DATA MINING II - 1DL460

Size: px
Start display at page:

Download "DATA MINING II - 1DL460"

Transcription

1 DATA MINING II - 1DL460 Spring 2016 A second course in data mining!! Kjell Orsborn! Uppsala Database Laboratory! Department of Information Technology, Uppsala University,! Uppsala, Sweden 09/03/16 1

2 Anomaly Detection (Tan, Steinbach, Kumar ch. 10) Kjell Orsborn! Department of Information Technology Uppsala University, Uppsala, Sweden 09/03/16 2

3 What are an anomaly or outlier? What are anomalies/outliers? Single or sets of data points that are considerably different than the remainder of the data (i.e. normal data) E.g. unusual credit card purchase, sports: Usain Bolt, Leo Messi, Outliers are different from the noise data Noise is random error or variance in a measured variable Noise should be removed before outlier detection Outliers are interesting: It violates the mechanism that generates the normal data Outlier detection vs. novelty detection: early stage, outlier; but later merged into the model Applications: Credit card fraud detection, telecommunication! fraud detection, network intrusion detection,! fault detection, customer segmentation,! medical analysis 09/03/16 3

4 Anomaly/outlier detection Variants of anomaly/outlier detection problems:! Given a database D, find all the data points x D with anomaly scores greater than some threshold t! Given a database D, find all the data points x D having the top-n largest anomaly scores f(x)! Given a database D, containing mostly normal (but unlabeled) data points, and a test point x, compute the anomaly score of x with respect to D 09/03/16 4

5 Types of outliers (I) Three kinds: global, contextual and collective outliers Global outlier (or point anomaly) Object is O g if it significantly deviates from the rest of the data set Ex. Auditing stock trading transactions Issue: Find an appropriate measurement of deviation Contextual outlier (or conditional outlier, note: special case is local outlier) Object is O c if it deviates significantly based on a selected context Ex. -20 o C in Uppsala: outlier? (depending on summer or winter?) Attributes of data objects should be divided into two groups Contextual attributes: defines the context, e.g., time & location Behavioral attributes: characteristics of the object, used in outlier evaluation, e.g., temperature Can be viewed as a generalization of local outliers whose density significantly deviates from its local area. Issue: How to define or formulate meaningful context? Global Outlier 09/03/16 5 5"

6 Types of outliers (II)! Collective Outliers o A subset of data objects collectively deviate! significantly from the whole data set, even if the! individual data objects may not be outliers o Applications: e.g., intrusion detection: Collective outlier! When a number of computers keep sending denial-of-service packages to each other " Detection of collective outliers " Consider not only behavior of individual objects, but also that of groups of objects " Need to have the background knowledge on the relationship among data objects, such as a distance or similarity measure on objects. " A data set may have multiple types of outliers " One object may belong to more than one type of outlier 09/03/16 6 6"

7 Challenges of outlier detection " Modeling normal objects and outliers properly " Hard to enumerate all possible normal behaviors in an application " The border between normal and outlier objects is often a gray area! " Application-specific outlier detection " Choice of distance measure among objects and the model of relationship among objects are often application-dependent " E.g., clinic data: a small deviation could be an outlier; while in marketing analysis, larger fluctuations! " Handling noise in outlier detection " Noise may distort the normal objects and blur the distinction between normal objects and outliers. It may help hide outliers and reduce the effectiveness of outlier detection 09/03/16 7 7"

8 Challenges of outlier detection cont " Understandability " Understand why these are outliers: Justification of the detection " Specify the degree of an outlier: the unlikelihood of the object being generated by a normal mechanism! " How many outliers are there in the data?! " When method is unsupervised " Validation can be quite challenging (just like for clustering)! " Outlier detection can be compared to finding needle in a haystack! " Working assumption: " There are considerably more normal observations than abnormal observations (outliers/anomalies) in the data 09/03/16 8 8"

9 Ozone depletion history:! Importance of anomaly detection In 1985 three researchers (Farman, Gardinar and Shanklin) were puzzled by data gathered by the British Antarctic Survey showing that ozone levels for Antarctica had dropped 10% below normal levels Why did the Nimbus 7 satellite, which had instruments aboard for recording ozone levels, not record similarly low ozone concentrations? The ozone concentrations recorded by the satellite were so low they were being treated as outliers by a computer program and discarded! Sources: /03/16 9

10 Anomaly detection schemes General steps Build a profile of the normal behavior Profile can be patterns or summary statistics for the overall population Use the normal profile to detect anomalies Anomalies are observations whose characteristics! differ significantly from the normal profile Types of anomaly detection! schemes: Graphical & Statistical based Proximity based Density based Clustering based 09/03/16 10

11 Graphical approaches Boxplot (1-D), Scatter plot (2-D), Spin plot (3-D) Limitations Time consuming Subjective 09/03/16 11

12 Convex hull method Extreme points are assumed to be outliers Use convex hull method to detect extreme values Data are assigned to layers of convex hulls that are peeled of to detect outliers!! What if the outlier occurs in the middle of the data? 09/03/16 12

13 Statistical approaches Assume a parametric model describing the distribution of the data (e.g., normal distribution) Apply a statistical test that depends on Data distribution Parameter of distribution (e.g., mean, variance) Number of expected outliers (confidence limit) 09/03/16 13

14 !!! The Grubbs test Detect outliers in univariate data (i.e. data including only one attribute) assuming data sample comes from normal distribution:! The Grubb's test (also called maximum normed residual test) Outlier condition is defined as: G exp > G critical For each object x in a data set, compute its z-score (i.e. G exp ):! z = x x where s is standard deviation and x is the mean (also G exp )! s x is an outlier if:! where G exp = (also termed G critical ) is the value taken by a two-sided t-distribution at a significance level of α/(2n), and N is the no of objects in the data set. 09/03/16 14

15 09/03/16 15 Statistical-based likelihood approach Identifying outliers by calculating the change in likelihood when moving a point from one distribution to another in a mixture of 2 distributions. The overall probability distribution of the data:! D = (1 λ) M + λ A, where λ is the expected fraction of outliers.! M is a probability distribution estimated from data, usually Gaussian can be based on any modeling method (naïve Bayes, maximum entropy, etc) A is assumed to be a uniform distribution Likelihood and log likelihood at time t: = = % % & ' ( ( ) * % % & ' ( ( ) * = = t i t t i t t i t t t i t t A x i A t M x i M t t A x i A A M x i M M N i i D t x P A x P M D LL x P x P x P D L ) ( log log ) ( log ) log(1 ) ( ) ( ) ( ) (1 ) ( ) ( 1 λ λ λ λ

16 Statistical-based likelihood approach Assume the data set D contains samples from a mixture of two probability distributions: M (majority distribution, typically Gaussian) A (anomalous distribution, typically uniform) General approach of algorithm 10.1 (Tan et al):! Initially, assume all the data points belong to M Let LL t (D) be the log likelihood of D at time t For each point x t that belongs to M, move it to A Let LL t+1 (D) be the new log likelihood. Compute the difference, Δ = LL t (D) LL t+1 (D) If Δ > c (some threshold), then x t is declared as an anomaly and moved permanently from M to A 09/03/16 16

17 Statistical-based likelihood approach Algorithm 10.1 (Tan et al): 09/03/16 17

18 Limitations of statistical approaches Most of the tests are for a single attribute In many cases, the data distribution may not be known For high dimensional data, it may be difficult to estimate the true distribution 09/03/16 18

19 Proximity-based outlier detection In proximity-based outlier detection an object is an outlier if it is distant from most points called distant-based outliers More general and easily applied than statistical approaches since usually easier to define proximity measure There are various ways to define outliers: Data points for which there are fewer than p neighboring points within a distance D Data points whose distance to the kth nearest neighbor is greatest Can be sensitive to value of k Data points whose average distance to the k nearest neighbors is greatest more robust than only distance to kth nearest neighbor Compute the distance between every pair of data points can make it expensive, O(m 2 ) Grid-based methods and indexing can improve performance and complexity Does not handle widely varying densities well since using global thresholds 09/03/16 19

20 Nearest-neighbor based approach Example where the outlier score is given by the distance to its k-nearest neighbor 09/03/16 20

21 ! Density-based outlier: Density-based outlier detection Outliers are points in regions of low density The outlier score of an object is the inverse of the density around the object. Inverse distance density (inverse of averaged distance to the k-nearest neighbours):, where N(x,k) is the set of k-nearest neighbors of x, N(x,k) is the size of that set and y is a nearest neighbor. No of points within region density (DBSCAN): The density around an object is equal to the no of objects that are within a specified distance d of the object. 09/03/16 21

22 Density-based outlier detection (the LOF approach) For each point, compute the density of its local neighborhood Compute the local outlier factor (LOF) of a sample p as the average of the ratios of the density of sample p and the density of its nearest neighbors Outliers are points with largest LOF value p 2 p 1 In the Nearest-neighbor approach, p 2 is not considered as outlier, while LOF approach find both p 1 and p 2 as outliers 09/03/16 22

23 ! Density-based outlier detection using relative density Average relative density (ard) is e.g. given as the ratio of the density of a point x and the average density of its nearest neighbors as follows:! ard(x, k) = density(x, k) y N (x,k) density(y, k)/ N(x, k (Eq 10.7)! A simplified version of the LOF technique using ard(x, k) is given by: 09/03/16 23

24 Example of relative density (LOF) approach (using k = 10) 09/03/16 24

25 Clustering-based outlier detection Clustering-based outlier: an object is a cluster-based outlier if the object does not strongly belong to any cluster Basic idea: Cluster the data into groups of different density Choose points in small cluster as candidate outliers Compute the distance between candidate points and non-candidate clusters. If candidate points are far from all other non-candidate points, they are outliers 09/03/16 25

26 Clustering-based outlier example 09/03/16 26

27 Outliers in lower dimensional projection (a grid-based approach) In high-dimensional space, data is sparse and notion of proximity becomes meaningless Every point is an almost equally good outlier from the perspective of proximity-based definitions Lower-dimensional projection methods A point is an outlier if in some lower dimensional projection, it is present in a local region of abnormally low density 09/03/16 27

28 ! Outliers in lower dimensional projection (a grid-based approach) Divide each attribute into φ equal-depth intervals Each interval contains a fraction f = 1/φ of the records Consider a k-dimensional cube created by picking grid ranges from k different dimensions If attributes are independent, we expect a region to contain a fraction f k of the records If there are N points, we can measure sparsity of a cube D including n points as by the sparsity coefficient S:!! where expected fraction and standard deviation of the points in a k-dimensional cube is! Nf k Nf k (1 f k ) given by and respectively.! Negative sparsity indicates cube contains smaller number of points than expected Ref: Outlier Detection for High Dimensional Data, Charu C. Aggarwal and Philip S. Yu, ACM SIGMOD 2001 May 21-24, Santa Barbara, California, USA, /03/16 28

29 Example for sparsity coefficient N=100, φ = 5, f = 1/5 = 0.2, N f 2 = 4 (expected fraction) 09/03/16 29

Data Warehousing. Data Warehousing and Mining. Lecture 8. by Hossen Asiful Mustafa

Data Warehousing. Data Warehousing and Mining. Lecture 8. by Hossen Asiful Mustafa Data Warehousing Data Warehousing and Mining Lecture 8 by Hossen Asiful Mustafa Databases Databases are developed on the IDEA that DATA is one of the critical materials of the Information Age Information,

More information

Statistics 202: Data Mining. c Jonathan Taylor. Outliers Based in part on slides from textbook, slides of Susan Holmes.

Statistics 202: Data Mining. c Jonathan Taylor. Outliers Based in part on slides from textbook, slides of Susan Holmes. Outliers Based in part on slides from textbook, slides of Susan Holmes December 2, 2012 1 / 1 Concepts What is an outlier? The set of data points that are considerably different than the remainder of the

More information

Part I. Hierarchical clustering. Hierarchical Clustering. Hierarchical clustering. Produces a set of nested clusters organized as a

Part I. Hierarchical clustering. Hierarchical Clustering. Hierarchical clustering. Produces a set of nested clusters organized as a Week 9 Based in part on slides from textbook, slides of Susan Holmes Part I December 2, 2012 Hierarchical Clustering 1 / 1 Produces a set of nested clusters organized as a Hierarchical hierarchical clustering

More information

OUTLIER MINING IN HIGH DIMENSIONAL DATASETS

OUTLIER MINING IN HIGH DIMENSIONAL DATASETS OUTLIER MINING IN HIGH DIMENSIONAL DATASETS DATA MINING DISCUSSION GROUP OUTLINE MOTIVATION OUTLIERS IN MULTIVARIATE DATA OUTLIERS IN HIGH DIMENSIONAL DATA Distribution-based Distance-based NN-based Density-based

More information

Chapter 5: Outlier Detection

Chapter 5: Outlier Detection Ludwig-Maximilians-Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Knowledge Discovery in Databases SS 2016 Chapter 5: Outlier Detection Lecture: Prof. Dr.

More information

Outlier Detection. Chapter 12

Outlier Detection. Chapter 12 Contents 12 Outlier Detection 3 12.1 Outliers and Outlier Analysis.................... 4 12.1.1 What Are Outliers?..................... 4 12.1.2 Types of Outliers....................... 5 12.1.3 Challenges

More information

CPSC 340: Machine Learning and Data Mining. Outlier Detection Fall 2016

CPSC 340: Machine Learning and Data Mining. Outlier Detection Fall 2016 CPSC 340: Machine Learning and Data Mining Outlier Detection Fall 2016 Admin Assignment 1 solutions will be posted after class. Assignment 2 is out: Due next Friday, but start early! Calculus and linear

More information

Chapter 9: Outlier Analysis

Chapter 9: Outlier Analysis Chapter 9: Outlier Analysis Jilles Vreeken 8 Dec 2015 IRDM Chapter 9, overview 1. Basics & Motivation 2. Extreme Value Analysis 3. Probabilistic Methods 4. Cluster-based Methods 5. Distance-based Methods

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Introduction Often, we have only a set of features x = x 1, x 2,, x n, but no associated response y. Therefore we are not interested in prediction nor classification,

More information

DATA MINING - 1DL105, 1Dl111. An introductory class in data mining

DATA MINING - 1DL105, 1Dl111. An introductory class in data mining 1 DATA MINING - 1DL105, 1Dl111 Fall 007 An introductory class in data mining http://user.it.uu.se/~udbl/dm-ht007/ alt. http://www.it.uu.se/edu/course/homepage/infoutv/ht07 Kjell Orsborn Uppsala Database

More information

CPSC 340: Machine Learning and Data Mining. Outlier Detection Fall 2018

CPSC 340: Machine Learning and Data Mining. Outlier Detection Fall 2018 CPSC 340: Machine Learning and Data Mining Outlier Detection Fall 2018 Admin Assignment 2 is due Friday. Assignment 1 grades available? Midterm rooms are now booked. October 18 th at 6:30pm (BUCH A102

More information

Final Exam DATA MINING I - 1DL360

Final Exam DATA MINING I - 1DL360 Uppsala University Department of Information Technology Kjell Orsborn Final Exam 2012-10-17 DATA MINING I - 1DL360 Date... Wednesday, October 17, 2012 Time... 08:00-13:00 Teacher on duty... Kjell Orsborn,

More information

International Journal of Research in Advent Technology, Vol.7, No.3, March 2019 E-ISSN: Available online at

International Journal of Research in Advent Technology, Vol.7, No.3, March 2019 E-ISSN: Available online at Performance Evaluation of Ensemble Method Based Outlier Detection Algorithm Priya. M 1, M. Karthikeyan 2 Department of Computer and Information Science, Annamalai University, Annamalai Nagar, Tamil Nadu,

More information

What are anomalies and why do we care?

What are anomalies and why do we care? Anomaly Detection Based on V. Chandola, A. Banerjee, and V. Kupin, Anomaly detection: A survey, ACM Computing Surveys, 41 (2009), Article 15, 58 pages. Outline What are anomalies and why do we care? Different

More information

Automatic Detection Of Suspicious Behaviour

Automatic Detection Of Suspicious Behaviour University Utrecht Technical Artificial Intelligence Master Thesis Automatic Detection Of Suspicious Behaviour Author: Iris Renckens Supervisors: Dr. Selmar Smit Dr. Ad Feelders Prof. Dr. Arno Siebes September

More information

Anomaly Detection on Data Streams with High Dimensional Data Environment

Anomaly Detection on Data Streams with High Dimensional Data Environment Anomaly Detection on Data Streams with High Dimensional Data Environment Mr. D. Gokul Prasath 1, Dr. R. Sivaraj, M.E, Ph.D., 2 Department of CSE, Velalar College of Engineering & Technology, Erode 1 Assistant

More information

Clustering Part 4 DBSCAN

Clustering Part 4 DBSCAN Clustering Part 4 Dr. Sanjay Ranka Professor Computer and Information Science and Engineering University of Florida, Gainesville DBSCAN DBSCAN is a density based clustering algorithm Density = number of

More information

Outlier Detection Using Unsupervised and Semi-Supervised Technique on High Dimensional Data

Outlier Detection Using Unsupervised and Semi-Supervised Technique on High Dimensional Data Outlier Detection Using Unsupervised and Semi-Supervised Technique on High Dimensional Data Ms. Gayatri Attarde 1, Prof. Aarti Deshpande 2 M. E Student, Department of Computer Engineering, GHRCCEM, University

More information

INFORMATION-THEORETIC OUTLIER DETECTION FOR LARGE-SCALE CATEGORICAL DATA

INFORMATION-THEORETIC OUTLIER DETECTION FOR LARGE-SCALE CATEGORICAL DATA Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 4, April 2015,

More information

CPSC 340: Machine Learning and Data Mining. Hierarchical Clustering Fall 2017

CPSC 340: Machine Learning and Data Mining. Hierarchical Clustering Fall 2017 CPSC 340: Machine Learning and Data Mining Hierarchical Clustering Fall 2017 Assignment 1 is due Friday. Admin Follow the assignment guidelines naming convention (a1.zip/a1.pdf). Assignment 0 grades posted

More information

University of Florida CISE department Gator Engineering. Clustering Part 4

University of Florida CISE department Gator Engineering. Clustering Part 4 Clustering Part 4 Dr. Sanjay Ranka Professor Computer and Information Science and Engineering University of Florida, Gainesville DBSCAN DBSCAN is a density based clustering algorithm Density = number of

More information

UNSUPERVISED LEARNING FOR ANOMALY INTRUSION DETECTION Presented by: Mohamed EL Fadly

UNSUPERVISED LEARNING FOR ANOMALY INTRUSION DETECTION Presented by: Mohamed EL Fadly UNSUPERVISED LEARNING FOR ANOMALY INTRUSION DETECTION Presented by: Mohamed EL Fadly Outline Introduction Motivation Problem Definition Objective Challenges Approach Related Work Introduction Anomaly detection

More information

Spatial Outlier Detection

Spatial Outlier Detection Spatial Outlier Detection Chang-Tien Lu Department of Computer Science Northern Virginia Center Virginia Tech Joint work with Dechang Chen, Yufeng Kou, Jiang Zhao 1 Spatial Outlier A spatial data point

More information

DATA MINING LECTURE 7. Hierarchical Clustering, DBSCAN The EM Algorithm

DATA MINING LECTURE 7. Hierarchical Clustering, DBSCAN The EM Algorithm DATA MINING LECTURE 7 Hierarchical Clustering, DBSCAN The EM Algorithm CLUSTERING What is a Clustering? In general a grouping of objects such that the objects in a group (cluster) are similar (or related)

More information

IBL and clustering. Relationship of IBL with CBR

IBL and clustering. Relationship of IBL with CBR IBL and clustering Distance based methods IBL and knn Clustering Distance based and hierarchical Probability-based Expectation Maximization (EM) Relationship of IBL with CBR + uses previously processed

More information

CPSC 340: Machine Learning and Data Mining

CPSC 340: Machine Learning and Data Mining CPSC 340: Machine Learning and Data Mining Hierarchical Clustering and Outlier Detection Original version of these slides by Mark Schmidt, with modifications by Mike Gelbart. Admin Assignment 2 is due

More information

Large Scale Data Analysis for Policy

Large Scale Data Analysis for Policy Large Scale Data Analysis for Policy 90-866, Fall 2012 Lecture 9: Anomaly and Outlier Detection Parts of this lecture were adapted from Banerjee et al., Anomaly Detection: A Tutorial, presented at SDM

More information

Data Mining Cluster Analysis: Advanced Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining, 2 nd Edition

Data Mining Cluster Analysis: Advanced Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining, 2 nd Edition Data Mining Cluster Analysis: Advanced Concepts and Algorithms Lecture Notes for Chapter 8 Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar Outline Prototype-based Fuzzy c-means

More information

Outlier Ensembles. Charu C. Aggarwal IBM T J Watson Research Center Yorktown, NY Keynote, Outlier Detection and Description Workshop, 2013

Outlier Ensembles. Charu C. Aggarwal IBM T J Watson Research Center Yorktown, NY Keynote, Outlier Detection and Description Workshop, 2013 Charu C. Aggarwal IBM T J Watson Research Center Yorktown, NY 10598 Outlier Ensembles Keynote, Outlier Detection and Description Workshop, 2013 Based on the ACM SIGKDD Explorations Position Paper: Outlier

More information

Course Content. What is an Outlier? Chapter 7 Objectives

Course Content. What is an Outlier? Chapter 7 Objectives Principles of Knowledge Discovery in Data Fall 2007 Chapter 7: Outlier Detection Dr. Osmar R. Zaïane University of Alberta Course Content Introduction to Data Mining Association Analysis Sequential Pattern

More information

Detection of Anomalies using Online Oversampling PCA

Detection of Anomalies using Online Oversampling PCA Detection of Anomalies using Online Oversampling PCA Miss Supriya A. Bagane, Prof. Sonali Patil Abstract Anomaly detection is the process of identifying unexpected behavior and it is an important research

More information

Data Mining Chapter 9: Descriptive Modeling Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 9: Descriptive Modeling Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Data Mining Chapter 9: Descriptive Modeling Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Descriptive model A descriptive model presents the main features of the data

More information

OUTLIER DATA MINING WITH IMPERFECT DATA LABELS

OUTLIER DATA MINING WITH IMPERFECT DATA LABELS OUTLIER DATA MINING WITH IMPERFECT DATA LABELS Mr.Yogesh P Dawange 1 1 PG Student, Department of Computer Engineering, SND College of Engineering and Research Centre, Yeola, Nashik, Maharashtra, India

More information

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition Pattern Recognition Kjell Elenius Speech, Music and Hearing KTH March 29, 2007 Speech recognition 2007 1 Ch 4. Pattern Recognition 1(3) Bayes Decision Theory Minimum-Error-Rate Decision Rules Discriminant

More information

1 Training/Validation/Testing

1 Training/Validation/Testing CPSC 340 Final (Fall 2015) Name: Student Number: Please enter your information above, turn off cellphones, space yourselves out throughout the room, and wait until the official start of the exam to begin.

More information

Jing Gao 1, Feng Liang 1, Wei Fan 2, Chi Wang 1, Yizhou Sun 1, Jiawei i Han 1 University of Illinois, IBM TJ Watson.

Jing Gao 1, Feng Liang 1, Wei Fan 2, Chi Wang 1, Yizhou Sun 1, Jiawei i Han 1 University of Illinois, IBM TJ Watson. Jing Gao 1, Feng Liang 1, Wei Fan 2, Chi Wang 1, Yizhou Sun 1, Jiawei i Han 1 University of Illinois, IBM TJ Watson Debapriya Basu Determine outliers in information networks Compare various algorithms

More information

Contents. Preface to the Second Edition

Contents. Preface to the Second Edition Preface to the Second Edition v 1 Introduction 1 1.1 What Is Data Mining?....................... 4 1.2 Motivating Challenges....................... 5 1.3 The Origins of Data Mining....................

More information

DATA MINING II - 1DL460

DATA MINING II - 1DL460 DATA MINING II - 1DL460 Spring 2012 A second course in data mining!! http://www.it.uu.se/edu/course/homepage/infoutv2/vt12 Kjell Orsborn! Uppsala Database Laboratory! Department of Information Technology,

More information

Detection of Outliers

Detection of Outliers Detection of Outliers TNM033 - Data Mining by Anton Auoja, Albert Backenhof & Mikael Dalkvist Holy Outliers, Batman!! An outlying observation, or outlier, is one that appears to deviate markedly from other

More information

Data Mining: Data. Lecture Notes for Chapter 2. Introduction to Data Mining

Data Mining: Data. Lecture Notes for Chapter 2. Introduction to Data Mining Data Mining: Data Lecture Notes for Chapter 2 Introduction to Data Mining by Tan, Steinbach, Kumar Data Preprocessing Aggregation Sampling Dimensionality Reduction Feature subset selection Feature creation

More information

Supervised vs. Unsupervised Learning

Supervised vs. Unsupervised Learning Clustering Supervised vs. Unsupervised Learning So far we have assumed that the training samples used to design the classifier were labeled by their class membership (supervised learning) We assume now

More information

Data Preprocessing. S1 Teknik Informatika Fakultas Teknologi Informasi Universitas Kristen Maranatha

Data Preprocessing. S1 Teknik Informatika Fakultas Teknologi Informasi Universitas Kristen Maranatha Data Preprocessing S1 Teknik Informatika Fakultas Teknologi Informasi Universitas Kristen Maranatha 1 Why Data Preprocessing? Data in the real world is dirty incomplete: lacking attribute values, lacking

More information

Machine Learning in the Wild. Dealing with Messy Data. Rajmonda S. Caceres. SDS 293 Smith College October 30, 2017

Machine Learning in the Wild. Dealing with Messy Data. Rajmonda S. Caceres. SDS 293 Smith College October 30, 2017 Machine Learning in the Wild Dealing with Messy Data Rajmonda S. Caceres SDS 293 Smith College October 30, 2017 Analytical Chain: From Data to Actions Data Collection Data Cleaning/ Preparation Analysis

More information

DBSCAN. Presented by: Garrett Poppe

DBSCAN. Presented by: Garrett Poppe DBSCAN Presented by: Garrett Poppe A density-based algorithm for discovering clusters in large spatial databases with noise by Martin Ester, Hans-peter Kriegel, Jörg S, Xiaowei Xu Slides adapted from resources

More information

Machine Learning (BSMC-GA 4439) Wenke Liu

Machine Learning (BSMC-GA 4439) Wenke Liu Machine Learning (BSMC-GA 4439) Wenke Liu 01-25-2018 Outline Background Defining proximity Clustering methods Determining number of clusters Other approaches Cluster analysis as unsupervised Learning Unsupervised

More information

CSE 347/447: DATA MINING

CSE 347/447: DATA MINING CSE 347/447: DATA MINING Lecture 6: Clustering II W. Teal Lehigh University CSE 347/447, Fall 2016 Hierarchical Clustering Definition Produces a set of nested clusters organized as a hierarchical tree

More information

Local Context Selection for Outlier Ranking in Graphs with Multiple Numeric Node Attributes

Local Context Selection for Outlier Ranking in Graphs with Multiple Numeric Node Attributes Local Context Selection for Outlier Ranking in Graphs with Multiple Numeric Node Attributes Patricia Iglesias, Emmanuel Müller, Oretta Irmler, Klemens Böhm International Conference on Scientific and Statistical

More information

Data Clustering Hierarchical Clustering, Density based clustering Grid based clustering

Data Clustering Hierarchical Clustering, Density based clustering Grid based clustering Data Clustering Hierarchical Clustering, Density based clustering Grid based clustering Team 2 Prof. Anita Wasilewska CSE 634 Data Mining All Sources Used for the Presentation Olson CF. Parallel algorithms

More information

DS504/CS586: Big Data Analytics Big Data Clustering II

DS504/CS586: Big Data Analytics Big Data Clustering II Welcome to DS504/CS586: Big Data Analytics Big Data Clustering II Prof. Yanhua Li Time: 6pm 8:50pm Thu Location: AK 232 Fall 2016 More Discussions, Limitations v Center based clustering K-means BFR algorithm

More information

Chapter 3: Supervised Learning

Chapter 3: Supervised Learning Chapter 3: Supervised Learning Road Map Basic concepts Evaluation of classifiers Classification using association rules Naïve Bayesian classification Naïve Bayes for text classification Summary 2 An example

More information

CPSC 340: Machine Learning and Data Mining. Hierarchical Clustering Fall 2016

CPSC 340: Machine Learning and Data Mining. Hierarchical Clustering Fall 2016 CPSC 340: Machine Learning and Data Mining Hierarchical Clustering Fall 2016 Admin Assignment 1 : 3 late days to hand it in before Friday. 0 after that. Assignment 2 is out: Due Friday of next week, but

More information

Anomaly Detection in Categorical Datasets with Artificial Contrasts. Seyyedehnasim Mousavi

Anomaly Detection in Categorical Datasets with Artificial Contrasts. Seyyedehnasim Mousavi Anomaly Detection in Categorical Datasets with Artificial Contrasts by Seyyedehnasim Mousavi A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science Approved October

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Unsupervised learning Until now, we have assumed our training samples are labeled by their category membership. Methods that use labeled samples are said to be supervised. However,

More information

DATA MINING II - 1DL460

DATA MINING II - 1DL460 DATA MINING II - 1DL460 Spring 2016 A second course in data mining http://www.it.uu.se/edu/course/homepage/infoutv2/vt16 Kjell Orsborn Uppsala Database Laboratory Department of Information Technology,

More information

Clustering Algorithms for Data Stream

Clustering Algorithms for Data Stream Clustering Algorithms for Data Stream Karishma Nadhe 1, Prof. P. M. Chawan 2 1Student, Dept of CS & IT, VJTI Mumbai, Maharashtra, India 2Professor, Dept of CS & IT, VJTI Mumbai, Maharashtra, India Abstract:

More information

DS504/CS586: Big Data Analytics Big Data Clustering II

DS504/CS586: Big Data Analytics Big Data Clustering II Welcome to DS504/CS586: Big Data Analytics Big Data Clustering II Prof. Yanhua Li Time: 6pm 8:50pm Thu Location: KH 116 Fall 2017 Updates: v Progress Presentation: Week 15: 11/30 v Next Week Office hours

More information

Data Mining: Data. What is Data? Lecture Notes for Chapter 2. Introduction to Data Mining. Properties of Attribute Values. Types of Attributes

Data Mining: Data. What is Data? Lecture Notes for Chapter 2. Introduction to Data Mining. Properties of Attribute Values. Types of Attributes 0 Data Mining: Data What is Data? Lecture Notes for Chapter 2 Introduction to Data Mining by Tan, Steinbach, Kumar Collection of data objects and their attributes An attribute is a property or characteristic

More information

Data Mining: Data. Lecture Notes for Chapter 2. Introduction to Data Mining

Data Mining: Data. Lecture Notes for Chapter 2. Introduction to Data Mining 10 Data Mining: Data Lecture Notes for Chapter 2 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 1 What is Data? Collection of data objects

More information

Part I, Chapters 4 & 5. Data Tables and Data Analysis Statistics and Figures

Part I, Chapters 4 & 5. Data Tables and Data Analysis Statistics and Figures Part I, Chapters 4 & 5 Data Tables and Data Analysis Statistics and Figures Descriptive Statistics 1 Are data points clumped? (order variable / exp. variable) Concentrated around one value? Concentrated

More information

Road Map. Data types Measuring data Data cleaning Data integration Data transformation Data reduction Data discretization Summary

Road Map. Data types Measuring data Data cleaning Data integration Data transformation Data reduction Data discretization Summary 2. Data preprocessing Road Map Data types Measuring data Data cleaning Data integration Data transformation Data reduction Data discretization Summary 2 Data types Categorical vs. Numerical Scale types

More information

SYDE Winter 2011 Introduction to Pattern Recognition. Clustering

SYDE Winter 2011 Introduction to Pattern Recognition. Clustering SYDE 372 - Winter 2011 Introduction to Pattern Recognition Clustering Alexander Wong Department of Systems Design Engineering University of Waterloo Outline 1 2 3 4 5 All the approaches we have learned

More information

Clustering CS 550: Machine Learning

Clustering CS 550: Machine Learning Clustering CS 550: Machine Learning This slide set mainly uses the slides given in the following links: http://www-users.cs.umn.edu/~kumar/dmbook/ch8.pdf http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/chap8_basic_cluster_analysis.pdf

More information

CHAPTER 4: CLUSTER ANALYSIS

CHAPTER 4: CLUSTER ANALYSIS CHAPTER 4: CLUSTER ANALYSIS WHAT IS CLUSTER ANALYSIS? A cluster is a collection of data-objects similar to one another within the same group & dissimilar to the objects in other groups. Cluster analysis

More information

Computer Technology Department, Sanjivani K. B. P. Polytechnic, Kopargaon

Computer Technology Department, Sanjivani K. B. P. Polytechnic, Kopargaon Outlier Detection Using Oversampling PCA for Credit Card Fraud Detection Amruta D. Pawar 1, Seema A. Dongare 2, Amol L. Deokate 3, Harshal S. Sangle 4, Panchsheela V. Mokal 5 1,2,3,4,5 Computer Technology

More information

Clustering. Supervised vs. Unsupervised Learning

Clustering. Supervised vs. Unsupervised Learning Clustering Supervised vs. Unsupervised Learning So far we have assumed that the training samples used to design the classifier were labeled by their class membership (supervised learning) We assume now

More information

NDoT: Nearest Neighbor Distance Based Outlier Detection Technique

NDoT: Nearest Neighbor Distance Based Outlier Detection Technique NDoT: Nearest Neighbor Distance Based Outlier Detection Technique Neminath Hubballi 1, Bidyut Kr. Patra 2, and Sukumar Nandi 1 1 Department of Computer Science & Engineering, Indian Institute of Technology

More information

CS Introduction to Data Mining Instructor: Abdullah Mueen

CS Introduction to Data Mining Instructor: Abdullah Mueen CS 591.03 Introduction to Data Mining Instructor: Abdullah Mueen LECTURE 8: ADVANCED CLUSTERING (FUZZY AND CO -CLUSTERING) Review: Basic Cluster Analysis Methods (Chap. 10) Cluster Analysis: Basic Concepts

More information

ECLT 5810 Data Preprocessing. Prof. Wai Lam

ECLT 5810 Data Preprocessing. Prof. Wai Lam ECLT 5810 Data Preprocessing Prof. Wai Lam Why Data Preprocessing? Data in the real world is imperfect incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate

More information

Online Pattern Recognition in Multivariate Data Streams using Unsupervised Learning

Online Pattern Recognition in Multivariate Data Streams using Unsupervised Learning Online Pattern Recognition in Multivariate Data Streams using Unsupervised Learning Devina Desai ddevina1@csee.umbc.edu Tim Oates oates@csee.umbc.edu Vishal Shanbhag vshan1@csee.umbc.edu Machine Learning

More information

An Unsupervised Approach for Combining Scores of Outlier Detection Techniques, Based on Similarity Measures

An Unsupervised Approach for Combining Scores of Outlier Detection Techniques, Based on Similarity Measures An Unsupervised Approach for Combining Scores of Outlier Detection Techniques, Based on Similarity Measures José Ramón Pasillas-Díaz, Sylvie Ratté Presenter: Christoforos Leventis 1 Basic concepts Outlier

More information

Statistical Analysis of Metabolomics Data. Xiuxia Du Department of Bioinformatics & Genomics University of North Carolina at Charlotte

Statistical Analysis of Metabolomics Data. Xiuxia Du Department of Bioinformatics & Genomics University of North Carolina at Charlotte Statistical Analysis of Metabolomics Data Xiuxia Du Department of Bioinformatics & Genomics University of North Carolina at Charlotte Outline Introduction Data pre-treatment 1. Normalization 2. Centering,

More information

Data Mining. Part 2. Data Understanding and Preparation. 2.4 Data Transformation. Spring Instructor: Dr. Masoud Yaghini. Data Transformation

Data Mining. Part 2. Data Understanding and Preparation. 2.4 Data Transformation. Spring Instructor: Dr. Masoud Yaghini. Data Transformation Data Mining Part 2. Data Understanding and Preparation 2.4 Spring 2010 Instructor: Dr. Masoud Yaghini Outline Introduction Normalization Attribute Construction Aggregation Attribute Subset Selection Discretization

More information

Robust Shape Retrieval Using Maximum Likelihood Theory

Robust Shape Retrieval Using Maximum Likelihood Theory Robust Shape Retrieval Using Maximum Likelihood Theory Naif Alajlan 1, Paul Fieguth 2, and Mohamed Kamel 1 1 PAMI Lab, E & CE Dept., UW, Waterloo, ON, N2L 3G1, Canada. naif, mkamel@pami.uwaterloo.ca 2

More information

BBS654 Data Mining. Pinar Duygulu. Slides are adapted from Nazli Ikizler

BBS654 Data Mining. Pinar Duygulu. Slides are adapted from Nazli Ikizler BBS654 Data Mining Pinar Duygulu Slides are adapted from Nazli Ikizler 1 Classification Classification systems: Supervised learning Make a rational prediction given evidence There are several methods for

More information

Data can be in the form of numbers, words, measurements, observations or even just descriptions of things.

Data can be in the form of numbers, words, measurements, observations or even just descriptions of things. + What is Data? Data is a collection of facts. Data can be in the form of numbers, words, measurements, observations or even just descriptions of things. In most cases, data needs to be interpreted and

More information

Machine Learning Techniques for Data Mining

Machine Learning Techniques for Data Mining Machine Learning Techniques for Data Mining Eibe Frank University of Waikato New Zealand 10/25/2000 1 PART VII Moving on: Engineering the input and output 10/25/2000 2 Applying a learner is not all Already

More information

CS512 (Spring 2012) Advanced Data Mining : Midterm Exam I

CS512 (Spring 2012) Advanced Data Mining : Midterm Exam I CS512 (Spring 2012) Advanced Data Mining : Midterm Exam I (Thursday, March 1, 2012, 90 minutes, 100 marks brief answers directly written on the exam paper) Note: Closed book and notes but one reference

More information

AN IMPROVED DENSITY BASED k-means ALGORITHM

AN IMPROVED DENSITY BASED k-means ALGORITHM AN IMPROVED DENSITY BASED k-means ALGORITHM Kabiru Dalhatu 1 and Alex Tze Hiang Sim 2 1 Department of Computer Science, Faculty of Computing and Mathematical Science, Kano University of Science and Technology

More information

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask Machine Learning and Data Mining Clustering (1): Basics Kalev Kask Unsupervised learning Supervised learning Predict target value ( y ) given features ( x ) Unsupervised learning Understand patterns of

More information

Data Mining Cluster Analysis: Basic Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining

Data Mining Cluster Analysis: Basic Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining Data Mining Cluster Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 8 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining 4/18/004 1

More information

2. (a) Briefly discuss the forms of Data preprocessing with neat diagram. (b) Explain about concept hierarchy generation for categorical data.

2. (a) Briefly discuss the forms of Data preprocessing with neat diagram. (b) Explain about concept hierarchy generation for categorical data. Code No: M0502/R05 Set No. 1 1. (a) Explain data mining as a step in the process of knowledge discovery. (b) Differentiate operational database systems and data warehousing. [8+8] 2. (a) Briefly discuss

More information

Computer Vision I. Dense Stereo Correspondences. Anita Sellent 1/15/16

Computer Vision I. Dense Stereo Correspondences. Anita Sellent 1/15/16 Computer Vision I Dense Stereo Correspondences Anita Sellent Stereo Two Cameras Overlapping field of view Known transformation between cameras From disparity compute depth [ Bradski, Kaehler: Learning

More information

Introduction to Pattern Recognition Part II. Selim Aksoy Bilkent University Department of Computer Engineering

Introduction to Pattern Recognition Part II. Selim Aksoy Bilkent University Department of Computer Engineering Introduction to Pattern Recognition Part II Selim Aksoy Bilkent University Department of Computer Engineering saksoy@cs.bilkent.edu.tr RETINA Pattern Recognition Tutorial, Summer 2005 Overview Statistical

More information

MultiDimensional Signal Processing Master Degree in Ingegneria delle Telecomunicazioni A.A

MultiDimensional Signal Processing Master Degree in Ingegneria delle Telecomunicazioni A.A MultiDimensional Signal Processing Master Degree in Ingegneria delle Telecomunicazioni A.A. 205-206 Pietro Guccione, PhD DEI - DIPARTIMENTO DI INGEGNERIA ELETTRICA E DELL INFORMAZIONE POLITECNICO DI BARI

More information

DATA MINING II - 1DL460

DATA MINING II - 1DL460 DATA MINING II - 1DL460 Spring 2013 " An second class in data mining http://www.it.uu.se/edu/course/homepage/infoutv2/vt13 Kjell Orsborn Uppsala Database Laboratory Department of Information Technology,

More information

Dynamic Clustering Of High Speed Data Streams

Dynamic Clustering Of High Speed Data Streams www.ijcsi.org 224 Dynamic Clustering Of High Speed Data Streams J. Chandrika 1, Dr. K.R. Ananda Kumar 2 1 Department of CS & E, M C E,Hassan 573 201 Karnataka, India 2 Department of CS & E, SJBIT, Bangalore

More information

Clustering and Visualisation of Data

Clustering and Visualisation of Data Clustering and Visualisation of Data Hiroshi Shimodaira January-March 28 Cluster analysis aims to partition a data set into meaningful or useful groups, based on distances between data points. In some

More information

Cluster Analysis. Mu-Chun Su. Department of Computer Science and Information Engineering National Central University 2003/3/11 1

Cluster Analysis. Mu-Chun Su. Department of Computer Science and Information Engineering National Central University 2003/3/11 1 Cluster Analysis Mu-Chun Su Department of Computer Science and Information Engineering National Central University 2003/3/11 1 Introduction Cluster analysis is the formal study of algorithms and methods

More information

CS570: Introduction to Data Mining

CS570: Introduction to Data Mining CS570: Introduction to Data Mining Fall 2013 Reading: Chapter 3 Han, Chapter 2 Tan Anca Doloc-Mihu, Ph.D. Some slides courtesy of Li Xiong, Ph.D. and 2011 Han, Kamber & Pei. Data Mining. Morgan Kaufmann.

More information

COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning

COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning Associate Instructor: Herke van Hoof (herke.vanhoof@mail.mcgill.ca) Slides mostly by: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp551

More information

Knowledge Discovery in Databases

Knowledge Discovery in Databases Ludwig-Maximilians-Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Lecture notes Knowledge Discovery in Databases Summer Semester 2012 Lecture 8: Clustering

More information

Chapter 4: Text Clustering

Chapter 4: Text Clustering 4.1 Introduction to Text Clustering Clustering is an unsupervised method of grouping texts / documents in such a way that in spite of having little knowledge about the content of the documents, we can

More information

Working with Unlabeled Data Clustering Analysis. Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan

Working with Unlabeled Data Clustering Analysis. Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan Working with Unlabeled Data Clustering Analysis Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan chanhl@mail.cgu.edu.tw Unsupervised learning Finding centers of similarity using

More information

Mean-shift outlier detection

Mean-shift outlier detection Mean-shift outlier detection Jiawei YANG a, Susanto RAHARDJA b a,1 and Pasi FRÄNTI a School of Computing, University of Eastern Finland b Northwestern Polytechnical University, Xi an, China Abstract. We

More information

Introduction to Trajectory Clustering. By YONGLI ZHANG

Introduction to Trajectory Clustering. By YONGLI ZHANG Introduction to Trajectory Clustering By YONGLI ZHANG Outline 1. Problem Definition 2. Clustering Methods for Trajectory data 3. Model-based Trajectory Clustering 4. Applications 5. Conclusions 1 Problem

More information

Data Mining Cluster Analysis: Basic Concepts and Algorithms. Slides From Lecture Notes for Chapter 8. Introduction to Data Mining

Data Mining Cluster Analysis: Basic Concepts and Algorithms. Slides From Lecture Notes for Chapter 8. Introduction to Data Mining Data Mining Cluster Analysis: Basic Concepts and Algorithms Slides From Lecture Notes for Chapter 8 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining

More information

Computer Vision I - Filtering and Feature detection

Computer Vision I - Filtering and Feature detection Computer Vision I - Filtering and Feature detection Carsten Rother 30/10/2015 Computer Vision I: Basics of Image Processing Roadmap: Basics of Digital Image Processing Computer Vision I: Basics of Image

More information

SELECTION OF OPTIMAL MINING ALGORITHM FOR OUTLIER DETECTION - AN EFFICIENT METHOD TO PREDICT/DETECT MONEY LAUNDERING CRIME IN FINANCE INDUSTRY

SELECTION OF OPTIMAL MINING ALGORITHM FOR OUTLIER DETECTION - AN EFFICIENT METHOD TO PREDICT/DETECT MONEY LAUNDERING CRIME IN FINANCE INDUSTRY P P P-ISSN: 2347-4408 SELECTION OF OPTIMAL MINING ALGORITHM FOR OUTLIER DETECTION - AN EFFICIENT METHOD TO PREDICT/DETECT MONEY LAUNDERING CRIME IN FINANCE INDUSTRY Abstract 1 1 Kannan SP P, Dr. K. SomasundaramP

More information

On Privacy-Preservation of Text and Sparse Binary Data with Sketches

On Privacy-Preservation of Text and Sparse Binary Data with Sketches On Privacy-Preservation of Text and Sparse Binary Data with Sketches Charu C. Aggarwal Philip S. Yu Abstract In recent years, privacy preserving data mining has become very important because of the proliferation

More information

Multi-task Multi-modal Models for Collective Anomaly Detection

Multi-task Multi-modal Models for Collective Anomaly Detection Multi-task Multi-modal Models for Collective Anomaly Detection Tsuyoshi Ide ( Ide-san ), Dzung T. Phan, J. Kalagnanam PhD, Senior Technical Staff Member IBM Thomas J. Watson Research Center This slides

More information