CAP 6412 Advanced Computer Vision

Size: px
Start display at page:

Download "CAP 6412 Advanced Computer Vision"

Transcription

1 CAP 6412 Advanced Computer Vision Boqing Gong April 21st, 2016

2 Today Administrivia Free parameters in an approach, model, or algorithm? Egocentric videos by Aisha

3 Project II due: next Wednesday (04/27, 5PM) Final Project Presentation: 04/28, 1 3:50 PM Late submissions: PrQTo9xTWKfv7s-OPyuV_zZw9Fc/edit?usp=sharing

4 Today Administrivia Free parameters in an approach, model, or algorithm? Egocentric videos by Aisha

5 Free parameters (hyper-parameters) In Project 2, when you train the CNNs Learning rate, momentum, weight decay, dropout rate, early stopping, etc. Network architecture, nonlinear functions, strides, etc. In Linear regression In SVM min w MX (y m x T mw)+ kwk 2 2 m=1 min w, m,m=1,,m MX m=1 m + kwk 2 2 s.t. y m (x T mw) 1 m, & m 0 8m

6 Free parameters (hyper-parameters) In K-means clustering: K, the number of clusters In K-Nearest neighbors classifier: K, the number of neighbors In Canny edge detection Gaussian filter, thresholds In R-CNN Threshold of selective search # Layers, filter size, stride, where max pooling Padding or not, learning rate, momentum, weight decay, #iterations Trade-off parameter Feature selection for regression Batch size

7 Free parameters (hyper-parameters) Free parameters vs. Model parameters min w MX (y m x T mw)+ kwk 2 2 m=1 Often seek model parameters by optimization Gradient descent (GD), coordinate descent, Newton, stochastic GD, etc. How to choose the free parameters?

8 How to choose the free parameters Smallest error rate on Test set? Validation set? Smallest expected error rate on the entire population In practice, however, we have access to a finite set of examples! Approximate the expected error rate Choose free parameters which minimize the approximate error How to approximate the expected error?

9 Weak approximation of the expected error! Rarely used in practice.

10

11 Popular for small data.

12 Popular for small data.

13

14

15 1. Divide data to training, validation, and test sets. 2. Select free parameters 1. E.g., network layers, #hidden states, nonlinear functions, etc. 3. Train the model using the training set 4. Evaluate the model using the validation set 5. Repeat steps 2 4 using different free parameters à different models 6. Select the best model (and their associated free parameters) 7. Train the model (with the associated free parameters) using both training and validation sets. 8. Assess this final model using the test set. Popular for big data. Skip step 7 for big data.

16 Skip this step for big data.

17 Today Administrivia Free parameters in an approach, model, or algorithm? Egocentric videos by Aisha

18 Hand detection in Egocentric videos Aisha Urooj Course Instructor: Dr. Boqing Gong Advanced Computer Vision

19 Motivation Emergence of new wearable technologies Action cameras Smart glasses, so on These devices capture videos from first person s perspective. Record user s experiences Image Source: [1]

20 An overview of First Person Vision

21 Image Credits: [1]

22 A hierarchical structure, starting from the raw video sequence (bottom) to the desired objectives (top) Image Credits: [1]

23 Image Credits: [1]

24 Image Credits: [1]

25 Image Credits: [1]

26 Related Datasets [1]

27 Motivation Hands are very common in egocentric videos Appearance of hands and pose give important cues about human s actions attention Activity recognition user machine interaction, so on. Most of the egocentric computer vision problems, from object detection to activity recognition requires accurate hand detection.

28 Challenges in hand detection Hands are highly deformable objects. Occlusion Cluttered background Dynamic background Inconsistent lighting Poor imaging conditions Highly dynamic camera motion So on..

29 Lending a Hand: Detecting Hands and Recognizing Activities in Complex Egocentric Interactions Sven Bambach, Stefan Lee, David J. Crandall, Chen Yu Indiana University

30 Outline Paper s contribution Dataset details Approach Results Possible future directions

31 Paper s Contributions Deep model for hand detection and classification in egocentric video, including fast domainspecific region proposals. A new technique for pixel wise hand segmentation. A quantitative analysis of how hand location and pose can be useful in accurate activity recognition. A large dataset of egocentric interactions with fine grained ground truth.

32 Overview Image source:

33 Ground truth hand segmentation masks on sample frames from dataset.

34 A random subset of cropped hands according to ground Truth.

35 Dataset details 4 participants, 4 activities, 3 different locations (office, home, courtyard) Total 48 unique videos. Used Google Glass, 720x1280 at 30 fps. 2 persons in one video, each wearing google glass. (Synchronized video pairs and cut them to 90 seconds) Pixel level ground truth for over hand instances. Manual annotation of 100 frames/ video i.e frames ground truth. Main Split: 36 training, 4 validation, 8 test videos.

36 Hand Detection: Approach Candidate windows generation Window classification using CNNs

37 Window Proposals Generation Probability that an object O appears in a region R of an image I. The proposed approach for candidate windows generation combines spatial biases and appearance models together.

38 Window Proposals Generation (Contd..) P (O) : Object occurrence probability P(R O) : Probability that a certain region R (a bounding box) contains a specific hand (O) P(I R, O): A pixel-level skin classifier Estimates the probability that central pixel of R is skin.

39 Coverage Results for Different Proposal Methods

40 Window classification A standard CNN classification framework used. CaffeNet from Caffe software package Slight variation of AlexNet Each training batch contains equal number of samples from each class. Disabled horizontal and vertical flipping of sample images in Caffe For differentiating between left and right hands.

41 Window classification (Contd..) The CNN weights are initialized from CaffeNet Except final fully connected layer which is set to zero mean gaussian. Fine-tuning using SGD Learning rate = Momentum = Input Generate Spatially sampled window proposals Classify window crops Using fine-tuned CNN Perform non-maximum suppression for each test frame

42 Hand Detection Two cases: Detect hands of any type Detect hand of specific type (own left, your right etc.) PASCAL VOC criteria for scoring detections is used Intersection over Union between the ground truth and detected bounding box should be > 0.5

43 Precision-Recall curves for Hand detection

44 Qualitative Results for Hand Detection

45 Quantitative Results for Hand Detection

46 Hands Segmentation Pixelwise hand segmentation is useful for: Hand pose recognition In-hand object detection, so on.. Goal: Label each pixel either to the background or to a specific hand class. Applied a semi-supervised segmentation algorithm GrabCut. Given an approximate foreground mask, GrabCut iteratively refines foreground and background pixels, relabeling them using Markov Random Field.

47 Hands Segmentation For each hand detected bounding box, initial foreground estimation is computed using same color skin model. Thresholded and marked each pixel within the box as foreground except with very low skin probability. Run GrabCut algorithm on bounding box including padded region. Final segmentation is the union of the output masks for all detected bounding boxes.

48 Quantitative Results for Hand Segmentation

49 Two modes of possible failures Failure to properly detect hand bounding boxes. Inaccuracy in distinguishing hand pixels from background. Applying segmentation algorithm on ground truth bounding boxes results in raise to average 0.73 Taking output of hand detector but using ground truth segmentation masks again increases average to 0.76

50 Qualitative Results for Hand Segmentation

51 Hand-based Activity Recognition Masked out all other non-hand background information by using ground truth hand segmentations. Fine-tuned a CNN to classify whole frames as one of the four activities. Training: 900 frames per activity for 36 videos Validation: 100 frames per activity for four videos Classification accuracy: 66.4% per frame

52 Hand-based Activity Recognition (contd..) Incorporating temporal constraints: Simple voting based approach Classify each individual frame in the context of a fixed-size temporal window centered on the frame Scores are summed across the window Frame is labeled as the highest scoring class

53 Hand-based Activity Recognition

54 Some sample hand poses not present in their dataset

55 Related work on Egocentric Hands Detection Work by A. Betancourt, University of Genoa, Italy 1)Hand Segmentation and tracking in FPV 2) A Sequential Classifier for Hand Detection in the Framework of Egocentric Vision. CVPR ) The Evolution of First Person Vision Methods: A Survey. Observations: Misses detection of hands in many frames for other people. Results show false positives in many frames. No detection on hands shown in videos running within a video. Segmentation is not efficient. At times both hands are detected as either left or right. Full arm is being considered as hand.

56 Possible Future Directions Improve segmentation technique Have an unbiased dataset Use an efficient tracking approach to incorporate temporal information Improve hand classifier

57 References [1] The Evolution of First Person Vision Methods:A Survey. A. Betancourt, P. Morerio, C. S. Regazzoni, and M. Rauterberg. IEEE Transactions on Circuits and Systems for Video Technology. Vol 25. Issue 5.

58 THANK YOU!

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor COSC160: Detection and Classification Jeremy Bolton, PhD Assistant Teaching Professor Outline I. Problem I. Strategies II. Features for training III. Using spatial information? IV. Reducing dimensionality

More information

Object detection using Region Proposals (RCNN) Ernest Cheung COMP Presentation

Object detection using Region Proposals (RCNN) Ernest Cheung COMP Presentation Object detection using Region Proposals (RCNN) Ernest Cheung COMP790-125 Presentation 1 2 Problem to solve Object detection Input: Image Output: Bounding box of the object 3 Object detection using CNN

More information

Object Detection on Self-Driving Cars in China. Lingyun Li

Object Detection on Self-Driving Cars in China. Lingyun Li Object Detection on Self-Driving Cars in China Lingyun Li Introduction Motivation: Perception is the key of self-driving cars Data set: 10000 images with annotation 2000 images without annotation (not

More information

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Si Chen The George Washington University sichen@gwmail.gwu.edu Meera Hahn Emory University mhahn7@emory.edu Mentor: Afshin

More information

Spatial Localization and Detection. Lecture 8-1

Spatial Localization and Detection. Lecture 8-1 Lecture 8: Spatial Localization and Detection Lecture 8-1 Administrative - Project Proposals were due on Saturday Homework 2 due Friday 2/5 Homework 1 grades out this week Midterm will be in-class on Wednesday

More information

Project 3 Q&A. Jonathan Krause

Project 3 Q&A. Jonathan Krause Project 3 Q&A Jonathan Krause 1 Outline R-CNN Review Error metrics Code Overview Project 3 Report Project 3 Presentations 2 Outline R-CNN Review Error metrics Code Overview Project 3 Report Project 3 Presentations

More information

Rich feature hierarchies for accurate object detection and semant

Rich feature hierarchies for accurate object detection and semant Rich feature hierarchies for accurate object detection and semantic segmentation Speaker: Yucong Shen 4/5/2018 Develop of Object Detection 1 DPM (Deformable parts models) 2 R-CNN 3 Fast R-CNN 4 Faster

More information

ECS 289H: Visual Recognition Fall Yong Jae Lee Department of Computer Science

ECS 289H: Visual Recognition Fall Yong Jae Lee Department of Computer Science ECS 289H: Visual Recognition Fall 2014 Yong Jae Lee Department of Computer Science Plan for today Questions? Research overview Standard supervised visual learning building Category models Annotators tree

More information

Classification of objects from Video Data (Group 30)

Classification of objects from Video Data (Group 30) Classification of objects from Video Data (Group 30) Sheallika Singh 12665 Vibhuti Mahajan 12792 Aahitagni Mukherjee 12001 M Arvind 12385 1 Motivation Video surveillance has been employed for a long time

More information

Rich feature hierarchies for accurate object detection and semantic segmentation

Rich feature hierarchies for accurate object detection and semantic segmentation Rich feature hierarchies for accurate object detection and semantic segmentation BY; ROSS GIRSHICK, JEFF DONAHUE, TREVOR DARRELL AND JITENDRA MALIK PRESENTER; MUHAMMAD OSAMA Object detection vs. classification

More information

Deep Learning with Tensorflow AlexNet

Deep Learning with Tensorflow   AlexNet Machine Learning and Computer Vision Group Deep Learning with Tensorflow http://cvml.ist.ac.at/courses/dlwt_w17/ AlexNet Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton, "Imagenet classification

More information

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution and Fully Connected CRFs

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution and Fully Connected CRFs DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution and Fully Connected CRFs Zhipeng Yan, Moyuan Huang, Hao Jiang 5/1/2017 1 Outline Background semantic segmentation Objective,

More information

Convolution Neural Networks for Chinese Handwriting Recognition

Convolution Neural Networks for Chinese Handwriting Recognition Convolution Neural Networks for Chinese Handwriting Recognition Xu Chen Stanford University 450 Serra Mall, Stanford, CA 94305 xchen91@stanford.edu Abstract Convolutional neural networks have been proven

More information

Tri-modal Human Body Segmentation

Tri-modal Human Body Segmentation Tri-modal Human Body Segmentation Master of Science Thesis Cristina Palmero Cantariño Advisor: Sergio Escalera Guerrero February 6, 2014 Outline 1 Introduction 2 Tri-modal dataset 3 Proposed baseline 4

More information

Deformable Part Models

Deformable Part Models CS 1674: Intro to Computer Vision Deformable Part Models Prof. Adriana Kovashka University of Pittsburgh November 9, 2016 Today: Object category detection Window-based approaches: Last time: Viola-Jones

More information

Bus Detection and recognition for visually impaired people

Bus Detection and recognition for visually impaired people Bus Detection and recognition for visually impaired people Hangrong Pan, Chucai Yi, and Yingli Tian The City College of New York The Graduate Center The City University of New York MAP4VIP Outline Motivation

More information

Recognition of Animal Skin Texture Attributes in the Wild. Amey Dharwadker (aap2174) Kai Zhang (kz2213)

Recognition of Animal Skin Texture Attributes in the Wild. Amey Dharwadker (aap2174) Kai Zhang (kz2213) Recognition of Animal Skin Texture Attributes in the Wild Amey Dharwadker (aap2174) Kai Zhang (kz2213) Motivation Patterns and textures are have an important role in object description and understanding

More information

Rich feature hierarchies for accurate object detection and semantic segmentation

Rich feature hierarchies for accurate object detection and semantic segmentation Rich feature hierarchies for accurate object detection and semantic segmentation Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik Presented by Pandian Raju and Jialin Wu Last class SGD for Document

More information

Real-time Object Detection CS 229 Course Project

Real-time Object Detection CS 229 Course Project Real-time Object Detection CS 229 Course Project Zibo Gong 1, Tianchang He 1, and Ziyi Yang 1 1 Department of Electrical Engineering, Stanford University December 17, 2016 Abstract Objection detection

More information

Encoder-Decoder Networks for Semantic Segmentation. Sachin Mehta

Encoder-Decoder Networks for Semantic Segmentation. Sachin Mehta Encoder-Decoder Networks for Semantic Segmentation Sachin Mehta Outline > Overview of Semantic Segmentation > Encoder-Decoder Networks > Results What is Semantic Segmentation? Input: RGB Image Output:

More information

TRANSPARENT OBJECT DETECTION USING REGIONS WITH CONVOLUTIONAL NEURAL NETWORK

TRANSPARENT OBJECT DETECTION USING REGIONS WITH CONVOLUTIONAL NEURAL NETWORK TRANSPARENT OBJECT DETECTION USING REGIONS WITH CONVOLUTIONAL NEURAL NETWORK 1 Po-Jen Lai ( 賴柏任 ), 2 Chiou-Shann Fuh ( 傅楸善 ) 1 Dept. of Electrical Engineering, National Taiwan University, Taiwan 2 Dept.

More information

ECE 6554:Advanced Computer Vision Pose Estimation

ECE 6554:Advanced Computer Vision Pose Estimation ECE 6554:Advanced Computer Vision Pose Estimation Sujay Yadawadkar, Virginia Tech, Agenda: Pose Estimation: Part Based Models for Pose Estimation Pose Estimation with Convolutional Neural Networks (Deep

More information

Yiqi Yan. May 10, 2017

Yiqi Yan. May 10, 2017 Yiqi Yan May 10, 2017 P a r t I F u n d a m e n t a l B a c k g r o u n d s Convolution Single Filter Multiple Filters 3 Convolution: case study, 2 filters 4 Convolution: receptive field receptive field

More information

Fully Convolutional Networks for Semantic Segmentation

Fully Convolutional Networks for Semantic Segmentation Fully Convolutional Networks for Semantic Segmentation Jonathan Long* Evan Shelhamer* Trevor Darrell UC Berkeley Chaim Ginzburg for Deep Learning seminar 1 Semantic Segmentation Define a pixel-wise labeling

More information

Convolutional Neural Networks. Computer Vision Jia-Bin Huang, Virginia Tech

Convolutional Neural Networks. Computer Vision Jia-Bin Huang, Virginia Tech Convolutional Neural Networks Computer Vision Jia-Bin Huang, Virginia Tech Today s class Overview Convolutional Neural Network (CNN) Training CNN Understanding and Visualizing CNN Image Categorization:

More information

Deep Learning. Visualizing and Understanding Convolutional Networks. Christopher Funk. Pennsylvania State University.

Deep Learning. Visualizing and Understanding Convolutional Networks. Christopher Funk. Pennsylvania State University. Visualizing and Understanding Convolutional Networks Christopher Pennsylvania State University February 23, 2015 Some Slide Information taken from Pierre Sermanet (Google) presentation on and Computer

More information

Deep Face Recognition. Nathan Sun

Deep Face Recognition. Nathan Sun Deep Face Recognition Nathan Sun Why Facial Recognition? Picture ID or video tracking Higher Security for Facial Recognition Software Immensely useful to police in tracking suspects Your face will be an

More information

CIS581: Computer Vision and Computational Photography Project 4, Part B: Convolutional Neural Networks (CNNs) Due: Dec.11, 2017 at 11:59 pm

CIS581: Computer Vision and Computational Photography Project 4, Part B: Convolutional Neural Networks (CNNs) Due: Dec.11, 2017 at 11:59 pm CIS581: Computer Vision and Computational Photography Project 4, Part B: Convolutional Neural Networks (CNNs) Due: Dec.11, 2017 at 11:59 pm Instructions CNNs is a team project. The maximum size of a team

More information

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun Presented by Tushar Bansal Objective 1. Get bounding box for all objects

More information

Recap Image Classification with Bags of Local Features

Recap Image Classification with Bags of Local Features Recap Image Classification with Bags of Local Features Bag of Feature models were the state of the art for image classification for a decade BoF may still be the state of the art for instance retrieval

More information

Disguised Face Identification (DFI) with Facial KeyPoints using Spatial Fusion Convolutional Network. Nathan Sun CIS601

Disguised Face Identification (DFI) with Facial KeyPoints using Spatial Fusion Convolutional Network. Nathan Sun CIS601 Disguised Face Identification (DFI) with Facial KeyPoints using Spatial Fusion Convolutional Network Nathan Sun CIS601 Introduction Face ID is complicated by alterations to an individual s appearance Beard,

More information

Lecture 7: Semantic Segmentation

Lecture 7: Semantic Segmentation Semantic Segmentation CSED703R: Deep Learning for Visual Recognition (207F) Segmenting images based on its semantic notion Lecture 7: Semantic Segmentation Bohyung Han Computer Vision Lab. bhhanpostech.ac.kr

More information

Object Recognition II

Object Recognition II Object Recognition II Linda Shapiro EE/CSE 576 with CNN slides from Ross Girshick 1 Outline Object detection the task, evaluation, datasets Convolutional Neural Networks (CNNs) overview and history Region-based

More information

Learning to Segment Object Candidates

Learning to Segment Object Candidates Learning to Segment Object Candidates Pedro Pinheiro, Ronan Collobert and Piotr Dollar Presented by - Sivaraman, Kalpathy Sitaraman, M.S. in Computer Science, University of Virginia Facebook Artificial

More information

WP1: Video Data Analysis

WP1: Video Data Analysis Leading : UNICT Participant: UEDIN Fish4Knowledge Final Review Meeting - November 29, 2013 - Luxembourg Workpackage 1 Objectives Fish Detection: Background/foreground modeling algorithms able to deal with

More information

Deep Learning and Its Applications

Deep Learning and Its Applications Convolutional Neural Network and Its Application in Image Recognition Oct 28, 2016 Outline 1 A Motivating Example 2 The Convolutional Neural Network (CNN) Model 3 Training the CNN Model 4 Issues and Recent

More information

Visuelle Perzeption für Mensch- Maschine Schnittstellen

Visuelle Perzeption für Mensch- Maschine Schnittstellen Visuelle Perzeption für Mensch- Maschine Schnittstellen Vorlesung, WS 2009 Prof. Dr. Rainer Stiefelhagen Dr. Edgar Seemann Institut für Anthropomatik Universität Karlsruhe (TH) http://cvhci.ira.uka.de

More information

Segmenting Objects in Weakly Labeled Videos

Segmenting Objects in Weakly Labeled Videos Segmenting Objects in Weakly Labeled Videos Mrigank Rochan, Shafin Rahman, Neil D.B. Bruce, Yang Wang Department of Computer Science University of Manitoba Winnipeg, Canada {mrochan, shafin12, bruce, ywang}@cs.umanitoba.ca

More information

RSRN: Rich Side-output Residual Network for Medial Axis Detection

RSRN: Rich Side-output Residual Network for Medial Axis Detection RSRN: Rich Side-output Residual Network for Medial Axis Detection Chang Liu, Wei Ke, Jianbin Jiao, and Qixiang Ye University of Chinese Academy of Sciences, Beijing, China {liuchang615, kewei11}@mails.ucas.ac.cn,

More information

Perceptron: This is convolution!

Perceptron: This is convolution! Perceptron: This is convolution! v v v Shared weights v Filter = local perceptron. Also called kernel. By pooling responses at different locations, we gain robustness to the exact spatial location of image

More information

AttentionNet for Accurate Localization and Detection of Objects. (To appear in ICCV 2015)

AttentionNet for Accurate Localization and Detection of Objects. (To appear in ICCV 2015) AttentionNet for Accurate Localization and Detection of Objects. (To appear in ICCV 2015) Donggeun Yoo, Sunggyun Park, Joon-Young Lee, Anthony Paek, In So Kweon. State-of-the-art frameworks for object

More information

Stacked Denoising Autoencoders for Face Pose Normalization

Stacked Denoising Autoencoders for Face Pose Normalization Stacked Denoising Autoencoders for Face Pose Normalization Yoonseop Kang 1, Kang-Tae Lee 2,JihyunEun 2, Sung Eun Park 2 and Seungjin Choi 1 1 Department of Computer Science and Engineering Pohang University

More information

EE-559 Deep learning Networks for semantic segmentation

EE-559 Deep learning Networks for semantic segmentation EE-559 Deep learning 7.4. Networks for semantic segmentation François Fleuret https://fleuret.org/ee559/ Mon Feb 8 3:35:5 UTC 209 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE The historical approach to image

More information

Advanced Video Analysis & Imaging

Advanced Video Analysis & Imaging Advanced Video Analysis & Imaging (5LSH0), Module 09B Machine Learning with Convolutional Neural Networks (CNNs) - Workout Farhad G. Zanjani, Clint Sebastian, Egor Bondarev, Peter H.N. de With ( p.h.n.de.with@tue.nl

More information

Constrained Convolutional Neural Networks for Weakly Supervised Segmentation. Deepak Pathak, Philipp Krähenbühl and Trevor Darrell

Constrained Convolutional Neural Networks for Weakly Supervised Segmentation. Deepak Pathak, Philipp Krähenbühl and Trevor Darrell Constrained Convolutional Neural Networks for Weakly Supervised Segmentation Deepak Pathak, Philipp Krähenbühl and Trevor Darrell 1 Multi-class Image Segmentation Assign a class label to each pixel in

More information

Articulated Pose Estimation with Flexible Mixtures-of-Parts

Articulated Pose Estimation with Flexible Mixtures-of-Parts Articulated Pose Estimation with Flexible Mixtures-of-Parts PRESENTATION: JESSE DAVIS CS 3710 VISUAL RECOGNITION Outline Modeling Special Cases Inferences Learning Experiments Problem and Relevance Problem:

More information

Structured Prediction using Convolutional Neural Networks

Structured Prediction using Convolutional Neural Networks Overview Structured Prediction using Convolutional Neural Networks Bohyung Han bhhan@postech.ac.kr Computer Vision Lab. Convolutional Neural Networks (CNNs) Structured predictions for low level computer

More information

Machine Learning. MGS Lecture 3: Deep Learning

Machine Learning. MGS Lecture 3: Deep Learning Dr Michel F. Valstar http://cs.nott.ac.uk/~mfv/ Machine Learning MGS Lecture 3: Deep Learning Dr Michel F. Valstar http://cs.nott.ac.uk/~mfv/ WHAT IS DEEP LEARNING? Shallow network: Only one hidden layer

More information

Using the Deformable Part Model with Autoencoded Feature Descriptors for Object Detection

Using the Deformable Part Model with Autoencoded Feature Descriptors for Object Detection Using the Deformable Part Model with Autoencoded Feature Descriptors for Object Detection Hyunghoon Cho and David Wu December 10, 2010 1 Introduction Given its performance in recent years' PASCAL Visual

More information

Deep Learning for Computer Vision II

Deep Learning for Computer Vision II IIIT Hyderabad Deep Learning for Computer Vision II C. V. Jawahar Paradigm Shift Feature Extraction (SIFT, HoG, ) Part Models / Encoding Classifier Sparrow Feature Learning Classifier Sparrow L 1 L 2 L

More information

Linear combinations of simple classifiers for the PASCAL challenge

Linear combinations of simple classifiers for the PASCAL challenge Linear combinations of simple classifiers for the PASCAL challenge Nik A. Melchior and David Lee 16 721 Advanced Perception The Robotics Institute Carnegie Mellon University Email: melchior@cmu.edu, dlee1@andrew.cmu.edu

More information

Semantic Segmentation

Semantic Segmentation Semantic Segmentation UCLA:https://goo.gl/images/I0VTi2 OUTLINE Semantic Segmentation Why? Paper to talk about: Fully Convolutional Networks for Semantic Segmentation. J. Long, E. Shelhamer, and T. Darrell,

More information

Deep Learning For Video Classification. Presented by Natalie Carlebach & Gil Sharon

Deep Learning For Video Classification. Presented by Natalie Carlebach & Gil Sharon Deep Learning For Video Classification Presented by Natalie Carlebach & Gil Sharon Overview Of Presentation Motivation Challenges of video classification Common datasets 4 different methods presented in

More information

Lecture 37: ConvNets (Cont d) and Training

Lecture 37: ConvNets (Cont d) and Training Lecture 37: ConvNets (Cont d) and Training CS 4670/5670 Sean Bell [http://bbabenko.tumblr.com/post/83319141207/convolutional-learnings-things-i-learned-by] (Unrelated) Dog vs Food [Karen Zack, @teenybiscuit]

More information

Robust PDF Table Locator

Robust PDF Table Locator Robust PDF Table Locator December 17, 2016 1 Introduction Data scientists rely on an abundance of tabular data stored in easy-to-machine-read formats like.csv files. Unfortunately, most government records

More information

Pedestrian and Part Position Detection using a Regression-based Multiple Task Deep Convolutional Neural Network

Pedestrian and Part Position Detection using a Regression-based Multiple Task Deep Convolutional Neural Network Pedestrian and Part Position Detection using a Regression-based Multiple Tas Deep Convolutional Neural Networ Taayoshi Yamashita Computer Science Department yamashita@cs.chubu.ac.jp Hiroshi Fuui Computer

More information

Final Report: Smart Trash Net: Waste Localization and Classification

Final Report: Smart Trash Net: Waste Localization and Classification Final Report: Smart Trash Net: Waste Localization and Classification Oluwasanya Awe oawe@stanford.edu Robel Mengistu robel@stanford.edu December 15, 2017 Vikram Sreedhar vsreed@stanford.edu Abstract Given

More information

Finding Tiny Faces Supplementary Materials

Finding Tiny Faces Supplementary Materials Finding Tiny Faces Supplementary Materials Peiyun Hu, Deva Ramanan Robotics Institute Carnegie Mellon University {peiyunh,deva}@cs.cmu.edu 1. Error analysis Quantitative analysis We plot the distribution

More information

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009 Analysis: TextonBoost and Semantic Texton Forests Daniel Munoz 16-721 Februrary 9, 2009 Papers [shotton-eccv-06] J. Shotton, J. Winn, C. Rother, A. Criminisi, TextonBoost: Joint Appearance, Shape and Context

More information

Learning Spatial Context: Using Stuff to Find Things

Learning Spatial Context: Using Stuff to Find Things Learning Spatial Context: Using Stuff to Find Things Wei-Cheng Su Motivation 2 Leverage contextual information to enhance detection Some context objects are non-rigid and are more naturally classified

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing ECG782: Multidimensional Digital Signal Processing Object Recognition http://www.ee.unlv.edu/~b1morris/ecg782/ 2 Outline Knowledge Representation Statistical Pattern Recognition Neural Networks Boosting

More information

Machine Learning 13. week

Machine Learning 13. week Machine Learning 13. week Deep Learning Convolutional Neural Network Recurrent Neural Network 1 Why Deep Learning is so Popular? 1. Increase in the amount of data Thanks to the Internet, huge amount of

More information

DEEP NEURAL NETWORKS FOR OBJECT DETECTION

DEEP NEURAL NETWORKS FOR OBJECT DETECTION DEEP NEURAL NETWORKS FOR OBJECT DETECTION Sergey Nikolenko Steklov Institute of Mathematics at St. Petersburg October 21, 2017, St. Petersburg, Russia Outline Bird s eye overview of deep learning Convolutional

More information

Template Matching Rigid Motion

Template Matching Rigid Motion Template Matching Rigid Motion Find transformation to align two images. Focus on geometric features (not so much interesting with intensity images) Emphasis on tricks to make this efficient. Problem Definition

More information

CAP 6412 Advanced Computer Vision

CAP 6412 Advanced Computer Vision CAP 6412 Advanced Computer Vision http://www.cs.ucf.edu/~bgong/cap6412.html Boqing Gong April 7th, 2016 Today Administrivia A guest lecture by David Hill on LSTM Attribute in computer vision, by Abdullah

More information

Two-Stream Convolutional Networks for Action Recognition in Videos

Two-Stream Convolutional Networks for Action Recognition in Videos Two-Stream Convolutional Networks for Action Recognition in Videos Karen Simonyan Andrew Zisserman Cemil Zalluhoğlu Introduction Aim Extend deep Convolution Networks to action recognition in video. Motivation

More information

Traffic Sign Localization and Classification Methods: An Overview

Traffic Sign Localization and Classification Methods: An Overview Traffic Sign Localization and Classification Methods: An Overview Ivan Filković University of Zagreb Faculty of Electrical Engineering and Computing Department of Electronics, Microelectronics, Computer

More information

Recognizing people. Deva Ramanan

Recognizing people. Deva Ramanan Recognizing people Deva Ramanan The goal Why focus on people? How many person-pixels are in a video? 35% 34% Movies TV 40% YouTube Let s start our discussion with a loaded question: why is visual recognition

More information

Object Category Detection: Sliding Windows

Object Category Detection: Sliding Windows 04/10/12 Object Category Detection: Sliding Windows Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Today s class: Object Category Detection Overview of object category detection Statistical

More information

Gradient of the lower bound

Gradient of the lower bound Weakly Supervised with Latent PhD advisor: Dr. Ambedkar Dukkipati Department of Computer Science and Automation gaurav.pandey@csa.iisc.ernet.in Objective Given a training set that comprises image and image-level

More information

Partitioning Data. IRDS: Evaluation, Debugging, and Diagnostics. Cross-Validation. Cross-Validation for parameter tuning

Partitioning Data. IRDS: Evaluation, Debugging, and Diagnostics. Cross-Validation. Cross-Validation for parameter tuning Partitioning Data IRDS: Evaluation, Debugging, and Diagnostics Charles Sutton University of Edinburgh Training Validation Test Training : Running learning algorithms Validation : Tuning parameters of learning

More information

Gradient Descent Optimization Algorithms for Deep Learning Batch gradient descent Stochastic gradient descent Mini-batch gradient descent

Gradient Descent Optimization Algorithms for Deep Learning Batch gradient descent Stochastic gradient descent Mini-batch gradient descent Gradient Descent Optimization Algorithms for Deep Learning Batch gradient descent Stochastic gradient descent Mini-batch gradient descent Slide credit: http://sebastianruder.com/optimizing-gradient-descent/index.html#batchgradientdescent

More information

Deep learning for object detection. Slides from Svetlana Lazebnik and many others

Deep learning for object detection. Slides from Svetlana Lazebnik and many others Deep learning for object detection Slides from Svetlana Lazebnik and many others Recent developments in object detection 80% PASCAL VOC mean0average0precision0(map) 70% 60% 50% 40% 30% 20% 10% Before deep

More information

Fish species recognition from video using SVM classifier

Fish species recognition from video using SVM classifier Fish species recognition from video using SVM classifier Katy Blanc, Diane Lingrand, Frédéric Precioso Univ. Nice Sophia Antipolis, I3S, UMR 7271, 06900 Sophia Antipolis, France CNRS, I3S, UMR 7271, 06900

More information

Find that! Visual Object Detection Primer

Find that! Visual Object Detection Primer Find that! Visual Object Detection Primer SkTech/MIT Innovation Workshop August 16, 2012 Dr. Tomasz Malisiewicz tomasz@csail.mit.edu Find that! Your Goals...imagine one such system that drives information

More information

CS231A Course Project Final Report Sign Language Recognition with Unsupervised Feature Learning

CS231A Course Project Final Report Sign Language Recognition with Unsupervised Feature Learning CS231A Course Project Final Report Sign Language Recognition with Unsupervised Feature Learning Justin Chen Stanford University justinkchen@stanford.edu Abstract This paper focuses on experimenting with

More information

Learning video saliency from human gaze using candidate selection

Learning video saliency from human gaze using candidate selection Learning video saliency from human gaze using candidate selection Rudoy, Goldman, Shechtman, Zelnik-Manor CVPR 2013 Paper presentation by Ashish Bora Outline What is saliency? Image vs video Candidates

More information

Clustering & Classification (chapter 15)

Clustering & Classification (chapter 15) Clustering & Classification (chapter 5) Kai Goebel Bill Cheetham RPI/GE Global Research goebel@cs.rpi.edu cheetham@cs.rpi.edu Outline k-means Fuzzy c-means Mountain Clustering knn Fuzzy knn Hierarchical

More information

Joint Vanishing Point Extraction and Tracking (Supplementary Material)

Joint Vanishing Point Extraction and Tracking (Supplementary Material) Joint Vanishing Point Extraction and Tracking (Supplementary Material) Till Kroeger1 1 Dengxin Dai1 Luc Van Gool1,2 Computer Vision Laboratory, D-ITET, ETH Zurich 2 VISICS, ESAT/PSI, KU Leuven {kroegert,

More information

Object detection with CNNs

Object detection with CNNs Object detection with CNNs 80% PASCAL VOC mean0average0precision0(map) 70% 60% 50% 40% 30% 20% 10% Before CNNs After CNNs 0% 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 year Region proposals

More information

Detection III: Analyzing and Debugging Detection Methods

Detection III: Analyzing and Debugging Detection Methods CS 1699: Intro to Computer Vision Detection III: Analyzing and Debugging Detection Methods Prof. Adriana Kovashka University of Pittsburgh November 17, 2015 Today Review: Deformable part models How can

More information

Real-time Hand Tracking under Occlusion from an Egocentric RGB-D Sensor Supplemental Document

Real-time Hand Tracking under Occlusion from an Egocentric RGB-D Sensor Supplemental Document Real-time Hand Tracking under Occlusion from an Egocentric RGB-D Sensor Supplemental Document Franziska Mueller 1,2 Dushyant Mehta 1,2 Oleksandr Sotnychenko 1 Srinath Sridhar 1 Dan Casas 3 Christian Theobalt

More information

CS6716 Pattern Recognition

CS6716 Pattern Recognition CS6716 Pattern Recognition Aaron Bobick School of Interactive Computing Administrivia PS3 is out now, due April 8. Today chapter 12 of the Hastie book. Slides (and entertainment) from Moataz Al-Haj Three

More information

Automatic detection of books based on Faster R-CNN

Automatic detection of books based on Faster R-CNN Automatic detection of books based on Faster R-CNN Beibei Zhu, Xiaoyu Wu, Lei Yang, Yinghua Shen School of Information Engineering, Communication University of China Beijing, China e-mail: zhubeibei@cuc.edu.cn,

More information

Short Survey on Static Hand Gesture Recognition

Short Survey on Static Hand Gesture Recognition Short Survey on Static Hand Gesture Recognition Huu-Hung Huynh University of Science and Technology The University of Danang, Vietnam Duc-Hoang Vo University of Science and Technology The University of

More information

CS229 Final Project Report. A Multi-Task Feature Learning Approach to Human Detection. Tiffany Low

CS229 Final Project Report. A Multi-Task Feature Learning Approach to Human Detection. Tiffany Low CS229 Final Project Report A Multi-Task Feature Learning Approach to Human Detection Tiffany Low tlow@stanford.edu Abstract We focus on the task of human detection using unsupervised pre-trained neutral

More information

Last week. Multi-Frame Structure from Motion: Multi-View Stereo. Unknown camera viewpoints

Last week. Multi-Frame Structure from Motion: Multi-View Stereo. Unknown camera viewpoints Last week Multi-Frame Structure from Motion: Multi-View Stereo Unknown camera viewpoints Last week PCA Today Recognition Today Recognition Recognition problems What is it? Object detection Who is it? Recognizing

More information

An Exploration of Computer Vision Techniques for Bird Species Classification

An Exploration of Computer Vision Techniques for Bird Species Classification An Exploration of Computer Vision Techniques for Bird Species Classification Anne L. Alter, Karen M. Wang December 15, 2017 Abstract Bird classification, a fine-grained categorization task, is a complex

More information

Is 2D Information Enough For Viewpoint Estimation? Amir Ghodrati, Marco Pedersoli, Tinne Tuytelaars BMVC 2014

Is 2D Information Enough For Viewpoint Estimation? Amir Ghodrati, Marco Pedersoli, Tinne Tuytelaars BMVC 2014 Is 2D Information Enough For Viewpoint Estimation? Amir Ghodrati, Marco Pedersoli, Tinne Tuytelaars BMVC 2014 Problem Definition Viewpoint estimation: Given an image, predicting viewpoint for object of

More information

Instance-aware Semantic Segmentation via Multi-task Network Cascades

Instance-aware Semantic Segmentation via Multi-task Network Cascades Instance-aware Semantic Segmentation via Multi-task Network Cascades Jifeng Dai, Kaiming He, Jian Sun Microsoft research 2016 Yotam Gil Amit Nativ Agenda Introduction Highlights Implementation Further

More information

Object Detection with Partial Occlusion Based on a Deformable Parts-Based Model

Object Detection with Partial Occlusion Based on a Deformable Parts-Based Model Object Detection with Partial Occlusion Based on a Deformable Parts-Based Model Johnson Hsieh (johnsonhsieh@gmail.com), Alexander Chia (alexchia@stanford.edu) Abstract -- Object occlusion presents a major

More information

Multi-Glance Attention Models For Image Classification

Multi-Glance Attention Models For Image Classification Multi-Glance Attention Models For Image Classification Chinmay Duvedi Stanford University Stanford, CA cduvedi@stanford.edu Pararth Shah Stanford University Stanford, CA pararth@stanford.edu Abstract We

More information

Template Matching Rigid Motion. Find transformation to align two images. Focus on geometric features

Template Matching Rigid Motion. Find transformation to align two images. Focus on geometric features Template Matching Rigid Motion Find transformation to align two images. Focus on geometric features (not so much interesting with intensity images) Emphasis on tricks to make this efficient. Problem Definition

More information

Structured Models in. Dan Huttenlocher. June 2010

Structured Models in. Dan Huttenlocher. June 2010 Structured Models in Computer Vision i Dan Huttenlocher June 2010 Structured Models Problems where output variables are mutually dependent or constrained E.g., spatial or temporal relations Such dependencies

More information

Intro to Deep Learning. Slides Credit: Andrej Karapathy, Derek Hoiem, Marc Aurelio, Yann LeCunn

Intro to Deep Learning. Slides Credit: Andrej Karapathy, Derek Hoiem, Marc Aurelio, Yann LeCunn Intro to Deep Learning Slides Credit: Andrej Karapathy, Derek Hoiem, Marc Aurelio, Yann LeCunn Why this class? Deep Features Have been able to harness the big data in the most efficient and effective

More information

Edge and corner detection

Edge and corner detection Edge and corner detection Prof. Stricker Doz. G. Bleser Computer Vision: Object and People Tracking Goals Where is the information in an image? How is an object characterized? How can I find measurements

More information

Lecture 5: Object Detection

Lecture 5: Object Detection Object Detection CSED703R: Deep Learning for Visual Recognition (2017F) Lecture 5: Object Detection Bohyung Han Computer Vision Lab. bhhan@postech.ac.kr 2 Traditional Object Detection Algorithms Region-based

More information

CAP 6412 Advanced Computer Vision

CAP 6412 Advanced Computer Vision CAP 6412 Advanced Computer Vision http://www.cs.ucf.edu/~bgong/cap6412.html Boqing Gong March 03, 2016 Next week: Spring break The week after next week: Vision and language Tuesday (03/15) Fareeha Irfan

More information

Multi-View 3D Object Detection Network for Autonomous Driving

Multi-View 3D Object Detection Network for Autonomous Driving Multi-View 3D Object Detection Network for Autonomous Driving Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, Tian Xia CVPR 2017 (Spotlight) Presented By: Jason Ku Overview Motivation Dataset Network Architecture

More information

HOG-based Pedestriant Detector Training

HOG-based Pedestriant Detector Training HOG-based Pedestriant Detector Training evs embedded Vision Systems Srl c/o Computer Science Park, Strada Le Grazie, 15 Verona- Italy http: // www. embeddedvisionsystems. it Abstract This paper describes

More information