Wavelet Transform. CSE 490 G Introduction to Data Compression Winter Wavelet Transformed Barbara (Enhanced) Wavelet Transformed Barbara (Actual)

Size: px
Start display at page:

Download "Wavelet Transform. CSE 490 G Introduction to Data Compression Winter Wavelet Transformed Barbara (Enhanced) Wavelet Transformed Barbara (Actual)"

Transcription

1 Wavelet Trasform CSE 49 G Itroductio to Data Compressio Witer 6 Wavelet Trasform Codig PACW Wavelet Trasform A family of atios that filters the data ito low resolutio data plus detail data high pass filter low pass filter ed detail subbads CSE 49g - ecture - Witer 6 Wavelet Trasformed Barbara (Ehaced) Wavelet Trasformed Barbara (Actual) ow resolutio subbad Detail subbads most of the details are small so they are very dark CSE 49g - ecture - Witer 6 CSE 49g - ecture - Witer 6 4 (pixels) Wavelet Trasform Compressio Ecoder Decoder decodig ed (coefficiets) ed (approx coefficiets) codig iverse bit stream distorted Wavelet coder trasmits ed i bit plae order with the most sigificat bits first CSE 49g - ecture - Witer sig plae Bit Plaes of Coefficiets Coefficiets are ormalized betwee ad CSE 49g - ecture - Witer 6 6

2 Why Wavelet Compressio Works Wavelet coefficiets are trasmitted i bit-plae order I most sigificat bit plaes most coefficiets are so they ca be coded efficietly Oly some of the bit plaes are trasmitted This is where fidelity is lost whe compressio is gaied Natural progressive trasmissio compressed bit plaes trucated compressed bit plaes CSE 49g - ecture - Witer Rate-Fidelity Curve 4 bits per pixel More bit plaes of the ed that is set the higher the fidelity SPIT coded Barbara CSE 49g - ecture - Witer 6 8 Wavelet Codig Methods EZW - Shapiro, 99 Embedded Zerotree codig SPIT - Said ad Pearlma, 996 Set Partitioig i ierarchical Trees codig Also uses zerotrees ECECOW - Wu, 997 Uses arithmetic codig with cotext EBCOT Taubma, Uses arithmetic codig with differet cotext JPEG ew stadard based largely o EBCOT GTW og, ader Uses group testig which is closely related to Golomb codes PACW - ader, Askew, Barey ike GTW but uses arithmetic codig CSE 49g - ecture - Witer 6 9 (pixels) Ecoder Decoder decodig Wavelet Trasform ed (coefficiets) ed (approx coefficiets) codig iverse bit stream distorted A decomposes the ito a low resolutio versio ad details The details are typically very small so they ca be coded i very few bits CSE 49g - ecture - Witer 6 Oe-Dimesioal Average Trasform () Oe-Dimesioal Average Trasform () x y average (x+y)/ ow do we represet two data poits at lower resolutio? x y detail (y-x)/ x y (x+y)/ = low pass filter high pass filter (y-x)/ = x x = - y = + y Trasform detail Iverse Trasform CSE 49g - ecture - Witer 6 CSE 49g - ecture - Witer 6

3 Oe-Dimesioal Average Trasform () Oe-Dimesioal Average Trasform (4) ow Resolutio Versio A B Note that the low resolutio versio ad the detail together have the same umber of values as the origial Detail B[i] = A[i] + A[i + ], i < B[/ + i] = A[i] + A[i + ], i < = B[/-] = B[/-] CSE 49g - ecture - Witer 6 CSE 49g - ecture - Witer 6 4 Oe-Dimesioal Average Iverse Trasform Two Dimesioal Trasform () low resolutio subbad horizotal vertical B A A[i] = B[i] B[/ + i], i < A[i + ] = B[i] + B[/ + i], i < Trasform each row Trasform each colum i ad detail subbads CSE 49g - ecture - Witer 6 5 CSE 49g - ecture - Witer 6 6 Two Dimesioal Trasform () Two Dimesioal Average Trasform horizotal horizotal vertical Trasform each row i Trasform each colum i ad egative value vertical levels of gives 7 subbads k levels of gives k + subbads CSE 49g - ecture - Witer 6 7 CSE 49g - ecture - Witer 6 8

4 Wavelet Trasformed Image levels of low resolutio subbad 6 detail subbads Wavelet Trasform Details Coversio to reals Covert gray scale to floatig poit Covert color to Y U V ad the covert each to bad to floatig poit Compress separately After several levels (-8) of we have a matrix of floatig poit umbers called the ed (coefficiets) CSE 49g - ecture - Witer 6 9 CSE 49g - ecture - Witer 6 Wavelet Trasforms Techically s are special kids of liear atios Easiest to thik of them as filters The filters deped oly o a costat umber of values (bouded support) Preserve eergy (orm of the pixels = orm of the coefficiets) Iverse filters also have bouded support Well-kow s aar like the average but orthogoal to preserve eergy Not used i practice Daubechies 9/7 biorthogoal (iverse is ot the traspose) Most commoly used i practice CSE 49g - ecture - Witer aar Filters low pass =, high pass =, low pass B[i] = A[i] + A[i + ], i < high pass B[/ + i] = A[i] + A[i + ], i < Wat the sum of squares of the filter coefficiets = CSE 49g - ecture - Witer Daubechies 9/7 Filters low pass filter high pass filter 8 h g j 6 j low pass high pass B[i] = 4 j= 4 B[/ + i] = hja[ i + j], i < j= gja[ i + j], i < reflectio used ear boudaries CSE 49g - ecture - Witer 6 iear Time Complexity of D Wavelet Trasform et = umber of pixels ad let b be the umber of coefficiets i the filters Oe level of takes time O(b) k levels of takes time proportioal to b + b/4 + + b/4 k- < (4/)b The is liear time whe the filters have costat The poit of s is to use costat filters ulike may other s CSE 49g - ecture - Witer 6 4 4

5 (pixels) Ecoder Decoder decodig Wavelet Trasform ed (coefficiets) ed (approx coefficiets) codig iverse bit stream distorted Wavelet coder trasmits ed i bit plae order with the most sigificat bits first Bit-Plae Codig Normalize the coefficiets to be betwee ad Trasmit oe bit-plae at a time For each bit-plae Sigificace pass: Fid the ewly sigificat coefficiets, trasmit their sigs Refiemet pass: trasmit the bits of the kow sigificat coefficiets CSE 49g - ecture - Witer 6 5 CSE 49g - ecture - Witer 6 6 Divide ito Bit-Plaes Sigificat Coefficiets Coefficiets Sig Plae magitude 4 coefficiets bit-plae threshold CSE 49g - ecture - Witer 6 7 CSE 49g - ecture - Witer magitude 4 Sigificat Coefficiets coefficiets bit-plae threshold CSE 49g - ecture - Witer 6 9 Sigificace & Refiemet Passes Code a bit-plae i two passes Sigificace pass codes previously isigificat coefficiets also codes sig bit Refiemet pass refies values for previously sigificat coefficiets Mai idea: Sigificace-pass bits likely to be ; Refiemet-pass bit are ot Coefficiet ist # value refiemet bits CSE 49g - ecture - Witer 6 : : Bit-plae 5

6 bit plae bit plaes CSE 49g - ecture - Witer 6 CSE 49g - ecture - Witer 6 bit plaes bit plaes : 5 CSE 49g - ecture - Witer 6 CSE 49g - ecture - Witer 6 4 bit plaes 5 bit plaes ratio 9 : ratio 68 : 48 CSE 49g - ecture - Witer 6 5 CSE 49g - ecture - Witer 6 6 6

7 bit plaes 7 bit plaes 8 69 ratio 6 : ratio : 87 9 CSE 49g - ecture - Witer 6 7 CSE 49g - ecture - Witer 6 8 bit plaes 9 PACW 6 ratio 7 : 75 A simple coder based o Bit-plae codig Sigificace pass Refiemet pass Arithmetic codig Careful selectio of cotexts based o statistical studies Implemeted by udergraduates Amada Askew ad Dae Barey i Summer CSE 49g - ecture - Witer 6 9 CSE 49g - ecture - Witer 6 4 (pixels) bit plae decodig usig AC Ecoder Decoder PACW Block Diagram ed (coefficiets) Recombie bit-plaes subtract Avg Bitplaes Bitplaes Iterpolate Divide ito bit-plaes add Avg ed (approx coefficiets) bit plae ecodig usig AC iverse bit stream distorted Arithmetic Codig i PACW Performed o each idividual bit plae Alphabet is ={,} Sigs are coded as eeded Uses iteger implemetatio with -bit itegers (Iitialize =, R = -) Uses scalig ad adaptatio Uses cotexts based o statistical studies CSE 49g - ecture - Witer 6 4 CSE 49g - ecture - Witer 6 4 7

8 Ecodig the Bit-Plaes Code most sigificat bit-plaes first Sigificace pass for a bit-plae First code those coefficiets that were isigificat i the previous bit-plae Code these i a priority order If a coefficiet becomes sigificat the code its sig Refiemet pass for a bit-plae Code the refiemet bit for each coefficiet that is sigificat i a previous bit-plae Decodig Emulate the ecoder to fid the bit plaes The decoder kow which bit-plae is beig decoded Whether it is the sigificat or refiemet pass Which coefficiet is beig decoded Iterpolate to estimate the coefficiets CSE 49g - ecture - Witer 6 4 CSE 49g - ecture - Witer 6 44 Cotexts (per bit plae) Sigificace pass cotexts: Cotexts based o Subbad level Number of sigificat eighbors Sig cotext Refiemet cotexts st refiemet bit is always so o cotext eeded d refiemet bit has a cotext All other refiemet bits have a cotext Cotext Priciples Bits i a give cotext have a probability distributio Bits i differet cotexts have differet probability distributios Subbad evel Image is divided ito subbads util bad (subbad level ) is less tha 6x6 Barbara has 7 subbad levels CSE 49g - ecture - Witer 6 45 CSE 49g - ecture - Witer 6 46 Statistics for Subbad evels Sigificat Neighbor Metric Subbad evel Barbara (8) # sigificat # isigificat % sigificat Cout # of sigificat eighbors childre cout for at most,,, % % 56% 7% 97% 87% 78% Neighbors of : p paret a spatially adjacet i spatially idetical c child i p a a a a a a a a i c c c c CSE 49g - ecture - Witer 6 47 CSE 49g - ecture - Witer

9 Number of Sigificat Neighbors Sigificat eighbors # sigificat Barbara (8) # isigificat % sigificat % 59% 76% 77% 7% 4% 45% 488% Refiemet Bit Cotext Statistics d Refiemet Bits Other Refiemet Bits Sig Bits Barbara (8) s 46,9 475,94 8,45 s,5 4,98, % s 59% 5% 496% Barbara at : d Refiemet bit % s = 658% CSE 49g - ecture - Witer 6 49 CSE 49g - ecture - Witer 6 5 Cotext Details Sigificace pass cotexts per bit-plae: Max eighbors* um subbad levels cotexts For Barbara: cotexts for sig eighbor couts of - ad subbad levels of -6 = 4*7 = 8 cotexts Idex of a cotext Max eighbors * subbad level + um sig eighbors Example um sig eighbors =, subbad level =, idex = 4 * + = 4 Sig cotext cotexts Refiemet cotexts st refiemet bit is always ot trasmitted d refiemet bit has a cotext all other refiemet bits have a cotext Number of cotexts per bit-plae for Barbara = = Priority Queue Used i sigificace pass to decide which coefficiet to code ext Goal code coefficiets most likely to become sigificat All o-empty cotexts are kept i a max heap Priority is determied by: # sig coefficiets coded / total coefficiets coded CSE 49g - ecture - Witer 6 5 CSE 49g - ecture - Witer 6 5 Recostructio of Coefficiets Origial Barbara Image Coefficiets are decoded to a certai umber of bit plaes XXXXX What should X s be? < XXXXX < is half-way adled the same as SPIT ad GTW if coefficiet is still isigificat, do o iterpolatio if ewly sigificat, add o 8 to scale if sigificat, add o 5 to scale A = k -k A A A A CSE 49g - ecture - Witer 6 5 CSE 49g - ecture - Witer

10 Barbara at 5 ( = 775) Barbara at 5 ( = 68) CSE 49g - ecture - Witer 6 55 CSE 49g - ecture - Witer 6 Barbara at ( = 45) 56 Results Compressio of Barbara (db) 9 JPEG 8 UWIC 7 GTW SPIT 6 JPEG Bit rate (bits/pixel) CSE 49g - ecture - Witer 6 57 CSE 49g - ecture - Witer 6 58 Results Results Compressio of ea Compressio of RoughWall (db) (db) PACW GTW SPIT JPEG JPEG UWIC SPIT JPEG Bit rate (bits/pixel) CSE 49g - ecture - Witer 6 JPEG 5 GTW Bit rate (bits/pixel) 59 CSE 49g - ecture - Witer 6 6

11 PACW Notes PACW competitive with JPEG, SPIT- AC, ad GTW Developed i Java from scratch by two udergraduates, Dae Barey ad Amada Askew, i moths Dae s fial versio is slightly differet tha the oe describe here See his seior thesis CSE 49g - ecture - Witer 6 6

CSEP 521 Applied Algorithms Spring Lossy Image Compression

CSEP 521 Applied Algorithms Spring Lossy Image Compression CSEP 521 Applied Algorithms Spring 2005 Lossy Image Compression Lossy Image Compression Methods Scalar quantization (SQ). Vector quantization (VQ). DCT Compression JPEG Wavelet Compression SPIHT UWIC (University

More information

Lecture 5. Counting Sort / Radix Sort

Lecture 5. Counting Sort / Radix Sort Lecture 5. Coutig Sort / Radix Sort T. H. Corme, C. E. Leiserso ad R. L. Rivest Itroductio to Algorithms, 3rd Editio, MIT Press, 2009 Sugkyukwa Uiversity Hyuseug Choo choo@skku.edu Copyright 2000-2018

More information

Wavelet Based Dual Encoding Lossless Medical Image Compression

Wavelet Based Dual Encoding Lossless Medical Image Compression avelet Based Dual Ecodig Lossless Medical Image Compressio *V.Maohar, Asst. Professor, SR Egieerig College, aragal, TG, Idia, maoharvu@gmail.com **Dr.G. Laxmiarayaa, Professor, oly Mary Istitute of Techology,

More information

( n+1 2 ) , position=(7+1)/2 =4,(median is observation #4) Median=10lb

( n+1 2 ) , position=(7+1)/2 =4,(median is observation #4) Median=10lb Chapter 3 Descriptive Measures Measures of Ceter (Cetral Tedecy) These measures will tell us where is the ceter of our data or where most typical value of a data set lies Mode the value that occurs most

More information

A Fully SNR, Spatial and Temporal Scalable 3DSPIHT-Based Video Coding Algorithm for Video Streaming Over Heterogeneous Networks

A Fully SNR, Spatial and Temporal Scalable 3DSPIHT-Based Video Coding Algorithm for Video Streaming Over Heterogeneous Networks A Fully SNR, Spatial ad Temporal Scalable 3DSIHT-Based ideo Codig Algorithm for ideo Streamig Over Heterogeeous Networks Habibollah Dayali ad Alfred Mertis School of Electrical, Computer ad Telecommuicatios

More information

The isoperimetric problem on the hypercube

The isoperimetric problem on the hypercube The isoperimetric problem o the hypercube Prepared by: Steve Butler November 2, 2005 1 The isoperimetric problem We will cosider the -dimesioal hypercube Q Recall that the hypercube Q is a graph whose

More information

Appendix D. Controller Implementation

Appendix D. Controller Implementation COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Iterface 5 th Editio Appedix D Cotroller Implemetatio Cotroller Implemetatios Combiatioal logic (sigle-cycle); Fiite state machie (multi-cycle, pipelied);

More information

UNIT 4 Section 8 Estimating Population Parameters using Confidence Intervals

UNIT 4 Section 8 Estimating Population Parameters using Confidence Intervals UNIT 4 Sectio 8 Estimatig Populatio Parameters usig Cofidece Itervals To make ifereces about a populatio that caot be surveyed etirely, sample statistics ca be take from a SRS of the populatio ad used

More information

A New Morphological 3D Shape Decomposition: Grayscale Interframe Interpolation Method

A New Morphological 3D Shape Decomposition: Grayscale Interframe Interpolation Method A ew Morphological 3D Shape Decompositio: Grayscale Iterframe Iterpolatio Method D.. Vizireau Politehica Uiversity Bucharest, Romaia ae@comm.pub.ro R. M. Udrea Politehica Uiversity Bucharest, Romaia mihea@comm.pub.ro

More information

The Closest Line to a Data Set in the Plane. David Gurney Southeastern Louisiana University Hammond, Louisiana

The Closest Line to a Data Set in the Plane. David Gurney Southeastern Louisiana University Hammond, Louisiana The Closest Lie to a Data Set i the Plae David Gurey Southeaster Louisiaa Uiversity Hammod, Louisiaa ABSTRACT This paper looks at three differet measures of distace betwee a lie ad a data set i the plae:

More information

SD vs. SD + One of the most important uses of sample statistics is to estimate the corresponding population parameters.

SD vs. SD + One of the most important uses of sample statistics is to estimate the corresponding population parameters. SD vs. SD + Oe of the most importat uses of sample statistics is to estimate the correspodig populatio parameters. The mea of a represetative sample is a good estimate of the mea of the populatio that

More information

Improvement of the Orthogonal Code Convolution Capabilities Using FPGA Implementation

Improvement of the Orthogonal Code Convolution Capabilities Using FPGA Implementation Improvemet of the Orthogoal Code Covolutio Capabilities Usig FPGA Implemetatio Naima Kaabouch, Member, IEEE, Apara Dhirde, Member, IEEE, Saleh Faruque, Member, IEEE Departmet of Electrical Egieerig, Uiversity

More information

Chapter 24. Sorting. Objectives. 1. To study and analyze time efficiency of various sorting algorithms

Chapter 24. Sorting. Objectives. 1. To study and analyze time efficiency of various sorting algorithms Chapter 4 Sortig 1 Objectives 1. o study ad aalyze time efficiecy of various sortig algorithms 4. 4.7.. o desig, implemet, ad aalyze bubble sort 4.. 3. o desig, implemet, ad aalyze merge sort 4.3. 4. o

More information

CS Polygon Scan Conversion. Slide 1

CS Polygon Scan Conversion. Slide 1 CS 112 - Polygo Sca Coversio Slide 1 Polygo Classificatio Covex All iterior agles are less tha 180 degrees Cocave Iterior agles ca be greater tha 180 degrees Degeerate polygos If all vertices are colliear

More information

Normals. In OpenGL the normal vector is part of the state Set by glnormal*()

Normals. In OpenGL the normal vector is part of the state Set by glnormal*() Ray Tracig 1 Normals OpeG the ormal vector is part of the state Set by glnormal*() -glnormal3f(x, y, z); -glnormal3fv(p); Usually we wat to set the ormal to have uit legth so cosie calculatios are correct

More information

EE260: Digital Design, Spring /16/18. n Example: m 0 (=x 1 x 2 ) is adjacent to m 1 (=x 1 x 2 ) and m 2 (=x 1 x 2 ) but NOT m 3 (=x 1 x 2 )

EE260: Digital Design, Spring /16/18. n Example: m 0 (=x 1 x 2 ) is adjacent to m 1 (=x 1 x 2 ) and m 2 (=x 1 x 2 ) but NOT m 3 (=x 1 x 2 ) EE26: Digital Desig, Sprig 28 3/6/8 EE 26: Itroductio to Digital Desig Combiatioal Datapath Yao Zheg Departmet of Electrical Egieerig Uiversity of Hawaiʻi at Māoa Combiatioal Logic Blocks Multiplexer Ecoders/Decoders

More information

9 x and g(x) = 4. x. Find (x) 3.6. I. Combining Functions. A. From Equations. Example: Let f(x) = and its domain. Example: Let f(x) = and g(x) = x x 4

9 x and g(x) = 4. x. Find (x) 3.6. I. Combining Functions. A. From Equations. Example: Let f(x) = and its domain. Example: Let f(x) = and g(x) = x x 4 1 3.6 I. Combiig Fuctios A. From Equatios Example: Let f(x) = 9 x ad g(x) = 4 f x. Fid (x) g ad its domai. 4 Example: Let f(x) = ad g(x) = x x 4. Fid (f-g)(x) B. From Graphs: Graphical Additio. Example:

More information

. Written in factored form it is easy to see that the roots are 2, 2, i,

. Written in factored form it is easy to see that the roots are 2, 2, i, CMPS A Itroductio to Programmig Programmig Assigmet 4 I this assigmet you will write a java program that determies the real roots of a polyomial that lie withi a specified rage. Recall that the roots (or

More information

Vision & Perception. Simple model: simple reflectance/illumination model. image: x(n 1,n 2 )=i(n 1,n 2 )r(n 1,n 2 ) 0 < r(n 1,n 2 ) < 1

Vision & Perception. Simple model: simple reflectance/illumination model. image: x(n 1,n 2 )=i(n 1,n 2 )r(n 1,n 2 ) 0 < r(n 1,n 2 ) < 1 Visio & Perceptio Simple model: simple reflectace/illumiatio model Eye illumiatio source i( 1, 2 ) image: x( 1, 2 )=i( 1, 2 )r( 1, 2 ) reflectace term r( 1, 2 ) where 0 < i( 1, 2 ) < 0 < r( 1, 2 ) < 1

More information

Polynomial Functions and Models. Learning Objectives. Polynomials. P (x) = a n x n + a n 1 x n a 1 x + a 0, a n 0

Polynomial Functions and Models. Learning Objectives. Polynomials. P (x) = a n x n + a n 1 x n a 1 x + a 0, a n 0 Polyomial Fuctios ad Models 1 Learig Objectives 1. Idetify polyomial fuctios ad their degree 2. Graph polyomial fuctios usig trasformatios 3. Idetify the real zeros of a polyomial fuctio ad their multiplicity

More information

Learning to Shoot a Goal Lecture 8: Learning Models and Skills

Learning to Shoot a Goal Lecture 8: Learning Models and Skills Learig to Shoot a Goal Lecture 8: Learig Models ad Skills How do we acquire skill at shootig goals? CS 344R/393R: Robotics Bejami Kuipers Learig to Shoot a Goal The robot eeds to shoot the ball i the goal.

More information

27 Refraction, Dispersion, Internal Reflection

27 Refraction, Dispersion, Internal Reflection Chapter 7 Refractio, Dispersio, Iteral Reflectio 7 Refractio, Dispersio, Iteral Reflectio Whe we talked about thi film iterferece, we said that whe light ecouters a smooth iterface betwee two trasparet

More information

Lecture 6. Lecturer: Ronitt Rubinfeld Scribes: Chen Ziv, Eliav Buchnik, Ophir Arie, Jonathan Gradstein

Lecture 6. Lecturer: Ronitt Rubinfeld Scribes: Chen Ziv, Eliav Buchnik, Ophir Arie, Jonathan Gradstein 068.670 Subliear Time Algorithms November, 0 Lecture 6 Lecturer: Roitt Rubifeld Scribes: Che Ziv, Eliav Buchik, Ophir Arie, Joatha Gradstei Lesso overview. Usig the oracle reductio framework for approximatig

More information

Ones Assignment Method for Solving Traveling Salesman Problem

Ones Assignment Method for Solving Traveling Salesman Problem Joural of mathematics ad computer sciece 0 (0), 58-65 Oes Assigmet Method for Solvig Travelig Salesma Problem Hadi Basirzadeh Departmet of Mathematics, Shahid Chamra Uiversity, Ahvaz, Ira Article history:

More information

Morgan Kaufmann Publishers 26 February, COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Chapter 5

Morgan Kaufmann Publishers 26 February, COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Chapter 5 Morga Kaufma Publishers 26 February, 28 COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Iterface 5 th Editio Chapter 5 Set-Associative Cache Architecture Performace Summary Whe CPU performace icreases:

More information

Chapter 1. Introduction to Computers and C++ Programming. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 1. Introduction to Computers and C++ Programming. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 1 Itroductio to Computers ad C++ Programmig Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 1.1 Computer Systems 1.2 Programmig ad Problem Solvig 1.3 Itroductio to C++ 1.4 Testig

More information

Accuracy Improvement in Camera Calibration

Accuracy Improvement in Camera Calibration Accuracy Improvemet i Camera Calibratio FaJie L Qi Zag ad Reihard Klette CITR, Computer Sciece Departmet The Uiversity of Aucklad Tamaki Campus, Aucklad, New Zealad fli006, qza001@ec.aucklad.ac.z r.klette@aucklad.ac.z

More information

Dimensionality Reduction PCA

Dimensionality Reduction PCA Dimesioality Reductio PCA Machie Learig CSE446 David Wadde (slides provided by Carlos Guestri) Uiversity of Washigto Feb 22, 2017 Carlos Guestri 2005-2017 1 Dimesioality reductio Iput data may have thousads

More information

condition w i B i S maximum u i

condition w i B i S maximum u i ecture 10 Dyamic Programmig 10.1 Kapsack Problem November 1, 2004 ecturer: Kamal Jai Notes: Tobias Holgers We are give a set of items U = {a 1, a 2,..., a }. Each item has a weight w i Z + ad a utility

More information

Administrative UNSUPERVISED LEARNING. Unsupervised learning. Supervised learning 11/25/13. Final project. No office hours today

Administrative UNSUPERVISED LEARNING. Unsupervised learning. Supervised learning 11/25/13. Final project. No office hours today Admiistrative Fial project No office hours today UNSUPERVISED LEARNING David Kauchak CS 451 Fall 2013 Supervised learig Usupervised learig label label 1 label 3 model/ predictor label 4 label 5 Supervised

More information

Numerical Methods Lecture 6 - Curve Fitting Techniques

Numerical Methods Lecture 6 - Curve Fitting Techniques Numerical Methods Lecture 6 - Curve Fittig Techiques Topics motivatio iterpolatio liear regressio higher order polyomial form expoetial form Curve fittig - motivatio For root fidig, we used a give fuctio

More information

1.2 Binomial Coefficients and Subsets

1.2 Binomial Coefficients and Subsets 1.2. BINOMIAL COEFFICIENTS AND SUBSETS 13 1.2 Biomial Coefficiets ad Subsets 1.2-1 The loop below is part of a program to determie the umber of triagles formed by poits i the plae. for i =1 to for j =

More information

Lecture 1: Introduction and Strassen s Algorithm

Lecture 1: Introduction and Strassen s Algorithm 5-750: Graduate Algorithms Jauary 7, 08 Lecture : Itroductio ad Strasse s Algorithm Lecturer: Gary Miller Scribe: Robert Parker Itroductio Machie models I this class, we will primarily use the Radom Access

More information

ENGI 4421 Probability and Statistics Faculty of Engineering and Applied Science Problem Set 1 Descriptive Statistics

ENGI 4421 Probability and Statistics Faculty of Engineering and Applied Science Problem Set 1 Descriptive Statistics ENGI 44 Probability ad Statistics Faculty of Egieerig ad Applied Sciece Problem Set Descriptive Statistics. If, i the set of values {,, 3, 4, 5, 6, 7 } a error causes the value 5 to be replaced by 50,

More information

Lower Bounds for Sorting

Lower Bounds for Sorting Liear Sortig Topics Covered: Lower Bouds for Sortig Coutig Sort Radix Sort Bucket Sort Lower Bouds for Sortig Compariso vs. o-compariso sortig Decisio tree model Worst case lower boud Compariso Sortig

More information

Creating Exact Bezier Representations of CST Shapes. David D. Marshall. California Polytechnic State University, San Luis Obispo, CA , USA

Creating Exact Bezier Representations of CST Shapes. David D. Marshall. California Polytechnic State University, San Luis Obispo, CA , USA Creatig Exact Bezier Represetatios of CST Shapes David D. Marshall Califoria Polytechic State Uiversity, Sa Luis Obispo, CA 93407-035, USA The paper presets a method of expressig CST shapes pioeered by

More information

Sorting in Linear Time. Data Structures and Algorithms Andrei Bulatov

Sorting in Linear Time. Data Structures and Algorithms Andrei Bulatov Sortig i Liear Time Data Structures ad Algorithms Adrei Bulatov Algorithms Sortig i Liear Time 7-2 Compariso Sorts The oly test that all the algorithms we have cosidered so far is compariso The oly iformatio

More information

CSE 417: Algorithms and Computational Complexity

CSE 417: Algorithms and Computational Complexity Time CSE 47: Algorithms ad Computatioal Readig assigmet Read Chapter of The ALGORITHM Desig Maual Aalysis & Sortig Autum 00 Paul Beame aalysis Problem size Worst-case complexity: max # steps algorithm

More information

Chapter 11. Friends, Overloaded Operators, and Arrays in Classes. Copyright 2014 Pearson Addison-Wesley. All rights reserved.

Chapter 11. Friends, Overloaded Operators, and Arrays in Classes. Copyright 2014 Pearson Addison-Wesley. All rights reserved. Chapter 11 Frieds, Overloaded Operators, ad Arrays i Classes Copyright 2014 Pearso Addiso-Wesley. All rights reserved. Overview 11.1 Fried Fuctios 11.2 Overloadig Operators 11.3 Arrays ad Classes 11.4

More information

Chapter 9. Pointers and Dynamic Arrays. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 9. Pointers and Dynamic Arrays. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 9 Poiters ad Dyamic Arrays Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 9.1 Poiters 9.2 Dyamic Arrays Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Slide 9-3

More information

A graphical view of big-o notation. c*g(n) f(n) f(n) = O(g(n))

A graphical view of big-o notation. c*g(n) f(n) f(n) = O(g(n)) ca see that time required to search/sort grows with size of We How do space/time eeds of program grow with iput size? iput. time: cout umber of operatios as fuctio of iput Executio size operatio Assigmet:

More information

why study sorting? Sorting is a classic subject in computer science. There are three reasons for studying sorting algorithms.

why study sorting? Sorting is a classic subject in computer science. There are three reasons for studying sorting algorithms. Chapter 5 Sortig IST311 - CIS65/506 Clevelad State Uiversity Prof. Victor Matos Adapted from: Itroductio to Java Programmig: Comprehesive Versio, Eighth Editio by Y. Daiel Liag why study sortig? Sortig

More information

Optimal Mapped Mesh on the Circle

Optimal Mapped Mesh on the Circle Koferece ANSYS 009 Optimal Mapped Mesh o the Circle doc. Ig. Jaroslav Štigler, Ph.D. Bro Uiversity of Techology, aculty of Mechaical gieerig, ergy Istitut, Abstract: This paper brigs out some ideas ad

More information

CIS 121 Data Structures and Algorithms with Java Spring Stacks, Queues, and Heaps Monday, February 18 / Tuesday, February 19

CIS 121 Data Structures and Algorithms with Java Spring Stacks, Queues, and Heaps Monday, February 18 / Tuesday, February 19 CIS Data Structures ad Algorithms with Java Sprig 09 Stacks, Queues, ad Heaps Moday, February 8 / Tuesday, February 9 Stacks ad Queues Recall the stack ad queue ADTs (abstract data types from lecture.

More information

Pattern Recognition Systems Lab 1 Least Mean Squares

Pattern Recognition Systems Lab 1 Least Mean Squares Patter Recogitio Systems Lab 1 Least Mea Squares 1. Objectives This laboratory work itroduces the OpeCV-based framework used throughout the course. I this assigmet a lie is fitted to a set of poits usig

More information

Eigenimages. Digital Image Processing: Bernd Girod, 2013 Stanford University -- Eigenimages 1

Eigenimages. Digital Image Processing: Bernd Girod, 2013 Stanford University -- Eigenimages 1 Eigeimages Uitary trasforms Karhue-Loève trasform ad eigeimages Sirovich ad Kirby method Eigefaces for geder recogitio Fisher liear discrimat aalysis Fisherimages ad varyig illumiatio Fisherfaces vs. eigefaces

More information

CIS 121 Data Structures and Algorithms with Java Spring Stacks and Queues Monday, February 12 / Tuesday, February 13

CIS 121 Data Structures and Algorithms with Java Spring Stacks and Queues Monday, February 12 / Tuesday, February 13 CIS Data Structures ad Algorithms with Java Sprig 08 Stacks ad Queues Moday, February / Tuesday, February Learig Goals Durig this lab, you will: Review stacks ad queues. Lear amortized ruig time aalysis

More information

BGP Attributes and Path Selection. ISP Training Workshops

BGP Attributes and Path Selection. ISP Training Workshops BGP Attributes ad Path Selectio ISP Traiig Workshops 1 BGP Attributes The tools available for the job 2 What Is a Attribute?... Next Hop AS Path MED...... p Part of a BGP Update p Describes the characteristics

More information

Fundamentals of Media Processing. Shin'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dinh Le

Fundamentals of Media Processing. Shin'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dinh Le Fudametals of Media Processig Shi'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dih Le Today's topics Noparametric Methods Parze Widow k-nearest Neighbor Estimatio Clusterig Techiques k-meas Agglomerative Hierarchical

More information

n Some thoughts on software development n The idea of a calculator n Using a grammar n Expression evaluation n Program organization n Analysis

n Some thoughts on software development n The idea of a calculator n Using a grammar n Expression evaluation n Program organization n Analysis Overview Chapter 6 Writig a Program Bjare Stroustrup Some thoughts o software developmet The idea of a calculator Usig a grammar Expressio evaluatio Program orgaizatio www.stroustrup.com/programmig 3 Buildig

More information

Data Analysis. Concepts and Techniques. Chapter 2. Chapter 2: Getting to Know Your Data. Data Objects and Attribute Types

Data Analysis. Concepts and Techniques. Chapter 2. Chapter 2: Getting to Know Your Data. Data Objects and Attribute Types Data Aalysis Cocepts ad Techiques Chapter 2 1 Chapter 2: Gettig to Kow Your Data Data Objects ad Attribute Types Basic Statistical Descriptios of Data Data Visualizatio Measurig Data Similarity ad Dissimilarity

More information

Introduction to Sigma Notation

Introduction to Sigma Notation Itroductio to Siga Notatio Steph de Silva //207 What is siga otatio? is the capital Greek letter for the soud s I this case, it s just shorthad for su Siga otatio is what we use whe we have a series of

More information

Improving Template Based Spike Detection

Improving Template Based Spike Detection Improvig Template Based Spike Detectio Kirk Smith, Member - IEEE Portlad State Uiversity petra@ee.pdx.edu Abstract Template matchig algorithms like SSE, Covolutio ad Maximum Likelihood are well kow for

More information

EM375 STATISTICS AND MEASUREMENT UNCERTAINTY LEAST SQUARES LINEAR REGRESSION ANALYSIS

EM375 STATISTICS AND MEASUREMENT UNCERTAINTY LEAST SQUARES LINEAR REGRESSION ANALYSIS EM375 STATISTICS AND MEASUREMENT UNCERTAINTY LEAST SQUARES LINEAR REGRESSION ANALYSIS I this uit of the course we ivestigate fittig a straight lie to measured (x, y) data pairs. The equatio we wat to fit

More information

Behavioral Modeling in Verilog

Behavioral Modeling in Verilog Behavioral Modelig i Verilog COE 202 Digital Logic Desig Dr. Muhamed Mudawar Kig Fahd Uiversity of Petroleum ad Mierals Presetatio Outlie Itroductio to Dataflow ad Behavioral Modelig Verilog Operators

More information

The Nature of Light. Chapter 22. Geometric Optics Using a Ray Approximation. Ray Approximation

The Nature of Light. Chapter 22. Geometric Optics Using a Ray Approximation. Ray Approximation The Nature of Light Chapter Reflectio ad Refractio of Light Sectios: 5, 8 Problems: 6, 7, 4, 30, 34, 38 Particles of light are called photos Each photo has a particular eergy E = h ƒ h is Plack s costat

More information

Assigning colour to pixels or fragments. Modelling Illumination. We shall see how it is done in a rasterization model. CS475/CS675 - Lecture 14

Assigning colour to pixels or fragments. Modelling Illumination. We shall see how it is done in a rasterization model. CS475/CS675 - Lecture 14 - Computer Graphics Assigig colour to pixels or fragmets. Modellig Illumiatio Illumiatio Model : The Phog Model For a sigle light source total illumiatio at ay poit is give by: ecture 14: I =k a I a k

More information

The Magma Database file formats

The Magma Database file formats The Magma Database file formats Adrew Gaylard, Bret Pikey, ad Mart-Mari Breedt Johaesburg, South Africa 15th May 2006 1 Summary Magma is a ope-source object database created by Chris Muller, of Kasas City,

More information

Threads and Concurrency in Java: Part 1

Threads and Concurrency in Java: Part 1 Cocurrecy Threads ad Cocurrecy i Java: Part 1 What every computer egieer eeds to kow about cocurrecy: Cocurrecy is to utraied programmers as matches are to small childre. It is all too easy to get bured.

More information

Threads and Concurrency in Java: Part 1

Threads and Concurrency in Java: Part 1 Threads ad Cocurrecy i Java: Part 1 1 Cocurrecy What every computer egieer eeds to kow about cocurrecy: Cocurrecy is to utraied programmers as matches are to small childre. It is all too easy to get bured.

More information

Eigenimages. Digital Image Processing: Bernd Girod, Stanford University -- Eigenimages 1

Eigenimages. Digital Image Processing: Bernd Girod, Stanford University -- Eigenimages 1 Eigeimages Uitary trasforms Karhue-Loève trasform ad eigeimages Sirovich ad Kirby method Eigefaces for geder recogitio Fisher liear discrimat aalysis Fisherimages ad varyig illumiatio Fisherfaces vs. eigefaces

More information

CSE 2320 Notes 8: Sorting. (Last updated 10/3/18 7:16 PM) Idea: Take an unsorted (sub)array and partition into two subarrays such that.

CSE 2320 Notes 8: Sorting. (Last updated 10/3/18 7:16 PM) Idea: Take an unsorted (sub)array and partition into two subarrays such that. CSE Notes 8: Sortig (Last updated //8 7:6 PM) CLRS 7.-7., 9., 8.-8. 8.A. QUICKSORT Cocepts Idea: Take a usorted (sub)array ad partitio ito two subarrays such that p q r x y z x y y z Pivot Customarily,

More information

IMP: Superposer Integrated Morphometrics Package Superposition Tool

IMP: Superposer Integrated Morphometrics Package Superposition Tool IMP: Superposer Itegrated Morphometrics Package Superpositio Tool Programmig by: David Lieber ( 03) Caisius College 200 Mai St. Buffalo, NY 4208 Cocept by: H. David Sheets, Dept. of Physics, Caisius College

More information

Chapter 5. Functions for All Subtasks. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 5. Functions for All Subtasks. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 5 Fuctios for All Subtasks Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 5.1 void Fuctios 5.2 Call-By-Referece Parameters 5.3 Usig Procedural Abstractio 5.4 Testig ad Debuggig

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing Last Time EE Digital Sigal Processig Lecture 7 Block Covolutio, Overlap ad Add, FFT Discrete Fourier Trasform Properties of the Liear covolutio through circular Today Liear covolutio with Overlap ad add

More information

Lecture Notes 6 Introduction to algorithm analysis CSS 501 Data Structures and Object-Oriented Programming

Lecture Notes 6 Introduction to algorithm analysis CSS 501 Data Structures and Object-Oriented Programming Lecture Notes 6 Itroductio to algorithm aalysis CSS 501 Data Structures ad Object-Orieted Programmig Readig for this lecture: Carrao, Chapter 10 To be covered i this lecture: Itroductio to algorithm aalysis

More information

Second-Order Domain Decomposition Method for Three-Dimensional Hyperbolic Problems

Second-Order Domain Decomposition Method for Three-Dimensional Hyperbolic Problems Iteratioal Mathematical Forum, Vol. 8, 013, o. 7, 311-317 Secod-Order Domai Decompositio Method for Three-Dimesioal Hyperbolic Problems Youbae Ju Departmet of Applied Mathematics Kumoh Natioal Istitute

More information

Pseudocode ( 1.1) Analysis of Algorithms. Primitive Operations. Pseudocode Details. Running Time ( 1.1) Estimating performance

Pseudocode ( 1.1) Analysis of Algorithms. Primitive Operations. Pseudocode Details. Running Time ( 1.1) Estimating performance Aalysis of Algorithms Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite amout of time. Pseudocode ( 1.1) High-level descriptio of a algorithm More structured

More information

Normal Distributions

Normal Distributions Normal Distributios Stacey Hacock Look at these three differet data sets Each histogram is overlaid with a curve : A B C A) Weights (g) of ewly bor lab rat pups B) Mea aual temperatures ( F ) i A Arbor,

More information

Computer Graphics Hardware An Overview

Computer Graphics Hardware An Overview Computer Graphics Hardware A Overview Graphics System Moitor Iput devices CPU/Memory GPU Raster Graphics System Raster: A array of picture elemets Based o raster-sca TV techology The scree (ad a picture)

More information

Our second algorithm. Comp 135 Machine Learning Computer Science Tufts University. Decision Trees. Decision Trees. Decision Trees.

Our second algorithm. Comp 135 Machine Learning Computer Science Tufts University. Decision Trees. Decision Trees. Decision Trees. Comp 135 Machie Learig Computer Sciece Tufts Uiversity Fall 2017 Roi Khardo Some of these slides were adapted from previous slides by Carla Brodley Our secod algorithm Let s look at a simple dataset for

More information

MATHEMATICAL METHODS OF ANALYSIS AND EXPERIMENTAL DATA PROCESSING (Or Methods of Curve Fitting)

MATHEMATICAL METHODS OF ANALYSIS AND EXPERIMENTAL DATA PROCESSING (Or Methods of Curve Fitting) MATHEMATICAL METHODS OF ANALYSIS AND EXPERIMENTAL DATA PROCESSING (Or Methods of Curve Fittig) I this chapter, we will eamie some methods of aalysis ad data processig; data obtaied as a result of a give

More information

LU Decomposition Method

LU Decomposition Method SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS LU Decompositio Method Jamie Traha, Autar Kaw, Kevi Marti Uiversity of South Florida Uited States of America kaw@eg.usf.edu http://umericalmethods.eg.usf.edu Itroductio

More information

BACHMANN-LANDAU NOTATIONS. Lecturer: Dr. Jomar F. Rabajante IMSP, UPLB MATH 174: Numerical Analysis I 1 st Sem AY

BACHMANN-LANDAU NOTATIONS. Lecturer: Dr. Jomar F. Rabajante IMSP, UPLB MATH 174: Numerical Analysis I 1 st Sem AY BACHMANN-LANDAU NOTATIONS Lecturer: Dr. Jomar F. Rabajate IMSP, UPLB MATH 174: Numerical Aalysis I 1 st Sem AY 018-019 RANKING OF FUNCTIONS Name Big-Oh Eamples Costat O(1 10 Logarithmic O(log log, log(

More information

Math Section 2.2 Polynomial Functions

Math Section 2.2 Polynomial Functions Math 1330 - Sectio. Polyomial Fuctios Our objectives i workig with polyomial fuctios will be, first, to gather iformatio about the graph of the fuctio ad, secod, to use that iformatio to geerate a reasoably

More information

Heaps. Presentation for use with the textbook Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Heaps. Presentation for use with the textbook Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015 Presetatio for use with the textbook Algorithm Desig ad Applicatios, by M. T. Goodrich ad R. Tamassia, Wiley, 201 Heaps 201 Goodrich ad Tamassia xkcd. http://xkcd.com/83/. Tree. Used with permissio uder

More information

Chapter 3. Floating Point Arithmetic

Chapter 3. Floating Point Arithmetic COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Iterface 5 th Editio Chapter 3 Floatig Poit Arithmetic Review - Multiplicatio 0 1 1 0 = 6 multiplicad 32-bit ALU shift product right multiplier add

More information

Elementary Educational Computer

Elementary Educational Computer Chapter 5 Elemetary Educatioal Computer. Geeral structure of the Elemetary Educatioal Computer (EEC) The EEC coforms to the 5 uits structure defied by vo Neuma's model (.) All uits are preseted i a simplified

More information

Fast Fourier Transform (FFT) Algorithms

Fast Fourier Transform (FFT) Algorithms Fast Fourier Trasform FFT Algorithms Relatio to the z-trasform elsewhere, ozero, z x z X x [ ] 2 ~ elsewhere,, ~ e j x X x x π j e z z X X π 2 ~ The DFS X represets evely spaced samples of the z- trasform

More information

COMP 558 lecture 6 Sept. 27, 2010

COMP 558 lecture 6 Sept. 27, 2010 Radiometry We have discussed how light travels i straight lies through space. We would like to be able to talk about how bright differet light rays are. Imagie a thi cylidrical tube ad cosider the amout

More information

Basic Design Principles

Basic Design Principles + Basic Desig Priciples + Assigmet 2: Your studet web site 1. Baer 2. Your ame 3. Your accout umber 4. A lik to aother web page, preferably oe useful to you i this class 5. A photo, preferably of you 6.

More information

Chapter 3 Classification of FFT Processor Algorithms

Chapter 3 Classification of FFT Processor Algorithms Chapter Classificatio of FFT Processor Algorithms The computatioal complexity of the Discrete Fourier trasform (DFT) is very high. It requires () 2 complex multiplicatios ad () complex additios [5]. As

More information

Lecture 7 7 Refraction and Snell s Law Reading Assignment: Read Kipnis Chapter 4 Refraction of Light, Section III, IV

Lecture 7 7 Refraction and Snell s Law Reading Assignment: Read Kipnis Chapter 4 Refraction of Light, Section III, IV Lecture 7 7 Refractio ad Sell s Law Readig Assigmet: Read Kipis Chapter 4 Refractio of Light, Sectio III, IV 7. History I Eglish-speakig coutries, the law of refractio is kow as Sell s Law, after the Dutch

More information

Our Learning Problem, Again

Our Learning Problem, Again Noparametric Desity Estimatio Matthew Stoe CS 520, Sprig 2000 Lecture 6 Our Learig Problem, Agai Use traiig data to estimate ukow probabilities ad probability desity fuctios So far, we have depeded o describig

More information

Multiresolution for Algebraic Curves and Surfaces using Wavelets

Multiresolution for Algebraic Curves and Surfaces using Wavelets EUROGRAPHIS 0x / N.N. ad N.N. (Guest Editors) Volume xxx, (200x), Number yyy Multiresolutio for Algebraic urves ad Surfaces usig Wavelets Jordi Esteve Pere Bruet Alvar Viacua Uiversitat Politècica de ataluya,

More information

Exercise 6 (Week 42) For the foreign students only.

Exercise 6 (Week 42) For the foreign students only. These are the last exercises of the course. Please, remember that to pass exercises, the sum of the poits gathered by solvig the questios ad attedig the exercise groups must be at least 4% ( poits) of

More information

CIS 121. Introduction to Trees

CIS 121. Introduction to Trees CIS 121 Itroductio to Trees 1 Tree ADT Tree defiitio q A tree is a set of odes which may be empty q If ot empty, the there is a distiguished ode r, called root ad zero or more o-empty subtrees T 1, T 2,

More information

Fundamental Algorithms

Fundamental Algorithms Techische Uiversität Müche Fakultät für Iformatik Lehrstuhl für Effiziete Algorithme Dmytro Chibisov Sadeep Sadaada Witer Semester 2007/08 Solutio Sheet 6 November 30, 2007 Fudametal Algorithms Problem

More information

3D Model Retrieval Method Based on Sample Prediction

3D Model Retrieval Method Based on Sample Prediction 20 Iteratioal Coferece o Computer Commuicatio ad Maagemet Proc.of CSIT vol.5 (20) (20) IACSIT Press, Sigapore 3D Model Retrieval Method Based o Sample Predictio Qigche Zhag, Ya Tag* School of Computer

More information

Image Segmentation EEE 508

Image Segmentation EEE 508 Image Segmetatio Objective: to determie (etract) object boudaries. It is a process of partitioig a image ito distict regios by groupig together eighborig piels based o some predefied similarity criterio.

More information

Alpha Individual Solutions MAΘ National Convention 2013

Alpha Individual Solutions MAΘ National Convention 2013 Alpha Idividual Solutios MAΘ Natioal Covetio 0 Aswers:. D. A. C 4. D 5. C 6. B 7. A 8. C 9. D 0. B. B. A. D 4. C 5. A 6. C 7. B 8. A 9. A 0. C. E. B. D 4. C 5. A 6. D 7. B 8. C 9. D 0. B TB. 570 TB. 5

More information

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe Copyright 2016 Ramez Elmasri ad Shamkat B. Navathe CHAPTER 18 Strategies for Query Processig Copyright 2016 Ramez Elmasri ad Shamkat B. Navathe Itroductio DBMS techiques to process a query Scaer idetifies

More information

CS200: Hash Tables. Prichard Ch CS200 - Hash Tables 1

CS200: Hash Tables. Prichard Ch CS200 - Hash Tables 1 CS200: Hash Tables Prichard Ch. 13.2 CS200 - Hash Tables 1 Table Implemetatios: average cases Search Add Remove Sorted array-based Usorted array-based Balaced Search Trees O(log ) O() O() O() O(1) O()

More information

Texture Mapping. Jian Huang. This set of slides references the ones used at Ohio State for instruction.

Texture Mapping. Jian Huang. This set of slides references the ones used at Ohio State for instruction. Texture Mappig Jia Huag This set of slides refereces the oes used at Ohio State for istructio. Ca you do this What Dreams May Come Texture Mappig Of course, oe ca model the exact micro-geometry + material

More information

EVALUATION OF TRIGONOMETRIC FUNCTIONS

EVALUATION OF TRIGONOMETRIC FUNCTIONS EVALUATION OF TRIGONOMETRIC FUNCTIONS Whe first exposed to trigoometric fuctios i high school studets are expected to memorize the values of the trigoometric fuctios of sie cosie taget for the special

More information

Analysis Metrics. Intro to Algorithm Analysis. Slides. 12. Alg Analysis. 12. Alg Analysis

Analysis Metrics. Intro to Algorithm Analysis. Slides. 12. Alg Analysis. 12. Alg Analysis Itro to Algorithm Aalysis Aalysis Metrics Slides. Table of Cotets. Aalysis Metrics 3. Exact Aalysis Rules 4. Simple Summatio 5. Summatio Formulas 6. Order of Magitude 7. Big-O otatio 8. Big-O Theorems

More information

Descriptive Statistics Summary Lists

Descriptive Statistics Summary Lists Chapter 209 Descriptive Statistics Summary Lists Itroductio This procedure is used to summarize cotiuous data. Large volumes of such data may be easily summarized i statistical lists of meas, couts, stadard

More information

What are we going to learn? CSC Data Structures Analysis of Algorithms. Overview. Algorithm, and Inputs

What are we going to learn? CSC Data Structures Analysis of Algorithms. Overview. Algorithm, and Inputs What are we goig to lear? CSC316-003 Data Structures Aalysis of Algorithms Computer Sciece North Carolia State Uiversity Need to say that some algorithms are better tha others Criteria for evaluatio Structure

More information

OCR Statistics 1. Working with data. Section 3: Measures of spread

OCR Statistics 1. Working with data. Section 3: Measures of spread Notes ad Eamples OCR Statistics 1 Workig with data Sectio 3: Measures of spread Just as there are several differet measures of cetral tedec (averages), there are a variet of statistical measures of spread.

More information

9.1. Sequences and Series. Sequences. What you should learn. Why you should learn it. Definition of Sequence

9.1. Sequences and Series. Sequences. What you should learn. Why you should learn it. Definition of Sequence _9.qxd // : AM Page Chapter 9 Sequeces, Series, ad Probability 9. Sequeces ad Series What you should lear Use sequece otatio to write the terms of sequeces. Use factorial otatio. Use summatio otatio to

More information