Lec. 7: Ch. 2 - Geometrical Optics. 1. Shadows 2. Reflection 3. Refraction 4. Dispersion. 5. Mirages, sun dogs, etc.

Size: px
Start display at page:

Download "Lec. 7: Ch. 2 - Geometrical Optics. 1. Shadows 2. Reflection 3. Refraction 4. Dispersion. 5. Mirages, sun dogs, etc."

Transcription

1 Lec. 7: h. 2 - Geometrical Optics We are here 1. Shadows 2. Reflection 3. Refraction 4. Dispersion We only covered the first 44 vugraphs. 5. Mirages, sun dogs, etc. Read hapter 3, skip 3.3 and skip 3.5D Skip solar power, pp Dispersion Dispersion: refraction (bending) of different colors by different amounts. Spectrum Prism Light bulb 2

2 Index n varies with color Quartz glass wavelength n (index of refraction) 300 nm (UV) (bent more) 500 nm nm (deep red) (bent less) 3 Prisms demonstrate refraction and dispersion Reflection at a transparent surface occurs because the n values are different. Only a few percent of the light is reflected this way. 4

3 Rainbows: dispersion by water raindrops 180 degree rainbow is possible. Double rainbow is possible. Both together is very rare. 5 How we see a rainbow Sun (behind you) big raindrops this ray not seen these rays are seen this ray not seen 6

4 Pink loyd is slightly wrong. The colors are spread inside the prism as well as outside. The colors start to spread inside the raindrop. Dispersion occurs here during refraction white light comes in Reflections Raindrop Dispersion occurs here during refraction A spectrum of colors comes out Animated slide 7 How we see two rainbows two total internal reflections sun two total internal reflections 8

5 9 Waterfall droplets create rainbows 10

6 11 Lec. 7: h. 2 - Geometrical Optics 1. Shadows 2. Reflection 3. Refraction 4. Dispersion We are here 5. Mirages, sun dogs, etc. 12

7 (sun behind you) ogbow (sun if front of you) ircles around the Moon also occur. 22 degrees, center to edge degree halo You only see the purple rays 14

8 Sun pillar and sun dogs 15 What is a mirage? A mirage is an image (often upside down) caused by heated air refracting rays. n falls from at room temperature to when the temperature goes up

9 Inferior mirage (image below the object) sky appears to be on the ground The ray bends from the low n material toward the high n material. 17 Superior mirage (image above the object) 18

10 19 The green flash from dispersion at sunset is rare! Pekka Parvianen 20

11 Lec. 6: h. 3 - Geometrical Optics We are here 1. Virtual images (review) 2. Spherical mirrors 3. Spherical lenses 4. Aberrations of lenses 21 Virtual image: (p. 73) The light appears to come from the virtual image, but in fact does not come from there, it comes from a lens or mirror. object Real image: (p. 84) The light comes to you from a real image. You may need a screen to see it. a real image: virtual image 22

12 Mirrors and lenses We will study these two cases. A positive lens is thicker in the middle. A negative lens is thicker at the edge. 23 Mirrors can be plane, convex or concave onvex traffic safety mirror, similar to anti-shoplifting mirror. Objects may be closer than they appear. 24

13 Mirrors can be plane, convex or concave oncave solar concentrator 25 Lec. 7: h. 3 - Geometrical Optics We are here 1. Virtual images (review) 2. Spherical mirrors 3. Spherical lenses 4. Aberrations of lenses 26

14 This line segment (from center of circle)... urved Mirrors irst, a little geometry review:...is perpendicular (or normal) to this tangent. We use a circle to represent a spherical surface. 27 Rays reflecting from a convex (spherical) mirror Ray aimed toward center of sphere comes straight back (specular reflection with normal incidence) What about other rays? Ray reflects at the surface This is rule 2. All rays aimed at the center come straight back out. is also called center of curvature. 28

15 What happens to all rays that come in parallel? Specular reflection ind where incoming ray hits mirror surface ind surface normal at that point Angle of incidence = angle of reflection Reflection (of parallel ray) looks like it s coming from -- turns out this is true for all parallel rays. θ i θ r No light is actually back here The focus is halfway to the center 29 What happens to all rays that come in parallel? ocal point = focus is behind the surface Easy rule for parallel incoming rays (parallel to the line between and ): they are reflected as if they came from. This is rule 1. The focus is halfway to the center 30

16 What about rays aimed at the focus? (This is the previous rule, backwards) Easy rule 3 for rays aimed at focus: An incoming ray aimed at gets reflected back parallel (to the - axis). ocal point = focus is behind the surface The focus is behind and halfway to the center Rule 3 is rule 1 backwards. 31 Three easy rules for convex, spherical mirrors 1. All rays incident parallel to the - axis are reflected so that they appear to be coming from the focal point 2. All rays that (when extended) pass through the center are reflected back on themselves. 3. All rays that (when extended) pass through the focal point are reflected back parallel to the axis

17 Ray tracing: convex mirror using the 3 rules Hint: start the rays moving toward the mirror and these rays must contain the arrow head. Questions: Is the image real or virtual? Is the image larger or smaller than the object? Is the image right-side-up or upside-down? Demo with vugraph machine and pens 33 Ray tracing: convex mirror object image Questions: Is the image real or virtual? Is the image larger or smaller than the object? Is the image right-side-up or upside-down? How could a mirror be useful when used like this? 34

18 Rays reflecting from concave (cavity) mirrors Ray through the center reflects straight back at its source Rule 2 applied to concave mirrors 35 Incoming parallel rays reflect through the focus All incoming parallel rays reflect and go through the focus, about half way from center to mirror This is rule 1. As usual, this rule 1 works backwards: incoming rays that go through the focus reflect back parallel (to the - axis) and this is rule

19 Rays through focus reflect back parallel to - axis. 37 Three easy rules for concave, spherical mirrors 1. All rays incident parallel to the - axis are reflected through the focal point 2. All rays that pass through the center are reflected back on themselves. 3. All rays that pass through the focal point are reflected back parallel to the axis

20 oncave mirrors are very useful light beam emitter (flashlight) light collector or solar oven 39 Ray tracing: concave mirror object outside center ase 1 Hint: start the rays moving toward the mirror and these rays must contain the arrow head. Demo with vugraph machine and pens 40

21 Ray tracing: concave mirror object outside center ase 1 I could switch the labels on the object and image and the drawing is still right! Questions: Is the image real or virtual? Is the image larger or smaller than the object? Is the image right-side-up or upside-down? How could a mirror be useful when used like this? 41 Ray tracing: concave mirror object between center and focus ase 2 Hint: start the rays moving toward the mirror and these rays must contain the arrow head. Questions: Is the image real or virtual? Is the image larger or smaller than the object? Is the image right-side-up or upside-down? How could a mirror be useful when used like this? 42

22 Ray tracing: concave mirror object between focus and mirror ase 3 43 Ray tracing: concave mirror object between focus and mirror Questions: Is the image real or virtual? Is the image larger or smaller than the object? Is the image right-side-up or upside-down? How could a mirror be useful when used like this? 44

23 Web tutorials with Java Applets Useful web links on curved mirrors Useful web links on lenses We now have many distinct cases onvex spherical mirror object outside only oncave spherical mirror, object outside center oncave spherical mirror, object between center and focus oncave spherical mirror, object between focus and mirror or each case, you can now answer: Image larger? Virtual? Where? What good is it? AND you can answer these question by ray tracing with three simple rules 46

24 On to lenses: first, review refraction air n=1 (nearly) v = c (nearly) glass, e.g. n=1.5 v = c/n < c Rays bend toward normal when entering slower medium (larger n), away from normal when entering faster medium (smaller n). 47 A trick to remember which way rays bend Soldiers in mud analogy (challenge: where does this analogy break down?) As soldiers slow down, space between them narrows rays (perpendicular to fronts) pavement (soldiers go fast) fronts deep mud (soldiers march slower through deep mud) 48

25 Ray tracing with lenses Brute force ray tracing: n=1 n>1 1. As long as ray stays in same medium, it goes straight. 2. At each interface to a different medium, use Snell s law to calculate how it will bend. Go back to 1. This gets tedious! Rays entering slower material bend toward normal Rays entering faster material bend away from normal 49 Thin convex (converging) lens focal length foci 50

26 Thin convex lens: three easy rules for ray tracing 1) A ray parallel to the axis is deflected through the focus on the other side 2) A ray through the center of the lens continues undeviated 3) A ray come from the focus on one side goes out parallel to the axis on the other 1 focal length foci 51 Ray might have to be extended Note light-focusing property of convex (converging) lens a good light collector or solar oven; can also fry ants with sunlight, but please don t do that unless you re going to eat them 52

27 Note light-dispersing property of convex lens The backwards light collector: create a collimated light beam 53 Where will this ray go? Ray Tracing foci (focuses?) 54

28 Where will this ray go? Suppose it s emitted from this object Ray Tracing foci (focuses?) Where will this ray go? Suppose it s emitted from this object Ray Tracing We know where these 3 rays go, using the simple ray rules foci (focuses?) 56

29 Where will this ray go? Suppose it s emitted from this object Ray Tracing Amazing property of this lens: all rays from the object will converge to the same point We know where these 3 rays go, using the simple ray rules foci (focuses?) 57 Ray Tracing Where will this ray go? Suppose it s emitted from this object Amazing property of this lens: all rays from the object will converge to the same point We know where these 3 rays go, using the simple ray rules foci (focuses?) 58

30 Ray Tracing: thin lens, object outside focus Amazing property of this lens: all rays from the object will converge to the same point (the image) See how the rays emerge from this point (the image)? 59 Thin concave (diverging) lens Guess how this ray will be bent: or diverging lens focal length defined to be negative (of the distance between focus and lens) 60

31 Thin concave (diverging) lens or diverging lens focal length defined to be negative 61 Thin concave (diverging) lens: three easy ray rules 1) A ray parallel to the axis is deflected as if it came from the focus 2) A ray through the center of the lens continues undeviated 3) A ray aimed at the focus on the other side comes out parallel Ray might have to be extended or diverging lens focal length defined to be negative 62

32 Difference between convex (converging) and concave (diverging) lenses 1 (Rule 3, the backwards version of rule 1, also differs) 1 63 Ray tracing a convex lens: object inside focus 64

33 Ray tracing a convex lens: object inside focus The image appears larger (and farther away) than the object. This is a magnifying glass. (Remember: a magnifying glass is a convex lens.) Aside: near-sighted people need concave/diverging lenses; can a marooned myopic start a fire with his eye-glasses? 65 onvex lens ray tracing: 3 cases Like concave mirrors, convex lenses have 3 kinds of cases for ray tracing: 1. object inside focal length 2. object outside focal length, inside twice focal length 3. object outside twice focal length You can do the ray tracing and answer the following questions: Is the image real/virtual? Is the image larger/smaller than the object? Is the image erect/inverted? How can the lens be used? 66

Lec. 6: Ch. 2 - Geometrical Optics

Lec. 6: Ch. 2 - Geometrical Optics Lec. 6: Ch. 2 - Geometrical Optics We are here 1. Shadows 2. Reflection 3. Refraction 4. Dispersion Guest lecture Tuesday, February 2, by Dr. Greg Werner. 1 Review Equal angle rule Similar triangles are

More information

Recap: Refraction. Amount of bending depends on: - angle of incidence - refractive index of medium. (n 2 > n 1 ) n 2

Recap: Refraction. Amount of bending depends on: - angle of incidence - refractive index of medium. (n 2 > n 1 ) n 2 Amount of bending depends on: - angle of incidence - refractive index of medium Recap: Refraction λ 1 (n 2 > n 1 ) Snell s Law: When light passes from one transparent medium to another, the rays will be

More information

Algebra Based Physics

Algebra Based Physics Slide 1 / 66 Slide 2 / 66 Algebra Based Physics Geometric Optics 2015-12-01 www.njctl.org Table of ontents Slide 3 / 66 lick on the topic to go to that section Reflection Spherical Mirror Refraction and

More information

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc.

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc. Chapter 32 Light: Reflection and Refraction Units of Chapter 32 The Ray Model of Light Reflection; Image Formation by a Plane Mirror Formation of Images by Spherical Mirrors Index of Refraction Refraction:

More information

Lecture Outline Chapter 26. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 26. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 26 Physics, 4 th Edition James S. Walker Chapter 26 Geometrical Optics Units of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 1 Overview of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing and the Mirror Equation The Refraction of Light Ray Tracing

More information

Physics 1230: Light and Color. Lecture 16: Refraction in more complex cases!

Physics 1230: Light and Color. Lecture 16: Refraction in more complex cases! Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230 Lecture 16: Refraction in more complex cases!

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 26.1 The Reflection of Light 26.2 Forming Images With a Plane Mirror 26.3 Spherical Mirrors 26.4 Ray Tracing and the Mirror Equation 26.5 The Refraction of Light 26.6 Ray

More information

Ray Optics. Physics 11. Sources of Light Rays: Self-Luminous Objects. The Ray Model of Light

Ray Optics. Physics 11. Sources of Light Rays: Self-Luminous Objects. The Ray Model of Light Physics 11 Ray Optics Ray Model of Light Reflection Plane Mirrors Spherical Mirrors Ray Tracing Images from a Concave Mirror Images from a Convex Mirror Slide 18-3 The Ray Model of Light Sources of Light

More information

Phys102 Lecture 21/22 Light: Reflection and Refraction

Phys102 Lecture 21/22 Light: Reflection and Refraction Phys102 Lecture 21/22 Light: Reflection and Refraction Key Points The Ray Model of Light Reflection and Mirrors Refraction, Snell s Law Total internal Reflection References 23-1,2,3,4,5,6. The Ray Model

More information

Dispersion (23.5) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 17

Dispersion (23.5) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 17 Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 1 / 17 Dispersion (23.5) The speed of light in a material depends on its wavelength White light is a mixture of wavelengths

More information

Chapter 3: Mirrors and Lenses

Chapter 3: Mirrors and Lenses Chapter 3: Mirrors and Lenses Chapter 3: Mirrors and Lenses Lenses Refraction Converging rays Diverging rays Converging Lens Ray tracing rules Image formation Diverging Lens Ray tracing Image formation

More information

Conceptual Physics 11 th Edition

Conceptual Physics 11 th Edition Conceptual Physics 11 th Edition Chapter 28: REFLECTION & REFRACTION This lecture will help you understand: Reflection Principle of Least Time Law of Reflection Refraction Cause of Refraction Dispersion

More information

GEOMETRIC OPTICS. LENSES refract light, so we need to know how light bends when entering and exiting a lens and how that interaction forms an image.

GEOMETRIC OPTICS. LENSES refract light, so we need to know how light bends when entering and exiting a lens and how that interaction forms an image. I. What is GEOMTERIC OPTICS GEOMETRIC OPTICS In geometric optics, LIGHT is treated as imaginary rays. How these rays interact with at the interface of different media, including lenses and mirrors, is

More information

Reflections. I feel pretty, oh so pretty

Reflections. I feel pretty, oh so pretty Reflections I feel pretty, oh so pretty Objectives By the end of the lesson, you should be able to: Draw an accurate reflective angle Determine the focal length of a spherical mirror Light Review Light

More information

Light: Geometric Optics (Chapter 23)

Light: Geometric Optics (Chapter 23) Light: Geometric Optics (Chapter 23) Units of Chapter 23 The Ray Model of Light Reflection; Image Formed by a Plane Mirror Formation of Images by Spherical Index of Refraction Refraction: Snell s Law 1

More information

2/26/2016. Chapter 23 Ray Optics. Chapter 23 Preview. Chapter 23 Preview

2/26/2016. Chapter 23 Ray Optics. Chapter 23 Preview. Chapter 23 Preview Chapter 23 Ray Optics Chapter Goal: To understand and apply the ray model of light. Slide 23-2 Chapter 23 Preview Slide 23-3 Chapter 23 Preview Slide 23-4 1 Chapter 23 Preview Slide 23-5 Chapter 23 Preview

More information

Light travels in straight lines, this is referred to as... this means that light does not bend...

Light travels in straight lines, this is referred to as... this means that light does not bend... SNC 2DI - 10.2 Properties of Light and Reflection Light travels in straight lines, this is referred to as... this means that light does not bend... Reflection : Light travels in a straight line as long

More information

Light, Photons, and MRI

Light, Photons, and MRI Light, Photons, and MRI When light hits an object, some of it will be reflected. The reflected light can form an image. We usually want to be able to characterize the image given what we know about the

More information

AP Physics: Curved Mirrors and Lenses

AP Physics: Curved Mirrors and Lenses The Ray Model of Light Light often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but is very useful for geometric

More information

4. Refraction. glass, air, Perspex and water.

4. Refraction. glass, air, Perspex and water. Mr. C. Grima 11 1. Rays and Beams A ray of light is a narrow beam of parallel light, which can be represented by a line with an arrow on it, in diagrams. A group of rays makes up a beam of light. In laboratory

More information

Physics 1230: Light and Color. Guest Lecture 18 Jack Houlton Lenses, Rays, and Math!

Physics 1230: Light and Color. Guest Lecture 18 Jack Houlton Lenses, Rays, and Math! Physics 230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys230 Guest Lecture 8 Jack Houlton Lenses, Rays, and

More information

Unit 11 Light and Optics Holt Chapter 14 Student Outline Light and Refraction

Unit 11 Light and Optics Holt Chapter 14 Student Outline Light and Refraction Holt Chapter 14 Student Outline Light and Refraction Variables introduced or used in chapter: Quantity Symbol Units Speed of light frequency wavelength angle Object Distance Image Distance Radius of Curvature

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics 23.1 The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization,

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but

More information

Refraction of Light. This bending of the ray is called refraction

Refraction of Light. This bending of the ray is called refraction Refraction & Lenses Refraction of Light When a ray of light traveling through a transparent medium encounters a boundary leading into another transparent medium, part of the ray is reflected and part of

More information

Optics INTRODUCTION DISCUSSION OF PRINCIPLES. Reflection by a Plane Mirror

Optics INTRODUCTION DISCUSSION OF PRINCIPLES. Reflection by a Plane Mirror Optics INTRODUCTION Geometric optics is one of the oldest branches of physics, dealing with the laws of reflection and refraction. Reflection takes place on the surface of an object, and refraction occurs

More information

Winmeen Tnpsc Group 1 & 2 Self Preparation Course Physics UNIT 9. Ray Optics. surface at the point of incidence, all lie in the same plane.

Winmeen Tnpsc Group 1 & 2 Self Preparation Course Physics UNIT 9. Ray Optics. surface at the point of incidence, all lie in the same plane. Laws of reflection Physics UNIT 9 Ray Optics The incident ray, the reflected ray and the normal drawn to the reflecting surface at the point of incidence, all lie in the same plane. The angle of incidence

More information

Light & Optical Systems Reflection & Refraction. Notes

Light & Optical Systems Reflection & Refraction. Notes Light & Optical Systems Reflection & Refraction Notes What is light? Light is electromagnetic radiation Ultra-violet + visible + infra-red Behavior of Light Light behaves in 2 ways particles (photons)

More information

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Conceptual Physics Fundamentals Chapter 14: PROPERTIES OF LIGHT This lecture will help you understand: Reflection Refraction Dispersion Total Internal Reflection Lenses Polarization Properties of Light

More information

Physics 1230 Light and Color Fall 2012 M. Goldman. Practice Exam #1 Tuesday, Sept 25, Your full name: Last First and middle.

Physics 1230 Light and Color Fall 2012 M. Goldman. Practice Exam #1 Tuesday, Sept 25, Your full name: Last First and middle. Physics 1230 Light and Color Fall 2012 M. Goldman Practice Exam #1 Tuesday, Sept 25, 2012 This exam will be worth 100 points. There are 10 multiple choice questions worth 4 points each and 3 problems worth

More information

Ray Optics. Ray model Reflection Refraction, total internal reflection Color dispersion Lenses Image formation Magnification Spherical mirrors

Ray Optics. Ray model Reflection Refraction, total internal reflection Color dispersion Lenses Image formation Magnification Spherical mirrors Ray Optics Ray model Reflection Refraction, total internal reflection Color dispersion Lenses Image formation Magnification Spherical mirrors 1 Ray optics Optical imaging and color in medicine Integral

More information

PHYSICS. Chapter 34 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 34 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 34 Lecture RANDALL D. KNIGHT Chapter 34 Ray Optics IN THIS CHAPTER, you will learn about and apply the ray model of light Slide 34-2

More information

Chapter 12 Notes: Optics

Chapter 12 Notes: Optics Chapter 12 Notes: Optics How can the paths traveled by light rays be rearranged in order to form images? In this chapter we will consider just one form of electromagnetic wave: visible light. We will be

More information

HW Chapter 20 Q 2,3,4,5,6,10,13 P 1,2,3. Chapter 20. Classic and Modern Optics. Dr. Armen Kocharian

HW Chapter 20 Q 2,3,4,5,6,10,13 P 1,2,3. Chapter 20. Classic and Modern Optics. Dr. Armen Kocharian HW Chapter 20 Q 2,3,4,5,6,10,13 P 1,2,3 Chapter 20 Classic and Modern Optics Dr. Armen Kocharian Electromagnetic waves and matter: A Brief History of Light 1000 AD It was proposed that light consisted

More information

Geometrical Optics. 1 st year physics laboratories. University of Ottawa

Geometrical Optics. 1 st year physics laboratories. University of Ottawa Geometrical Optics 1 st year physics laboratories University of Ottawa https://uottawa.brightspace.com/d2l/home INTRODUCTION Geometrical optics deals with light as a ray that can be bounced (reflected)

More information

Stevens High School AP Physics II Work for Not-school

Stevens High School AP Physics II Work for Not-school 1. Gravitational waves are ripples in the fabric of space-time (more on this in the next unit) that travel at the speed of light (c = 3.00 x 10 8 m/s). In 2016, the LIGO (Laser Interferometry Gravitational

More information

Today s Topic: Refraction / Snell s Law

Today s Topic: Refraction / Snell s Law Today s Topic: Refraction / Snell s Law Learning Goal: Students will be able to calculate the angle of reflection of a bent light wave. Take out your notes from yesterday as we learn about Snell s Law.

More information

Outline The Refraction of Light Forming Images with a Plane Mirror 26-3 Spherical Mirror 26-4 Ray Tracing and the Mirror Equation

Outline The Refraction of Light Forming Images with a Plane Mirror 26-3 Spherical Mirror 26-4 Ray Tracing and the Mirror Equation Chapter 6 Geometrical Optics Outline 6-1 The Reflection of Light 6- Forming Images with a Plane Mirror 6-3 Spherical Mirror 6-4 Ray Tracing and the Mirror Equation 6-5 The Refraction of Light 6-6 Ray Tracing

More information

Physics 1230: Light and Color. Projects

Physics 1230: Light and Color. Projects Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Matt Heinemann, Matthew.Heinemann@colorado.edu www.colorado.edu/physics/phys1230 Exam 2 tomorrow, here. HWK 6 is due at 5PM Thursday.

More information

Light and Optics Learning Goals Review

Light and Optics Learning Goals Review SNC2D Light and Optics Learning Goals Review Different types of light be familiar with the different types of light i.e. direct and indirect, natural and artificial and be able to describe the different

More information

Nicholas J. Giordano. Chapter 24. Geometrical Optics. Marilyn Akins, PhD Broome Community College

Nicholas J. Giordano.   Chapter 24. Geometrical Optics. Marilyn Akins, PhD Broome Community College Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 24 Geometrical Optics Marilyn Akins, PhD Broome Community College Optics The study of light is called optics Some highlights in the history

More information

Homework Set 3 Due Thursday, 07/14

Homework Set 3 Due Thursday, 07/14 Homework Set 3 Due Thursday, 07/14 Problem 1 A room contains two parallel wall mirrors, on opposite walls 5 meters apart. The mirrors are 8 meters long. Suppose that one person stands in a doorway, in

More information

LIGHT. Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses

LIGHT. Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses LIGHT Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses Light = Electromagnetic Wave Requires No Medium to Travel Oscillating Electric and Magnetic Field Travel at the speed of light

More information

Chapter 11 Mirrors and Lenses KEY

Chapter 11 Mirrors and Lenses KEY Science 8 Physics Unit http://moodle.sd23.bc.ca/drk Question Completion Asking for Help Working in Class G I have completed all of the assigned questions, completed all diagrams, and corrected all wrong

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics The Reflection of Light: Mirrors: Mirrors produce images because the light that strikes them is reflected, rather than absorbed. Reflected light does much more than produce

More information

Ch. 26: Geometrical Optics

Ch. 26: Geometrical Optics Sec. 6-1: The Reflection of Light Wave Fronts and Rays Ch. 6: Geometrical Optics Wave front: a surface on which E is a maximum. Figure 5-3: Plane Wave *For this wave, the wave fronts are a series of planes.

More information

Chapter 5 Mirrors and Lenses

Chapter 5 Mirrors and Lenses Chapter 5 Notes: Mirrors and Lenses Name: Block: The Ray Model of Light The ray model of light represents light as a line, or ray, indicating the path of a beam of light. Light travels in straight lines

More information

Chapter 5 Mirror and Lenses

Chapter 5 Mirror and Lenses Chapter 5 Mirror and Lenses Name: 5.1 Ray Model of Light Another model for light is that it is made up of tiny particles called. Photons travel in perfect, lines from a light source This model helps us

More information

PHYS 219 General Physics: Electricity, Light and Modern Physics

PHYS 219 General Physics: Electricity, Light and Modern Physics PHYS 219 General Physics: Electricity, Light and Modern Physics Exam 2 is scheduled on Tuesday, March 26 @ 8 10 PM In Physics 114 It will cover four Chapters 21, 22, 23, and 24. Start reviewing lecture

More information

UNIT C: LIGHT AND OPTICAL SYSTEMS

UNIT C: LIGHT AND OPTICAL SYSTEMS 1 UNIT C: LIGHT AND OPTICAL SYSTEMS Science 8 2 LIGHT BEHAVES IN PREDICTABLE WAYS. Section 2.0 1 3 LIGHT TRAVELS IN RAYS AND INTERACTS WITH MATERIALS Topic 2.1 RAY DIAGRAMS Scientists use ray diagrams

More information

3. For an incoming ray of light vacuum wavelength 589 nm, fill in the unknown values in the following table.

3. For an incoming ray of light vacuum wavelength 589 nm, fill in the unknown values in the following table. Homework Set 15A: Mirrors and Lenses 1. Find the angle of refraction for a ray of light that enters a bucket of water from air at an angle of 25 degrees to the normal. 2. A ray of light of vacuum wavelength

More information

Welcome to: Physics I. I m Dr Alex Pettitt, and I ll be your guide!

Welcome to: Physics I. I m Dr Alex Pettitt, and I ll be your guide! Welcome to: Physics I I m Dr Alex Pettitt, and I ll be your guide! Physics I: x Mirrors and lenses Lecture 13: 6-11-2018 Last lecture: Reflection & Refraction Reflection: Light ray hits surface Ray moves

More information

3. LENSES & PRISM

3. LENSES & PRISM 3. LENSES & PRISM. A transparent substance bounded by two surfaces of definite geometrical shape is called lens.. A lens may be considered to be made up of a number of small prisms put together. 3. Principal

More information

Light and all its colours

Light and all its colours Light and all its colours Hold a CD to the light You can see all the colours of the rainbow The CD is a non-luminous body It is reflecting white light from the sun Where do the colours come from? Truth

More information

Chapter 23. Light Geometric Optics

Chapter 23. Light Geometric Optics Chapter 23. Light Geometric Optics There are 3 basic ways to gather light and focus it to make an image. Pinhole - Simple geometry Mirror - Reflection Lens - Refraction Pinhole Camera Image Formation (the

More information

All forms of EM waves travel at the speed of light in a vacuum = 3.00 x 10 8 m/s This speed is constant in air as well

All forms of EM waves travel at the speed of light in a vacuum = 3.00 x 10 8 m/s This speed is constant in air as well Pre AP Physics Light & Optics Chapters 14-16 Light is an electromagnetic wave Electromagnetic waves: Oscillating electric and magnetic fields that are perpendicular to the direction the wave moves Difference

More information

The Ray model of Light. Reflection. Class 18

The Ray model of Light. Reflection. Class 18 The Ray model of Light Over distances of a terrestrial scale light travels in a straight line. The path of a laser is now the best way we have of defining a straight line. The model of light which assumes

More information

LECTURE 25 Spherical Refracting Surfaces. Geometric Optics

LECTURE 25 Spherical Refracting Surfaces. Geometric Optics LECTURE 25 Spherical Refracting Surfaces Geometric ptics When length scales are >> than the light s wavelength, light propagates as rays incident ray reflected ray θ θ r θ 2 refracted ray Reflection: Refraction:

More information

Chapter 33 Continued Properties of Light. Law of Reflection Law of Refraction or Snell s Law Chromatic Dispersion Brewsters Angle

Chapter 33 Continued Properties of Light. Law of Reflection Law of Refraction or Snell s Law Chromatic Dispersion Brewsters Angle Chapter 33 Continued Properties of Light Law of Reflection Law of Refraction or Snell s Law Chromatic Dispersion Brewsters Angle Dispersion: Different wavelengths have different velocities and therefore

More information

index of refraction-light speed

index of refraction-light speed AP Physics Study Guide Chapters 22, 23, 24 Reflection, Refraction and Interference Name Write each of the equations specified below, include units for all quantities. Law of Reflection Lens-Mirror Equation

More information

PY106 Class31. Index of refraction. Refraction. Index of refraction. Sample values of n. Rays and wavefronts. index of refraction: n v.

PY106 Class31. Index of refraction. Refraction. Index of refraction. Sample values of n. Rays and wavefronts. index of refraction: n v. Refraction Index of refraction When an EM wave travels in a vacuum, its speed is: c = 3.00 x 10 8 m/s. In any other medium, light generally travels at a slower speed. The speed of light v in a material

More information

Textbook Reference: Glencoe Physics: Chapters 16-18

Textbook Reference: Glencoe Physics: Chapters 16-18 Honors Physics-121B Geometric Optics Introduction: A great deal of evidence suggests that light travels in straight lines. A source of light like the sun casts distinct shadows. We can hear sound from

More information

Refraction Section 1. Preview. Section 1 Refraction. Section 2 Thin Lenses. Section 3 Optical Phenomena. Houghton Mifflin Harcourt Publishing Company

Refraction Section 1. Preview. Section 1 Refraction. Section 2 Thin Lenses. Section 3 Optical Phenomena. Houghton Mifflin Harcourt Publishing Company Refraction Section 1 Preview Section 1 Refraction Section 2 Thin Lenses Section 3 Optical Phenomena Refraction Section 1 TEKS The student is expected to: 7D investigate behaviors of waves, including reflection,

More information

Lecture 14: Refraction

Lecture 14: Refraction Lecture 14: Refraction We know from experience that there are several transparent substances through which light can travel air, water, and glass are three examples When light passes from one such medium

More information

Optics Course (Phys 311) Geometrical Optics Refraction through Lenses

Optics Course (Phys 311) Geometrical Optics Refraction through Lenses Optics Course (Phys ) Geometrical Optics Refraction through Lenses Lecturer: Dr Zeina Hashim Slide 1 Objectives covered in this lesson : 1. Refraction through single spherical refracting surfaces. 2. Lenses:

More information

Chapter 18 Ray Optics

Chapter 18 Ray Optics Chapter 18 Ray Optics Chapter Goal: To understand and apply the ray model of light. Slide 18-1 Chapter 18 Preview Looking Ahead Text p. 565 Slide 18-2 Wavefronts and Rays When visible light or other electromagnetic

More information

What is it? How does it work? How do we use it?

What is it? How does it work? How do we use it? What is it? How does it work? How do we use it? Dual Nature http://www.youtube.com/watch?v=dfpeprq7ogc o Electromagnetic Waves display wave behavior o Created by oscillating electric and magnetic fields

More information

The path of light is bent. Refraction and Lenses 4/26/2016. The angle of incidence equals the angle of reflection. Not so for refraction.

The path of light is bent. Refraction and Lenses 4/26/2016. The angle of incidence equals the angle of reflection. Not so for refraction. The path of light is bent. Refraction and Lenses These are not photographs, but rather computer generated graphics based on the artist s understanding of the index of refraction. The angle of incidence

More information

PHY 112: Light, Color and Vision. Lecture 11. Prof. Clark McGrew Physics D 134. Review for Exam. Lecture 11 PHY 112 Lecture 1

PHY 112: Light, Color and Vision. Lecture 11. Prof. Clark McGrew Physics D 134. Review for Exam. Lecture 11 PHY 112 Lecture 1 PHY 112: Light, Color and Vision Lecture 11 Prof. Clark McGrew Physics D 134 Review for Exam Lecture 11 PHY 112 Lecture 1 From Last Time Lenses Ray tracing a Convex Lens Announcements The midterm is Thursday

More information

Physics 10. Lecture 28A. "If Dracula can t see his reflection in the mirror, how come his hair is always so neatly combed?

Physics 10. Lecture 28A. If Dracula can t see his reflection in the mirror, how come his hair is always so neatly combed? Physics 10 Lecture 28A "If Dracula can t see his reflection in the mirror, how come his hair is always so neatly combed?" --Steven Wright The Nature of Light From now on we will have to treat light as

More information

Optics II. Reflection and Mirrors

Optics II. Reflection and Mirrors Optics II Reflection and Mirrors Geometric Optics Using a Ray Approximation Light travels in a straight-line path in a homogeneous medium until it encounters a boundary between two different media The

More information

Physics 102: Lecture 17 Reflection and Refraction of Light

Physics 102: Lecture 17 Reflection and Refraction of Light Physics 102: Lecture 17 Reflection and Refraction of Light Physics 102: Lecture 17, Slide 1 Today Last Time Recall from last time. Reflection: q i = q r Flat Mirror: image equidistant behind Spherical

More information

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light.

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light. Chapter 7: Geometrical Optics The branch of physics which studies the properties of light using the ray model of light. Overview Geometrical Optics Spherical Mirror Refraction Thin Lens f u v r and f 2

More information

Geometrical Optics INTRODUCTION. Wave Fronts and Rays

Geometrical Optics INTRODUCTION. Wave Fronts and Rays Geometrical Optics INTRODUCTION In this experiment, the optical characteristics of mirrors, lenses, and prisms will be studied based on using the following physics definitions and relationships plus simple

More information

LIGHT Measuring Angles

LIGHT Measuring Angles 1. Using a protractor LIGHT Measuring Angles This angle is 33 Put vertex (corner) of angle where lines cross One arm of angle goes through middle of 0 This angle is 45 Measure these angles: 66 Light an

More information

Physics 1202: Lecture 18 Today s Agenda

Physics 1202: Lecture 18 Today s Agenda Physics 1202: Lecture 18 Today s Agenda Announcements: Team problems today Team 10: Alisha Kumar, Adam Saxton, Alanna Forsberg Team 11: Riley Burns, Deanne Edwards, Shauna Bolton Team 12: Kervell Baird,

More information

Light Refraction. light ray. water

Light Refraction. light ray. water Light reflection and light refraction are often used to create optical illusions during a magic show. For example, mirrors can create the illusion that there are six apples when in fact light from just

More information

General Physics II. Mirrors & Lenses

General Physics II. Mirrors & Lenses General Physics II Mirrors & Lenses Nothing New! For the next several lectures we will be studying geometrical optics. You already know the fundamentals of what is going on!!! Reflection: θ 1 = θ r incident

More information

- the bending. no refraction. with. (Refraction of Light)

- the bending. no refraction. with. (Refraction of Light) Lecture Notes (Refraction of Light) Intro: - the bending of light that occurs at a boundary of a transparent object is called refraction - the angle of incidence and the angle of refraction is measured

More information

Physics 1202: Lecture 17 Today s Agenda

Physics 1202: Lecture 17 Today s Agenda Physics 1202: Lecture 17 Today s Agenda Announcements: Team problems today Team 10, 11 & 12: this Thursday Homework #8: due Friday Midterm 2: Tuesday April 10 Office hours if needed (M-2:30-3:30 or TH

More information

IJSO Training: Light and Colour Mini-experiment Refractive Index and Snell s Law

IJSO Training: Light and Colour Mini-experiment Refractive Index and Snell s Law IJSO Training: Light and Colour Mini-experiment Refractive Index and Snell s Law Objective In this experiment, you are required to determine the refractive index of an acrylic trapezoid (or any block with

More information

Reflection & Refraction

Reflection & Refraction Reflection & Refraction Reflection Occurs when light hits a medium and bounces back towards the direction it came from Reflection is what allows us to see objects: Lights reflects off an object and travels

More information

INTRODUCTION REFLECTION AND REFRACTION AT BOUNDARIES. Introduction. Reflection and refraction at boundaries. Reflection at a single surface

INTRODUCTION REFLECTION AND REFRACTION AT BOUNDARIES. Introduction. Reflection and refraction at boundaries. Reflection at a single surface Chapter 8 GEOMETRICAL OPTICS Introduction Reflection and refraction at boundaries. Reflection at a single surface Refraction at a single boundary Dispersion Summary INTRODUCTION It has been shown that

More information

Quest Chapter 30. Same hint as in #1. Consider the shapes of lenses that make them converge or diverge.

Quest Chapter 30. Same hint as in #1. Consider the shapes of lenses that make them converge or diverge. 1 Consider the light rays depicted in the figure. 1. diverging mirror 2. plane mirror 3. converging mirror 4. converging lens 5. diverging lens 6. Unable to determine. 2 Consider the light rays depicted

More information

1. What is the law of reflection?

1. What is the law of reflection? Name: Skill Sheet 7.A The Law of Reflection The law of reflection works perfectly with light and the smooth surface of a mirror. However, you can apply this law to other situations. For example, how would

More information

normal: a line drawn perpendicular (90 ) from the point of incidence of the reflecting surface

normal: a line drawn perpendicular (90 ) from the point of incidence of the reflecting surface Ch 11 Reflecting Light off a Plane Mirror p. 313 Types of Mirrors (3) 1) Plane: flat fg 1 p. 313 law of reflection: the angle of incidence = the angle of reflection incident ray (in): the ray (light beam)

More information

Optics. a- Before the beginning of the nineteenth century, light was considered to be a stream of particles.

Optics. a- Before the beginning of the nineteenth century, light was considered to be a stream of particles. Optics 1- Light Nature: a- Before the beginning of the nineteenth century, light was considered to be a stream of particles. The particles were either emitted by the object being viewed or emanated from

More information

Person s Optics Test SSSS

Person s Optics Test SSSS Person s Optics Test SSSS 2017-18 Competitors Names: School Name: All questions are worth one point unless otherwise stated. Show ALL WORK or you may not receive credit. Include correct units whenever

More information

Lecture 7 Notes: 07 / 11. Reflection and refraction

Lecture 7 Notes: 07 / 11. Reflection and refraction Lecture 7 Notes: 07 / 11 Reflection and refraction When an electromagnetic wave, such as light, encounters the surface of a medium, some of it is reflected off the surface, while some crosses the boundary

More information

Reflection and Refraction. Geometrical Optics

Reflection and Refraction. Geometrical Optics Reflection and Refraction Geometrical Optics Reflection Angle of incidence = Angle of reflection The angle of incidence,i, is always equal to the angle of reflection, r. The incident ray, reflected ray

More information

Physics 11 Chapter 18: Ray Optics

Physics 11 Chapter 18: Ray Optics Physics 11 Chapter 18: Ray Optics "... Everything can be taken from a man but one thing; the last of the human freedoms to choose one s attitude in any given set of circumstances, to choose one s own way.

More information

Lecture Notes (Geometric Optics)

Lecture Notes (Geometric Optics) Lecture Notes (Geometric Optics) Intro: - plane mirrors are flat, smooth surfaces from which light is reflected by regular reflection - light rays are reflected with equal angles of incidence and reflection

More information

Reflection and Refraction

Reflection and Refraction Relection and Reraction Object To determine ocal lengths o lenses and mirrors and to determine the index o reraction o glass. Apparatus Lenses, optical bench, mirrors, light source, screen, plastic or

More information

Geometric Optics. The Law of Reflection. Physics Waves & Oscillations 3/20/2016. Spring 2016 Semester Matthew Jones

Geometric Optics. The Law of Reflection. Physics Waves & Oscillations 3/20/2016. Spring 2016 Semester Matthew Jones Physics 42200 Waves & Oscillations Lecture 27 Propagation of Light Hecht, chapter 5 Spring 2016 Semester Matthew Jones Geometric Optics Typical problems in geometric optics: Given an optical system, what

More information

4.5 Images Formed by the Refraction of Light

4.5 Images Formed by the Refraction of Light Figure 89: Practical structure of an optical fibre. Absorption in the glass tube leads to a gradual decrease in light intensity. For optical fibres, the glass used for the core has minimum absorption at

More information

Chapter 23. Geometrical Optics: Mirrors and Lenses and other Instruments

Chapter 23. Geometrical Optics: Mirrors and Lenses and other Instruments Chapter 23 Geometrical Optics: Mirrors and Lenses and other Instruments HITT1 A small underwater pool light is 1 m below the surface of a swimming pool. What is the radius of the circle of light on the

More information

Chapter 5: Mirrors and Lenses. 5.1 Ray Model of Light

Chapter 5: Mirrors and Lenses. 5.1 Ray Model of Light Chapter 5: Mirrors and Lenses 5.1 Ray Model of Light Ray Model of Light Another model for light is that it is made up of 3ny par3cles called photons Photons travel in perfect, straight lines away from

More information

Optics Test Science What are some devices that you use in everyday life that require optics?

Optics Test Science What are some devices that you use in everyday life that require optics? Optics Test Science 8 Introduction to Optics 1. What are some devices that you use in everyday life that require optics? Light Energy and Its Sources 308-8 identify and describe properties of visible light

More information

Science 8 Chapter 5 Section 1

Science 8 Chapter 5 Section 1 Science 8 Chapter 5 Section 1 The Ray Model of Light (pp. 172-187) Models of Light wave model of light: a model in which light is a type of wave that travels through space and transfers energy from one

More information