Free groups, Lecture 2, Part 2

Size: px
Start display at page:

Download "Free groups, Lecture 2, Part 2"

Transcription

1 Free groups, Lecture 2, Part 2 Olga Kharlampovich NYC, Sep 2 1 / 19

2 We say that a group G embeds into a group H, if there is a monomorphism φ: G H. If φ(g) H, then we say that G properly embeds into H and that φ is a proper embedding. Proposition Any countable free group G can be embedded into a free group of rank 2. 2 / 19

3 Proof To prove the result it suffices to find a free subgroup of countable rank in a free group of rank 2. Let F 2 be a free group with a basis {a, b}. Denote x n = b n ab n (n = 0, 1, 2,... ) and let S = {x 0, x 1, x 2,... }. We claim that S freely generates the subgroup S in F 2. Indeed, let w = x ɛ 1 i 1 x ɛ 2 i 2... x ɛn i n be a reduced non-empty word in S ±1. Then w can also be viewed as a word in {a, b}. 3 / 19

4 Indeed, w = b i 1 a ɛ 1 b i 1 b i 2 a ɛ 2 b i 2... b in a ɛn b in. Since w is a reduced word in S, we have that either i j i j+1, or i j = i j+1 and ɛ j + ɛ j+1 0, for each j = 1, 2,..., n 1. In either case, any reduction of w (as a word in {a, b}) does not affect a ɛ j and a ɛ j+1 in the subword b i j a ɛ j b i j b i j+1 a ɛ j+1 b i j+1 i.e., the literals a ɛ j and a ɛ j+1 are present in the reduced form of w as a word in {a, b} ±1. Hence the reduced form of w is non-empty, so w 1 in F 2. Clearly, S is a free group of countable rank. 4 / 19

5 Given a family of groups {G i i I } we may assume that the G i are mutually disjoint sets. Let X = i I G i and let {1} be a one-element set disjoint from X. A word in X is a finite string (a 1, a 2,..., a n, 1, 1,...) = a 1 a 2... a n, where a i X. A word is reduced provided 1) no a i is the udentity in its group G j, 2) for all i, a i and a i+1 are not in the same G j, 3) a k = 1 implies a i = 1 for i k. Let i I G i (or G 1 G 2... G n ) be the set of all reduced words on X. i I G i forms a group, called the free product of the family {G i i I } under the operation Juxtaposition+Cancellation+Contraction. For example, if a i b i G i then (a 1 a 2 a 3 )(a 1 3 b 2b 1 b 3 ) = a 1 c 2 b 1 b 3, where c 2 = a 2 b 2 G 2. 5 / 19

6 Homework problem 1 Prove that the reduced form of a given element is unique. Prove that the map i k : G k i I G i given by e 1 and a a = (a, 1, 1,...) is a monomorphism. We identify G i with its image in i I G i. Prove that i I G i is a coproduct in the category of groups. 6 / 19

7 Definition (Type of a core graph) Let Γ be a folded X -digraph which is a core graph with respect to some vertex. Suppose that Γ has at least one edge. If every vertex of Γ has degree at least two, we set the type of Γ, denoted Type(Γ) to be equal to Γ. Suppose now that Γ has a vertex v of degree one (such a vertex is unique since Γ is a core graph). Then there exists a unique vertex v of Γ with the following properties: (a) There is a unique Γ-geodesic path [v, v ] from v to v and every vertex of this geodesic, other than v and v, has degree two. (b) The vertex v has degree at least three. Let Γ be the graph obtained by removing from Γ all the edges of [v, v ] and all the vertices of [v, v ] except for v. Then Γ is called the type of Γ and denoted Type(Γ). Finally, if Γ consists of a single vertex, we set Type(Γ) = Γ. 7 / 19

8 Lemma Let Γ be a folded core graph (with respect to one of its vertices). Let v and u be two vertices of Γ and let q be a reduced path in Γ from v to u with label g F (X ). Let H = L(Γ, v) and K = L(Γ, u). Then H = gkg 1. 8 / 19

9 If we consider several subgroups (H, K) we often will denote distinguished vertices of their Stallings graphs by 1 H, 1 K. Lemma Let H F (X ) and let Γ = Γ(H). Let g F (X ) be a nontrivial freely reduced word in X. Let g = yz where z is the maximal terminal segment of the word g such that there is a path with label z 1 in Γ starting at 1 H (such a path is unique since Γ is folded). Denote the end-vertex of this path by u. Let be the graph obtained from Γ as follows. We attach to Γ at u the segment consisting of y edges with label y 1, as read from u. Let u be the other end of this segment. Put = Core(, u ). Then (, u ) = (Γ(K), 1 K ) where K = ghg 1. 9 / 19

10 Proposition (Conjugate subgroups) Let H and K be subgroups of F (X ). Then H is conjugate to K in F (X ) if and only if the graphs Type(Γ(H)) and Type(Γ(K)) are isomorphic as X -digraphs. Proof. Suppose that Type(Γ(H)) = Type(Γ(K)) = Γ. Let v be a vertex of Γ. The subgroup L(Γ, v) is conjugate to both H and K, so that H is conjugate to K. Suppose now that K is conjugate to H, that is K = ghg 1 for some g F (X ). Then Type(Γ(H)) = Type(Γ(K)), as required. 10 / 19

11 Morphism of Labelled Graphs Let Γ and be reduced A-labeled graphs as above. A mapping φ from the vertex set of Γ to the vertex set of (we write φ: Γ ) is a morphism of reduced (A-)labeled graphs if it maps the designated vertex of Γ to the designated vertex of and if, for each a A, whenever Γ has an a-labeled edge e from vertex u to vertex v, then has an a-labeled edge f from vertex φ(u) to vertex φ(v). The edge f is uniquely defined since is reduced. We then extend the domain and range of φ to the edge sets of the two graphs, by letting φ(e) = f. Note that such a morphism of reduced A-labeled graphs is necessarily locally injective (an immersion), in the following sense: for each vertex v of Γ, distinct edges starting (resp. ending) at v have distinct images. 11 / 19

12 Morphism of Labelled Graphs Further we say that the morphism φ: Γ is a cover if it is locally bijective, that is, if the following holds: for each vertex v of Γ, each edge of starting (resp. ending) at φ(v) is the image under φ of an edge of Γ starting (resp. ending) at v. 12 / 19

13 Homework Problem 2 Show that a subgroup H of F (A) has finite index if and only if this natural morphism from Γ A (H) to the bouquet of A circles is a cover, and in that case, the index of H in F (A) is the number of vertices of Γ A (H). 13 / 19

14 Homework Problem 3 Prove Lemma Let H, K be subgroups of a free group F with basis A. Then H K if and only if there exists a morphism of labeled graphs φ H,K from Γ A (H) to Γ A (K). If it exists, this morphism is unique. 14 / 19

15 If H and K are finitely generated subgroups of F (A), then Γ A (H K) can be easily constructed from Γ A (H) and Γ A (K): one first considers the A-labeled graph whose vertices are pairs (u, v) consisting of a vertex u of Γ A (H) and a vertex v of Γ A (K), with an a-labeled edge from (u, v) to (u, v ) if and only if there are a-labeled edges from u to u in Γ A (H) and from v to v in Γ A (K). Finally, one considers the connected component of vertex (1, 1) in this product, and we repeatedly remove the vertices of valence 1, other than the distinguished vertex (1, 1) itself, to make it a reduced A-labeled graph. 15 / 19

16 16 / 19

17 Definition (Product-graph) Let Γ and be X -digraphs. We define the product-graph Γ as follows. The vertex set of Γ is the set V Γ V. For a pair of vertices (v, u), (v, u ) V (Γ ) (so that v, v V Γ and u, u V and a letter x X we introduce an edge labeled x with origin (v, u) and terminus (v, u ) provided there is an edge, labeled x, from v to v in Γ and there is an edge, labeled x, from u to u in. Thus Γ is an X -digraph. In this situation we will sometimes denote a vertex (v, u) of Γ by v u. 17 / 19

18 Lemma Let Γ and be folded X -digraphs. Let H = L(Γ, v) and K = L(, u) for some vertices v V Γ and u V. Let y = (v, u) V (Γ ). Then Γ is folded and L(Γ, y) = H K. 18 / 19

19 Corollary There exists an algorithm which, given finitely many freely reduced words h 1,..., h s, k 1,..., k m F (X ), finds the rank and a Nielsen-reduced free basis of the subgroup h 1,..., h s k 1,..., k m of F (X ). In particular, this algorithm determines whether or not h 1,..., h s k 1,..., k m = 1. Corollary (Howson Property) (Howson,54) The intersection of any two finitely generated subgroups of F (X ) is again finitely generated. 19 / 19

Lecture 11 COVERING SPACES

Lecture 11 COVERING SPACES Lecture 11 COVERING SPACES A covering space (or covering) is not a space, but a mapping of spaces (usually manifolds) which, locally, is a homeomorphism, but globally may be quite complicated. The simplest

More information

TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3.

TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3. TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3. 301. Definition. Let m be a positive integer, and let X be a set. An m-tuple of elements of X is a function x : {1,..., m} X. We sometimes use x i instead

More information

MATH 215B MIDTERM SOLUTIONS

MATH 215B MIDTERM SOLUTIONS MATH 215B MIDTERM SOLUTIONS 1. (a) (6 marks) Show that a finitely generated group has only a finite number of subgroups of a given finite index. (Hint: Do it for a free group first.) (b) (6 marks) Show

More information

Generell Topologi. Richard Williamson. May 6, 2013

Generell Topologi. Richard Williamson. May 6, 2013 Generell Topologi Richard Williamson May 6, 2013 1 8 Thursday 7th February 8.1 Using connectedness to distinguish between topological spaces I Proposition 8.1. Let (, O ) and (Y, O Y ) be topological spaces.

More information

A GRAPH FROM THE VIEWPOINT OF ALGEBRAIC TOPOLOGY

A GRAPH FROM THE VIEWPOINT OF ALGEBRAIC TOPOLOGY A GRAPH FROM THE VIEWPOINT OF ALGEBRAIC TOPOLOGY KARL L. STRATOS Abstract. The conventional method of describing a graph as a pair (V, E), where V and E repectively denote the sets of vertices and edges,

More information

1.1 Topological Representatives for Automorphisms

1.1 Topological Representatives for Automorphisms Chapter 1 Out(F n ) and Aut(F n ) 1.1 Topological Representatives for Automorphisms Definition 1.1.1. Let X be a topological space with base point P. A self-homotopy equivalence is a base point preserving

More information

9.5 Equivalence Relations

9.5 Equivalence Relations 9.5 Equivalence Relations You know from your early study of fractions that each fraction has many equivalent forms. For example, 2, 2 4, 3 6, 2, 3 6, 5 30,... are all different ways to represent the same

More information

4. Definition: topological space, open set, topology, trivial topology, discrete topology.

4. Definition: topological space, open set, topology, trivial topology, discrete topology. Topology Summary Note to the reader. If a statement is marked with [Not proved in the lecture], then the statement was stated but not proved in the lecture. Of course, you don t need to know the proof.

More information

Infinite locally random graphs

Infinite locally random graphs Infinite locally random graphs Pierre Charbit and Alex D. Scott Abstract Motivated by copying models of the web graph, Bonato and Janssen [3] introduced the following simple construction: given a graph

More information

By taking products of coordinate charts, we obtain charts for the Cartesian product of manifolds. Hence the Cartesian product is a manifold.

By taking products of coordinate charts, we obtain charts for the Cartesian product of manifolds. Hence the Cartesian product is a manifold. 1 Manifolds A manifold is a space which looks like R n at small scales (i.e. locally ), but which may be very different from this at large scales (i.e. globally ). In other words, manifolds are made by

More information

THE DOLD-KAN CORRESPONDENCE

THE DOLD-KAN CORRESPONDENCE THE DOLD-KAN CORRESPONDENCE 1. Simplicial sets We shall now introduce the notion of a simplicial set, which will be a presheaf on a suitable category. It turns out that simplicial sets provide a (purely

More information

Discharging and reducible configurations

Discharging and reducible configurations Discharging and reducible configurations Zdeněk Dvořák March 24, 2018 Suppose we want to show that graphs from some hereditary class G are k- colorable. Clearly, we can restrict our attention to graphs

More information

The Farey Tessellation

The Farey Tessellation The Farey Tessellation Seminar: Geometric Structures on manifolds Mareike Pfeil supervised by Dr. Gye-Seon Lee 15.12.2015 Introduction In this paper, we are going to introduce the Farey tessellation. Since

More information

However, this is not always true! For example, this fails if both A and B are closed and unbounded (find an example).

However, this is not always true! For example, this fails if both A and B are closed and unbounded (find an example). 98 CHAPTER 3. PROPERTIES OF CONVEX SETS: A GLIMPSE 3.2 Separation Theorems It seems intuitively rather obvious that if A and B are two nonempty disjoint convex sets in A 2, then there is a line, H, separating

More information

PCP and Hardness of Approximation

PCP and Hardness of Approximation PCP and Hardness of Approximation January 30, 2009 Our goal herein is to define and prove basic concepts regarding hardness of approximation. We will state but obviously not prove a PCP theorem as a starting

More information

Crown-free highly arc-transitive digraphs

Crown-free highly arc-transitive digraphs Crown-free highly arc-transitive digraphs Daniela Amato and John K Truss University of Leeds 1. Abstract We construct a family of infinite, non-locally finite highly arc-transitive digraphs which do not

More information

8 Colouring Planar Graphs

8 Colouring Planar Graphs 8 Colouring Planar Graphs The Four Colour Theorem Lemma 8.1 If G is a simple planar graph, then (i) 12 v V (G)(6 deg(v)) with equality for triangulations. (ii) G has a vertex of degree 5. Proof: For (i),

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 351 George Voutsadakis (LSSU) Introduction to Graph Theory August 2018 1 /

More information

Lecture 6: Faces, Facets

Lecture 6: Faces, Facets IE 511: Integer Programming, Spring 2019 31 Jan, 2019 Lecturer: Karthik Chandrasekaran Lecture 6: Faces, Facets Scribe: Setareh Taki Disclaimer: These notes have not been subjected to the usual scrutiny

More information

GENERALIZED CPR-GRAPHS AND APPLICATIONS

GENERALIZED CPR-GRAPHS AND APPLICATIONS Volume 5, Number 2, Pages 76 105 ISSN 1715-0868 GENERALIZED CPR-GRAPHS AND APPLICATIONS DANIEL PELLICER AND ASIA IVIĆ WEISS Abstract. We give conditions for oriented labeled graphs that must be satisfied

More information

The Graphs of Triangulations of Polygons

The Graphs of Triangulations of Polygons The Graphs of Triangulations of Polygons Matthew O Meara Research Experience for Undergraduates Summer 006 Basic Considerations Let Γ(n) be the graph with vertices being the labeled planar triangulation

More information

SPLITTING LINE PATTERNS IN FREE GROUPS

SPLITTING LINE PATTERNS IN FREE GROUPS SPLITTING LINE PATTERNS IN FREE GROUPS CHRISTOPHER H. CASHEN Abstract. There is a canonical cyclic JSJ-decomposition of a free group relative to a finite list of words in the group. This provides a characterization

More information

2 A topological interlude

2 A topological interlude 2 A topological interlude 2.1 Topological spaces Recall that a topological space is a set X with a topology: a collection T of subsets of X, known as open sets, such that and X are open, and finite intersections

More information

Topology 550A Homework 3, Week 3 (Corrections: February 22, 2012)

Topology 550A Homework 3, Week 3 (Corrections: February 22, 2012) Topology 550A Homework 3, Week 3 (Corrections: February 22, 2012) Michael Tagare De Guzman January 31, 2012 4A. The Sorgenfrey Line The following material concerns the Sorgenfrey line, E, introduced in

More information

or else take their intersection. Now define

or else take their intersection. Now define Samuel Lee Algebraic Topology Homework #5 May 10, 2016 Problem 1: ( 1.3: #3). Let p : X X be a covering space with p 1 (x) finite and nonempty for all x X. Show that X is compact Hausdorff if and only

More information

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge.

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge. 1 Graph Basics What is a graph? Graph: a graph G consists of a set of vertices, denoted V (G), a set of edges, denoted E(G), and a relation called incidence so that each edge is incident with either one

More information

Binary Decision Diagrams

Binary Decision Diagrams Logic and roof Hilary 2016 James Worrell Binary Decision Diagrams A propositional formula is determined up to logical equivalence by its truth table. If the formula has n variables then its truth table

More information

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism CHAPTER 2 Graphs 1. Introduction to Graphs and Graph Isomorphism 1.1. The Graph Menagerie. Definition 1.1.1. A simple graph G = (V, E) consists of a set V of vertices and a set E of edges, represented

More information

Topology Homework 3. Section Section 3.3. Samuel Otten

Topology Homework 3. Section Section 3.3. Samuel Otten Topology Homework 3 Section 3.1 - Section 3.3 Samuel Otten 3.1 (1) Proposition. The intersection of finitely many open sets is open and the union of finitely many closed sets is closed. Proof. Note that

More information

A graph is finite if its vertex set and edge set are finite. We call a graph with just one vertex trivial and all other graphs nontrivial.

A graph is finite if its vertex set and edge set are finite. We call a graph with just one vertex trivial and all other graphs nontrivial. 2301-670 Graph theory 1.1 What is a graph? 1 st semester 2550 1 1.1. What is a graph? 1.1.2. Definition. A graph G is a triple (V(G), E(G), ψ G ) consisting of V(G) of vertices, a set E(G), disjoint from

More information

Hamiltonian cycles in bipartite quadrangulations on the torus

Hamiltonian cycles in bipartite quadrangulations on the torus Hamiltonian cycles in bipartite quadrangulations on the torus Atsuhiro Nakamoto and Kenta Ozeki Abstract In this paper, we shall prove that every bipartite quadrangulation G on the torus admits a simple

More information

The Geodesic Integral on Medial Graphs

The Geodesic Integral on Medial Graphs The Geodesic Integral on Medial Graphs Kolya Malkin August 013 We define the geodesic integral defined on paths in the duals of medial graphs on surfaces and use it to study lens elimination and connection

More information

PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS

PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS PAUL BALISTER Abstract It has been shown [Balister, 2001] that if n is odd and m 1,, m t are integers with m i 3 and t i=1 m i = E(K n) then K n can be decomposed

More information

Lecture 19 Thursday, March 29. Examples of isomorphic, and non-isomorphic graphs will be given in class.

Lecture 19 Thursday, March 29. Examples of isomorphic, and non-isomorphic graphs will be given in class. CIS 160 - Spring 2018 (instructor Val Tannen) Lecture 19 Thursday, March 29 GRAPH THEORY Graph isomorphism Definition 19.1 Two graphs G 1 = (V 1, E 1 ) and G 2 = (V 2, E 2 ) are isomorphic, write G 1 G

More information

arxiv: v1 [math.co] 7 Dec 2018

arxiv: v1 [math.co] 7 Dec 2018 SEQUENTIALLY EMBEDDABLE GRAPHS JACKSON AUTRY AND CHRISTOPHER O NEILL arxiv:1812.02904v1 [math.co] 7 Dec 2018 Abstract. We call a (not necessarily planar) embedding of a graph G in the plane sequential

More information

Simplicial Complexes: Second Lecture

Simplicial Complexes: Second Lecture Simplicial Complexes: Second Lecture 4 Nov, 2010 1 Overview Today we have two main goals: Prove that every continuous map between triangulable spaces can be approximated by a simplicial map. To do this,

More information

ON THE GROUP-THEORETIC PROPERTIES OF THE AUTOMORPHISM GROUPS OF VARIOUS GRAPHS

ON THE GROUP-THEORETIC PROPERTIES OF THE AUTOMORPHISM GROUPS OF VARIOUS GRAPHS ON THE GROUP-THEORETIC PROPERTIES OF THE AUTOMORPHISM GROUPS OF VARIOUS GRAPHS CHARLES HOMANS Abstract. In this paper we provide an introduction to the properties of one important connection between the

More information

Orientation of manifolds - definition*

Orientation of manifolds - definition* Bulletin of the Manifold Atlas - definition (2013) Orientation of manifolds - definition* MATTHIAS KRECK 1. Zero dimensional manifolds For zero dimensional manifolds an orientation is a map from the manifold

More information

Module 11. Directed Graphs. Contents

Module 11. Directed Graphs. Contents Module 11 Directed Graphs Contents 11.1 Basic concepts......................... 256 Underlying graph of a digraph................ 257 Out-degrees and in-degrees.................. 258 Isomorphism..........................

More information

T. Background material: Topology

T. Background material: Topology MATH41071/MATH61071 Algebraic topology Autumn Semester 2017 2018 T. Background material: Topology For convenience this is an overview of basic topological ideas which will be used in the course. This material

More information

Coloring. Radhika Gupta. Problem 1. What is the chromatic number of the arc graph of a polygonal disc of N sides?

Coloring. Radhika Gupta. Problem 1. What is the chromatic number of the arc graph of a polygonal disc of N sides? Coloring Radhika Gupta 1 Coloring of A N Let A N be the arc graph of a polygonal disc with N sides, N > 4 Problem 1 What is the chromatic number of the arc graph of a polygonal disc of N sides? Or we would

More information

arxiv: v1 [math.gt] 16 Aug 2016

arxiv: v1 [math.gt] 16 Aug 2016 THE GROMOV BOUNDARY OF THE RAY GRAPH JULIETTE BAVARD AND ALDEN WALKER arxiv:1608.04475v1 [math.gt] 16 Aug 2016 Abstract. The ray graph is a Gromov-hyperbolic graph on which the mapping class group of the

More information

On the automorphism group of the m-coloured random graph

On the automorphism group of the m-coloured random graph On the automorphism group of the m-coloured random graph Peter J. Cameron and Sam Tarzi School of Mathematical Sciences Queen Mary, University of London Mile End Road London E1 4NS, UK p.j.cameron@qmul.ac.uk

More information

Fixed-Parameter Algorithms, IA166

Fixed-Parameter Algorithms, IA166 Fixed-Parameter Algorithms, IA166 Sebastian Ordyniak Faculty of Informatics Masaryk University Brno Spring Semester 2013 Introduction Outline 1 Introduction Algorithms on Locally Bounded Treewidth Layer

More information

Lecture 2 : Counting X-trees

Lecture 2 : Counting X-trees Lecture 2 : Counting X-trees MATH285K - Spring 2010 Lecturer: Sebastien Roch References: [SS03, Chapter 1,2] 1 Trees We begin by recalling basic definitions and properties regarding finite trees. DEF 2.1

More information

Bijective counting of tree-rooted maps and connection with shuffles of parenthesis systems

Bijective counting of tree-rooted maps and connection with shuffles of parenthesis systems Bijective counting of tree-rooted maps and connection with shuffles of parenthesis systems Olivier Bernardi Abstract The number of tree-rooted maps, that is, tree-covered rooted planar maps, with n edges

More information

Problem Set 2 Solutions

Problem Set 2 Solutions Problem Set 2 Solutions Graph Theory 2016 EPFL Frank de Zeeuw & Claudiu Valculescu 1. Prove that the following statements about a graph G are equivalent. - G is a tree; - G is minimally connected (it is

More information

Homework Set #2 Math 440 Topology Topology by J. Munkres

Homework Set #2 Math 440 Topology Topology by J. Munkres Homework Set #2 Math 440 Topology Topology by J. Munkres Clayton J. Lungstrum October 26, 2012 Exercise 1. Prove that a topological space X is Hausdorff if and only if the diagonal = {(x, x) : x X} is

More information

Deployment with Property Monodrome Group Topology

Deployment with Property Monodrome Group Topology International Journal of Contemporary Mathematical Sciences Vol. 12, 2017, no. 1, 23-29 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijcms.2017.61169 Deployment with Property Monodrome Group Topology

More information

MA651 Topology. Lecture 4. Topological spaces 2

MA651 Topology. Lecture 4. Topological spaces 2 MA651 Topology. Lecture 4. Topological spaces 2 This text is based on the following books: Linear Algebra and Analysis by Marc Zamansky Topology by James Dugundgji Fundamental concepts of topology by Peter

More information

On Sequential Topogenic Graphs

On Sequential Topogenic Graphs Int. J. Contemp. Math. Sciences, Vol. 5, 2010, no. 36, 1799-1805 On Sequential Topogenic Graphs Bindhu K. Thomas, K. A. Germina and Jisha Elizabath Joy Research Center & PG Department of Mathematics Mary

More information

Geometric structures on manifolds

Geometric structures on manifolds CHAPTER 3 Geometric structures on manifolds In this chapter, we give our first examples of hyperbolic manifolds, combining ideas from the previous two chapters. 3.1. Geometric structures 3.1.1. Introductory

More information

Two Characterizations of Hypercubes

Two Characterizations of Hypercubes Two Characterizations of Hypercubes Juhani Nieminen, Matti Peltola and Pasi Ruotsalainen Department of Mathematics, University of Oulu University of Oulu, Faculty of Technology, Mathematics Division, P.O.

More information

Isometries and Morphisms of Real Trees. M. J. Dunwoody

Isometries and Morphisms of Real Trees. M. J. Dunwoody Isometries and Morphisms of Real Trees M J Dunwoody Introduction Tits [T] introduced the idea of an R-tree, which is a non-empty metric space in which any two points are joined by a unique arc, and in

More information

Defining small sets from κ-cc families of subsets I: Families of finite sets

Defining small sets from κ-cc families of subsets I: Families of finite sets Defining small sets from κ-cc families of subsets I: Families of finite sets Andrés Eduardo Caicedo, John D. Clemens, Clinton Conley, and Benjamin D. Miller November 25, 2009 Abstract We show that if X

More information

CS473-Algorithms I. Lecture 13-A. Graphs. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 13-A. Graphs. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorithms I Lecture 3-A Graphs Graphs A directed graph (or digraph) G is a pair (V, E), where V is a finite set, and E is a binary relation on V The set V: Vertex set of G The set E: Edge set of

More information

Notes on point set topology, Fall 2010

Notes on point set topology, Fall 2010 Notes on point set topology, Fall 2010 Stephan Stolz September 3, 2010 Contents 1 Pointset Topology 1 1.1 Metric spaces and topological spaces...................... 1 1.2 Constructions with topological

More information

Lecture 22 Tuesday, April 10

Lecture 22 Tuesday, April 10 CIS 160 - Spring 2018 (instructor Val Tannen) Lecture 22 Tuesday, April 10 GRAPH THEORY Directed Graphs Directed graphs (a.k.a. digraphs) are an important mathematical modeling tool in Computer Science,

More information

Synthetic Geometry. 1.1 Foundations 1.2 The axioms of projective geometry

Synthetic Geometry. 1.1 Foundations 1.2 The axioms of projective geometry Synthetic Geometry 1.1 Foundations 1.2 The axioms of projective geometry Foundations Def: A geometry is a pair G = (Ω, I), where Ω is a set and I a relation on Ω that is symmetric and reflexive, i.e. 1.

More information

CMSC 380. Graph Terminology and Representation

CMSC 380. Graph Terminology and Representation CMSC 380 Graph Terminology and Representation GRAPH BASICS 2 Basic Graph Definitions n A graph G = (V,E) consists of a finite set of vertices, V, and a finite set of edges, E. n Each edge is a pair (v,w)

More information

γ(ɛ) (a, b) (a, d) (d, a) (a, b) (c, d) (d, d) (e, e) (e, a) (e, e) (a) Draw a picture of G.

γ(ɛ) (a, b) (a, d) (d, a) (a, b) (c, d) (d, d) (e, e) (e, a) (e, e) (a) Draw a picture of G. MAD 3105 Spring 2006 Solutions for Review for Test 2 1. Define a graph G with V (G) = {a, b, c, d, e}, E(G) = {r, s, t, u, v, w, x, y, z} and γ, the function defining the edges, is given by the table ɛ

More information

This article was originally published in a journal published by Elsevier, and the attached copy is provided by Elsevier for the author s benefit and for the benefit of the author s institution, for non-commercial

More information

COVERING SPACES, GRAPHS, AND GROUPS

COVERING SPACES, GRAPHS, AND GROUPS COVERING SPACES, GRAPHS, AND GROUPS CARSON COLLINS Abstract. We introduce the theory of covering spaces, with emphasis on explaining the Galois correspondence of covering spaces and the deck transformation

More information

Cardinality Lectures

Cardinality Lectures Cardinality Lectures Enrique Treviño March 8, 014 1 Definition of cardinality The cardinality of a set is a measure of the size of a set. When a set A is finite, its cardinality is the number of elements

More information

MODELS OF CUBIC THEORIES

MODELS OF CUBIC THEORIES Bulletin of the Section of Logic Volume 43:1/2 (2014), pp. 19 34 Sergey Sudoplatov MODELS OF CUBIC THEORIES Abstract Cubic structures and cubic theories are defined on a base of multidimensional cubes.

More information

Bijective counting of tree-rooted maps and shuffles of parenthesis systems

Bijective counting of tree-rooted maps and shuffles of parenthesis systems Bijective counting of tree-rooted maps and shuffles of parenthesis systems Olivier Bernardi Submitted: Jan 24, 2006; Accepted: Nov 8, 2006; Published: Jan 3, 2006 Mathematics Subject Classifications: 05A15,

More information

8 Matroid Intersection

8 Matroid Intersection 8 Matroid Intersection 8.1 Definition and examples 8.2 Matroid Intersection Algorithm 8.1 Definitions Given two matroids M 1 = (X, I 1 ) and M 2 = (X, I 2 ) on the same set X, their intersection is M 1

More information

Fundamental Properties of Graphs

Fundamental Properties of Graphs Chapter three In many real-life situations we need to know how robust a graph that represents a certain network is, how edges or vertices can be removed without completely destroying the overall connectivity,

More information

MATH 350 GRAPH THEORY & COMBINATORICS. Contents

MATH 350 GRAPH THEORY & COMBINATORICS. Contents MATH 350 GRAPH THEORY & COMBINATORICS PROF. SERGEY NORIN, FALL 2013 Contents 1. Basic definitions 1 2. Connectivity 2 3. Trees 3 4. Spanning Trees 3 5. Shortest paths 4 6. Eulerian & Hamiltonian cycles

More information

Uncountably many groups of type F P

Uncountably many groups of type F P Uncountably many groups of type F P Ian J. eary December 21, 2015 Abstract We construct uncountably many discrete groups of type F P ; in particular we construct groups of type F P that do not embed in

More information

Point-Set Topology II

Point-Set Topology II Point-Set Topology II Charles Staats September 14, 2010 1 More on Quotients Universal Property of Quotients. Let X be a topological space with equivalence relation. Suppose that f : X Y is continuous and

More information

K 4,4 e Has No Finite Planar Cover

K 4,4 e Has No Finite Planar Cover K 4,4 e Has No Finite Planar Cover Petr Hliněný Dept. of Applied Mathematics, Charles University, Malostr. nám. 25, 118 00 Praha 1, Czech republic (E-mail: hlineny@kam.ms.mff.cuni.cz) February 9, 2005

More information

arxiv: v1 [math.gr] 21 Sep 2018

arxiv: v1 [math.gr] 21 Sep 2018 PLANARITY OF CAYLEY GRAPHS OF GRAPH PRODUCTS OLGA VARGHESE arxiv:1809.07997v1 [math.gr] 21 Sep 2018 Abstract. We obtain a complete classification of graph products of finite abelian groups whose Cayley

More information

Comparing sizes of sets

Comparing sizes of sets Comparing sizes of sets Sets A and B are the same size if there is a bijection from A to B. (That was a definition!) For finite sets A, B, it is not difficult to verify that there is a bijection from A

More information

1 Some Solution of Homework

1 Some Solution of Homework Math 3116 Dr. Franz Rothe May 30, 2012 08SUM\3116_2012h1.tex Name: Use the back pages for extra space 1 Some Solution of Homework Proposition 1 (Counting labeled trees). There are n n 2 different labeled

More information

arxiv: v1 [math.gr] 2 Oct 2013

arxiv: v1 [math.gr] 2 Oct 2013 POLYGONAL VH COMPLEXES JASON K.C. POLÁK AND DANIEL T. WISE arxiv:1310.0843v1 [math.gr] 2 Oct 2013 Abstract. Ian Leary inquires whether a class of hyperbolic finitely presented groups are residually finite.

More information

1 Undirected Vertex Geography UVG

1 Undirected Vertex Geography UVG Geography Start with a chip sitting on a vertex v of a graph or digraph G. A move consists of moving the chip to a neighbouring vertex. In edge geography, moving the chip from x to y deletes the edge (x,

More information

GSAC TALK: THE WORD PROBLEM. 1. The 8-8 Tessellation. Consider the following infinite tessellation of the open unit disc. Actually, we want to think

GSAC TALK: THE WORD PROBLEM. 1. The 8-8 Tessellation. Consider the following infinite tessellation of the open unit disc. Actually, we want to think GSAC TALK: THE WORD PROBLEM 1. The 8-8 Tessellation Consider the following infinite tessellation of the open unit disc. Actually, we want to think of the disc as a model for R 2 and we can do that using

More information

Structures with lots of symmetry

Structures with lots of symmetry Structures with lots of symmetry (one of the things Bob likes to do when not doing semigroup theory) Robert Gray Centro de Álgebra da Universidade de Lisboa NBSAN Manchester, Summer 2011 Why? An advertisement

More information

On Possible Counterexamples to Negami s Planar Cover Conjecture

On Possible Counterexamples to Negami s Planar Cover Conjecture On Possible Counterexamples to Negami s Planar Cover Conjecture Petr Hliněný and Robin Thomas School of Mathematics, Georgia Institute of Technology, Atlanta GA 0-00, U.S.A. hlineny@member.ams.org June,

More information

Point-Set Topology 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS

Point-Set Topology 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS Point-Set Topology 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS Definition 1.1. Let X be a set and T a subset of the power set P(X) of X. Then T is a topology on X if and only if all of the following

More information

Section 6.3: Further Rules for Counting Sets

Section 6.3: Further Rules for Counting Sets Section 6.3: Further Rules for Counting Sets Often when we are considering the probability of an event, that event is itself a union of other events. For example, suppose there is a horse race with three

More information

The clique number of a random graph in (,1 2) Let ( ) # -subgraphs in = 2 =: ( ) We will be interested in s.t. ( )~1. To gain some intuition note ( )

The clique number of a random graph in (,1 2) Let ( ) # -subgraphs in = 2 =: ( ) We will be interested in s.t. ( )~1. To gain some intuition note ( ) The clique number of a random graph in (,1 2) Let () # -subgraphs in = 2 =:() We will be interested in s.t. ()~1. To gain some intuition note ()~ 2 =2 and so ~2log. Now let us work rigorously. () (+1)

More information

Recursively Defined Functions

Recursively Defined Functions Section 5.3 Recursively Defined Functions Definition: A recursive or inductive definition of a function consists of two steps. BASIS STEP: Specify the value of the function at zero. RECURSIVE STEP: Give

More information

Lecture 15: The subspace topology, Closed sets

Lecture 15: The subspace topology, Closed sets Lecture 15: The subspace topology, Closed sets 1 The Subspace Topology Definition 1.1. Let (X, T) be a topological space with topology T. subset of X, the collection If Y is a T Y = {Y U U T} is a topology

More information

HW Graph Theory SOLUTIONS (hbovik)

HW Graph Theory SOLUTIONS (hbovik) Diestel 1.3: Let G be a graph containing a cycle C, and assume that G contains a path P of length at least k between two vertices of C. Show that G contains a cycle of length at least k. If C has length

More information

The clique number of a random graph in (,1 2) Let ( ) # -subgraphs in = 2 =: ( ) 2 ( ) ( )

The clique number of a random graph in (,1 2) Let ( ) # -subgraphs in = 2 =: ( ) 2 ( ) ( ) 1 The clique number of a random graph in (,1 2) Let () # -subgraphs in = 2 =:() We will be interested in s.t. ()~1. To gain some intuition note ()~ 2 =2 and so ~2log. Now let us work rigorously. () (+1)

More information

Slides for Faculty Oxford University Press All rights reserved.

Slides for Faculty Oxford University Press All rights reserved. Oxford University Press 2013 Slides for Faculty Assistance Preliminaries Author: Vivek Kulkarni vivek_kulkarni@yahoo.com Outline Following topics are covered in the slides: Basic concepts, namely, symbols,

More information

Geometric structures on manifolds

Geometric structures on manifolds CHAPTER 3 Geometric structures on manifolds In this chapter, we give our first examples of hyperbolic manifolds, combining ideas from the previous two chapters. 3.1. Geometric structures 3.1.1. Introductory

More information

Connection and separation in hypergraphs

Connection and separation in hypergraphs Theory and Applications of Graphs Volume 2 Issue 2 Article 5 2015 Connection and separation in hypergraphs Mohammad A. Bahmanian Illinois State University, mbahman@ilstu.edu Mateja Sajna University of

More information

Let G 1 = (V 1, E 1 ) and G 2 = (V 2, E 2 ) be graphs. Introduction. Some facts about Graph Isomorphism. Proving Graph Isomorphism completeness

Let G 1 = (V 1, E 1 ) and G 2 = (V 2, E 2 ) be graphs. Introduction. Some facts about Graph Isomorphism. Proving Graph Isomorphism completeness Graph Let G 1 = (V 1, E 1 ) and G 2 = (V 2, E 2 ) be graphs. Algorithms and Networks Graph Hans Bodlaender and Stefan Kratsch March 24, 2011 An G 1 to G 2 is a bijection φ : V 1 V 2 s.t.: {u, v} E 1 {φ(u),

More information

ADJACENCY POSETS OF PLANAR GRAPHS

ADJACENCY POSETS OF PLANAR GRAPHS ADJACENCY POSETS OF PLANAR GRAPHS STEFAN FELSNER, CHING MAN LI, AND WILLIAM T. TROTTER Abstract. In this paper, we show that the dimension of the adjacency poset of a planar graph is at most 8. From below,

More information

Whitney s theorem for 2-regular planar digraphs

Whitney s theorem for 2-regular planar digraphs AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 67(2) (2017), Pages 159 165 Whitney s theorem for 2-regular planar digraphs an Archdeacon epartment of Mathematics and Statistics University of Vermont Burlington,

More information

The planar cubic Cayley graphs of connectivity 2

The planar cubic Cayley graphs of connectivity 2 The planar cubic Cayley graphs of connectivity 2 Agelos Georgakopoulos Technische Universität Graz Steyrergasse 30, 8010 Graz, Austria March 2, 2011 Abstract We classify the planar cubic Cayley graphs

More information

DISTORTION OF SURFACE GROUPS IN CAT(0) FREE-BY-CYCLIC GROUPS

DISTORTION OF SURFACE GROUPS IN CAT(0) FREE-BY-CYCLIC GROUPS DISTORTION OF SURFACE GROUPS IN CAT(0) FREE-BY-CYCLIC GROUPS JOSH BARNARD AND NOEL BRADY 1 Abstract. Given a non-positively curved 2-complex with a circle-valued Morse function satisfying some extra combinatorial

More information

THE GROUP OF SYMMETRIES OF THE TOWER OF HANOI GRAPH

THE GROUP OF SYMMETRIES OF THE TOWER OF HANOI GRAPH THE GROUP OF SYMMETRIES OF THE TOWER OF HANOI GRAPH SOEUN PARK arxiv:0809.1179v1 [math.co] 7 Sep 2008 Abstract. The Tower of Hanoi problem with k pegs and n disks has been much studied via its associated

More information

CONNECTED SPACES AND HOW TO USE THEM

CONNECTED SPACES AND HOW TO USE THEM CONNECTED SPACES AND HOW TO USE THEM 1. How to prove X is connected Checking that a space X is NOT connected is typically easy: you just have to find two disjoint, non-empty subsets A and B in X, such

More information

Algorithms, Games, and Networks February 21, Lecture 12

Algorithms, Games, and Networks February 21, Lecture 12 Algorithms, Games, and Networks February, 03 Lecturer: Ariel Procaccia Lecture Scribe: Sercan Yıldız Overview In this lecture, we introduce the axiomatic approach to social choice theory. In particular,

More information

Automorphism Groups of Cyclic Polytopes

Automorphism Groups of Cyclic Polytopes 8 Automorphism Groups of Cyclic Polytopes (Volker Kaibel and Arnold Waßmer ) It is probably well-known to most polytope theorists that the combinatorial automorphism group of a cyclic d-polytope with n

More information

Lecture 17: Continuous Functions

Lecture 17: Continuous Functions Lecture 17: Continuous Functions 1 Continuous Functions Let (X, T X ) and (Y, T Y ) be topological spaces. Definition 1.1 (Continuous Function). A function f : X Y is said to be continuous if the inverse

More information