseOne Workflow case study. By François Riendeau and Dr. Yuri Raizman Revision 1.0 SimActive and PhaseOne Workflow case study By François Riendeau and Dr. Yuri Raizman Revision 1.0 Contents 1. Introduction... 2 1.1. Simactive... 2 1.2. PhaseOne Industrial... 2 2. Testing Procedure...

More information

Effects of multi-scale velocity heterogeneities on wave-equation migration Yong Ma and Paul Sava, Center for Wave Phenomena, Colorado School of Mines

Effects of multi-scale velocity heterogeneities on wave-equation migration Yong Ma and Paul Sava, Center for Wave Phenomena, Colorado School of Mines Effects of multi-scale velocity heterogeneities on wave-equation migration Yong Ma and Paul Sava, Center for Wave Phenomena, Colorado School of Mines SUMMARY Velocity models used for wavefield-based seismic

More information

Iowa Department of Transportation Office of Design. Photogrammetric Mapping Specifications

Iowa Department of Transportation Office of Design. Photogrammetric Mapping Specifications Iowa Department of Transportation Office of Design Photogrammetric Mapping Specifications March 2015 1 Purpose of Manual These Specifications for Photogrammetric Mapping define the standards and general

More information

Topographic Lidar Data Employed to Map, Preserve U.S. History

Topographic Lidar Data Employed to Map, Preserve U.S. History OCTOBER 11, 2016 Topographic Lidar Data Employed to Map, Preserve U.S. History In August 2015, the National Park Service (NPS) contracted Woolpert for the Little Bighorn National Monument Mapping Project

More information

Engineering Geology. Engineering Geology is backbone of civil engineering. Topographic Maps. Eng. Iqbal Marie

Engineering Geology. Engineering Geology is backbone of civil engineering. Topographic Maps. Eng. Iqbal Marie Engineering Geology Engineering Geology is backbone of civil engineering Topographic Maps Eng. Iqbal Marie Maps: are a two dimensional representation, of an area or region. There are many types of maps,

More information

Gradient based filtering of digital elevation models

Gradient based filtering of digital elevation models Gradient based filtering of digital elevation models Thomas Knudsen, Danish National Space Center, Juliane Maries Vej 30, DK-2100 Copenhagen Ø, tk@spacecenter.dk Rune Carbuhn Andersen Kort- & Matrikelstyrelsen,

More information

DATA FUSION AND INTEGRATION FOR MULTI-RESOLUTION ONLINE 3D ENVIRONMENTAL MONITORING

DATA FUSION AND INTEGRATION FOR MULTI-RESOLUTION ONLINE 3D ENVIRONMENTAL MONITORING DATA FUSION AND INTEGRATION FOR MULTI-RESOLUTION ONLINE 3D ENVIRONMENTAL MONITORING Yun Zhang, Pingping Xie, Hui Li Department of Geodesy and Geomatics Engineering, University of New Brunswick Fredericton,

More information

Esri International User Conference. July San Diego Convention Center. Lidar Solutions. Clayton Crawford

Esri International User Conference. July San Diego Convention Center. Lidar Solutions. Clayton Crawford Esri International User Conference July 23 27 San Diego Convention Center Lidar Solutions Clayton Crawford Outline Data structures, tools, and workflows Assessing lidar point coverage and sample density

More information

NEXTMap World 10 Digital Elevation Model

NEXTMap World 10 Digital Elevation Model NEXTMap Digital Elevation Model Intermap Technologies, Inc. 8310 South Valley Highway, Suite 400 Englewood, CO 80112 10012015 NEXTMap (top) provides an improvement in vertical accuracy and brings out greater

More information

Digital Elevation Model & Surface Analysis

Digital Elevation Model & Surface Analysis Topics: Digital Elevation Model & Surface Analysis 1. Introduction 2. Create raster DEM 3. Examine Lidar DEM 4. Deriving secondary surface products 5. Mapping contours 6. Viewshed Analysis 7. Extract elevation

More information

Surface and Terrain Models

Surface and Terrain Models Advanced Matching Techniques for High Precision Surface and Terrain Models Introduction Comeback of image matching for DTM & DSM generation Very few professional tools for DSM generation from image matching

More information

A Avenue, Bus: (604) Delta BC V4C 3W2 CANADA Memorandum

A Avenue, Bus: (604) Delta BC V4C 3W2 CANADA     Memorandum 11966 95A Avenue, Bus: (604) 582-1100 Delta BC V4C 3W2 CANADA E-mail: trent@sjgeophysics.com www.sjgeophysics.com To: Triple Nine Resources Ltd. Four Corners Mining Corp. Memorandum Attn: Victor French

More information

A new geodetic methodology for the accurate Documentation and Monitoring of inaccessible surfaces.

A new geodetic methodology for the accurate Documentation and Monitoring of inaccessible surfaces. A new geodetic methodology for the accurate Documentation and Monitoring of inaccessible surfaces. Ε. Lambrou, G. Pantazis Lecturers at NTUA School of Rural and Surveying Engineering National Technical

More information

DATA FUSION FOR MULTI-SCALE COLOUR 3D SATELLITE IMAGE GENERATION AND GLOBAL 3D VISUALIZATION

DATA FUSION FOR MULTI-SCALE COLOUR 3D SATELLITE IMAGE GENERATION AND GLOBAL 3D VISUALIZATION DATA FUSION FOR MULTI-SCALE COLOUR 3D SATELLITE IMAGE GENERATION AND GLOBAL 3D VISUALIZATION ABSTRACT: Yun Zhang, Pingping Xie, and Hui Li Department of Geodesy and Geomatics Engineering, University of

More information

3GSM GmbH. Plüddemanngasse 77 A-8010 Graz, Austria Tel Fax:

3GSM GmbH. Plüddemanngasse 77 A-8010 Graz, Austria Tel Fax: White Paper Graz, April 2014 3GSM GmbH Plüddemanngasse 77 A-8010 Graz, Austria Tel. +43-316-464744 Fax: +43-316-464744-11 office@3gsm.at www.3gsm.at Measurement and assessment of rock and terrain surfaces

More information

High Resolution Digital Elevation Model (HRDEM) CanElevation Series Product Specifications. Edition

High Resolution Digital Elevation Model (HRDEM) CanElevation Series Product Specifications. Edition High Resolution Digital Elevation Model (HRDEM) CanElevation Series Product Specifications Edition 1.1 2017-08-17 Government of Canada Natural Resources Canada Telephone: +01-819-564-4857 / 1-800-661-2638

More information

G012 Scattered Ground-roll Attenuation for 2D Land Data Using Seismic Interferometry

G012 Scattered Ground-roll Attenuation for 2D Land Data Using Seismic Interferometry G012 Scattered Ground-roll Attenuation for 2D Land Data Using Seismic Interferometry D.F. Halliday* (Schlumberger Cambridge Research), P.J. Bilsby (WesternGeco), J. Quigley (WesternGeco) & E. Kragh (Schlumberger

More information

Airborne Laser Survey Systems: Technology and Applications

Airborne Laser Survey Systems: Technology and Applications Abstract Airborne Laser Survey Systems: Technology and Applications Guangping HE Lambda Tech International, Inc. 2323B Blue Mound RD., Waukesha, WI-53186, USA Email: he@lambdatech.com As mapping products

More information

TRIMBLE BUSINESS CENTER PHOTOGRAMMETRY MODULE

TRIMBLE BUSINESS CENTER PHOTOGRAMMETRY MODULE TRIMBLE BUSINESS CENTER PHOTOGRAMMETRY MODULE WHITE PAPER TRIMBLE GEOSPATIAL DIVISION WESTMINSTER, COLORADO, USA July 2013 ABSTRACT The newly released Trimble Business Center Photogrammetry Module is compatible

More information

DIGITAL TERRAIN MODELLING. Endre Katona University of Szeged Department of Informatics

DIGITAL TERRAIN MODELLING. Endre Katona University of Szeged Department of Informatics DIGITAL TERRAIN MODELLING Endre Katona University of Szeged Department of Informatics katona@inf.u-szeged.hu The problem: data sources data structures algorithms DTM = Digital Terrain Model Terrain function:

More information