Segmentation (continued)

Size: px
Start display at page:

Download "Segmentation (continued)"

Transcription

1 Segmentation (continued) Lecture 05 Computer Vision

2 Material Citations Dr George Stockman Professor Emeritus, Michigan State University Dr Mubarak Shah Professor, University of Central Florida The Robotics Institute Carnegie Mellon University Dr David A. Forsyth Professor, University of Illinois at Urbana- Champaign Dr Kristen Grauman Associate Professor, University of Texas at Austin

3 Suggested Readings Chapter 10 Linda G. Shapiro and George Stockman, Computer Vision, Upper Saddle River, NJ, Prentice Hall, Chapter 15 David A. Forsyth and Jean Ponce, Computer Vision A Modern Approach, 2 nd edition, Prentice Hall, Inc., Chapter 3 Mubarak Shah, Fundamentals of Computer Vision.

4 Clustering Main idea: Cluster together (pixels, tokens, etc.) that belong together Tokens: Whatever we need to group (pixels, points, surface elements, etc.)

5 Segmentation by Clustering R 1 R2 R 4 R 3 R 6 R 5

6 Segmentation by Clustering Main idea: Cluster together (pixels, tokens, etc.) that belong together Simple Methods Divisive clustering Split cluster along best boundary Repeat Agglomerative clustering Attach token to cluster it is closest to Repeat Inter-Cluster distance criteria Single-link clustering Distance between closest elements of clusters Complete-link clustering Maximum distance between elements of clusters Group-average clustering Average distance between elements of clusters

7 Segmentation by Clustering Dendrograms A representation of structure of hierarchy of clusters Dataset Dendogram

8 Segmentation by Clustering K Means Objective function Assuming we know there are k clusters and k is known Each cluster has center Center of i th cluster is c i The j th element to be clustered is described by feature vector x j (could be any set of features) The objective function can be given as: Φ (clusters, data) = Properties i clusters j elements of i'th cluster function that it is desired to maximize or minimize. x j i 2 Will always converge to some solution Can be a local minimum ; doesn't always find the global minimum The k-means problem is finding the least-squares assignment to centroids.

9 Segmentation by Clustering K Means Desirables Choose a fixed number of clusters Choose cluster centers Point-cluster allocations to minimize error Algorithm Fix cluster centers; allocate points to closest Fix allocation; compute best cluster centers

10 Segmentation by Clustering K Means Andrew Moore

11 Segmentation by Clustering K Means Andrew Moore

12 Segmentation by Clustering K Means Andrew Moore

13 Segmentation by Clustering K Means Andrew Moore

14 Segmentation by Clustering K Means Andrew Moore

15 Segmentation by Clustering K Means Select a feature vector for every pixel (color, texture, position, or combination of these etc.) Define a similarity measure between feature vectors (Usually Euclidean Distance) Apply K-Means Algorithm Apply Connected Components Algorithm Merge any components of size less than some threshold to an adjacent component that is most similar to it

16 Segmentation by Clustering K Means Image Clusters on intensity Clusters on color K-means clustering using intensity alone and color alone No requirement that clusters be spatially localized and they re not

17 Example - Segmenting Kristen Grauman, University of Texas at Austin How to determine the three main intensities? Kristen Grauman, University of Texas at Austin

18 Segmentation by Clustering K Means Depending on what we choose as the feature space, we can group pixels in different ways. Grouping pixels based on intensity similarity Feature space: intensity value (1-d)

19 Segmentation by Clustering K Means K=2 K=3 quantization of the feature space; segmentation label map

20 Segmentation by Clustering K Means Depending on what we choose as the feature space, we can group pixels in different ways. Grouping pixels based on color similarity B G R=255 G=200 B=250 R=245 G=220 B=248 Feature space: color value (3-d) Kristen Grauman R R=15 G=189 B=2 R=3 G=12 B=2

21 Segmentation by Clustering K Means Depending on what we choose as the feature space, we can group pixels in different ways. Grouping pixels based on intensity similarity Clusters based on intensity similarity don t have to be spatially coherent. Kristen Grauman

22 Segmentation by Clustering K Means Depending on what we choose as the feature space, we can group pixels in different ways. Grouping pixels based on intensity + position similarity Intensity Kristen Grauman Y X Both regions are black, but if we also include position (x,y), then we could group the two into distinct segments; way to encode both similarity & proximity.

23 Segmentation by Clustering K Means Color, brightness, position alone are not enough to distinguish all regions Kristen Grauman

24 Segmentation by Clustering K Means Depending on what we choose as the feature space, we can group pixels in different ways. Grouping pixels based on texture similarity F 1 F 2 Filter bank of 24 filters F 24 Feature space: filter bank responses (e.g., 24-d) Kristen Grauman

25 Dimension 2 (mean d/dy value) Segmentation by Clustering K Means Texture representation example Windows with primarily horizontal edges Both Dimension 1 (mean d/dx value) Kristen Grauman Windows with small gradient in both directions Windows with primarily vertical edges

26 Count Count Count Segmentation by Clustering K Means Segmentation with texture features Find textons by clustering vectors of filter bank outputs Describe texture in a window based on texton histogram Image Texton map Texton index Malik, Belongie, Leung and Shi. IJCV Adapted from Lana Lazebnik Texton index Texton index

27 Segmentation by Clustering K Means Kristen Grauman

28 Segmentation by Clustering K Means Pros Simple, fast to compute Converges to local minimum of within-cluster squared error Cons/issues Setting k? Sensitive to initial centers Sensitive to outliers Detects spherical clusters Assuming means can be computed Sample Code

29 Segmentation by Clustering Mean Shift The mean shift algorithm seeks modes or local maxima of density in the feature space image Feature space (L*u*v* color values)

30 Segmentation by Clustering Mean Shift Mean Shift Algorithm Choose a search window size. Choose the initial location of the search window. Compute the mean location (centroid of the data) in the search window. Center the search window at the mean location computed in Step 3. Repeat Steps 3 and 4 until convergence.

31 Segmentation by Clustering Mean Shift Search window Center of mass Slide by Y. Ukrainitz & B. Sarel Mean Shift vector

32 Segmentation by Clustering Mean Shift Search window Center of mass Slide by Y. Ukrainitz & B. Sarel Mean Shift vector

33 Segmentation by Clustering Mean Shift Search window Center of mass Slide by Y. Ukrainitz & B. Sarel Mean Shift vector

34 Segmentation by Clustering Mean Shift Search window Center of mass Slide by Y. Ukrainitz & B. Sarel Mean Shift vector

35 Segmentation by Clustering Mean Shift Search window Center of mass Slide by Y. Ukrainitz & B. Sarel Mean Shift vector

36 Segmentation by Clustering Mean Shift Search window Center of mass Slide by Y. Ukrainitz & B. Sarel Mean Shift vector

37 Segmentation by Clustering Mean Shift Search window Center of mass Slide by Y. Ukrainitz & B. Sarel

38 Segmentation by Clustering Mean Shift Cluster: all data points in the attraction basin of a mode Attraction basin: the region for which all trajectories lead to the same mode Slide by Y. Ukrainitz & B. Sarel

39 Segmentation by Clustering Mean Shift Mean Shift Segmentation Algorithm Convert the image into tokens (via color, gradients, texture measures etc). Choose initial search window locations uniformly in the data. Compute the mean shift window location for each initial position. Merge windows that end up on the same peak or mode. The data these merged windows traversed are clustered together.

40 Segmentation by Clustering Mean Shift Find features (color, gradients, texture, etc) Initialize windows at individual feature points Perform mean shift for each window until convergence Merge windows that end up near the same peak or mode Szeliski Book

41 Segmentation by Clustering Mean Shift

42 Segmentation by Clustering Mean Shift

43 Segmentation by Clustering Mean Shift Pros: Does not assume shape on clusters One parameter choice (window size) Generic technique Find multiple modes Cons: Selection of window size Does not scale well with dimension of feature space Kristen Grauman

44 Segmentation by Graph theoretic clustering Graph Theory A graph is a non-empty finite set of vertices V along with a set E of 2- element subsets of V. The elements of V are called Vertices. The elements of E are called edges.

45 Segmentation by Graph theoretic clustering Represent tokens using A weighted undirected graph G = (V,E) Nodes are points in the feature space Fully connected graph The weight associated are generally called affinity measures and Edge weight w(i,j) is a function of the similarity between nodes i and j. The graphs can be represented by weight or affinity matrices Task: Cut up this graph to get sub-graphs with strong interior links, i.e. Partition the set V into disjoint sets V 1,..,V n, s.t. similarity among nodes in V i is high and similarity across V i and V j is low.

46 Segmentation by Graph theoretic clustering Segmentation by Graph Cuts p w pq q w A B C Break Graph into Segments Want to delete links that cross between segments Easiest to break links that have low similarity (low weight) Similar pixels should be in the same segments Dissimilar pixels should be in different segments Source: Steve Seitz

47 Graph Representations a a b c d e b c d e V = {a,b,c,d,e} E = {(a,b), (a,e), (c,e), (d,e)} Adjacency Matrix Cardinality: No of vertices G = 5 Degree of vertex: Nodes connecting to a vertex deg(a) = 2

48 Weighted Graphs and Their Representations a a b c d e b c d e

49 Measuring Affinity Distance aff x, y exp d x y 2 Intensity Texture aff x, y exp i aff x, y exp t I x I y 2 c x c y 2

50 Minimum Cut A cut of a graph G is the set of edges S such that removal of S from G disconnects G Given a graph G=(V,E), the sets A and B are a disjoint partition of V Cut A B (, ) wpq, p A, q B Cut(A,B) is a measure of similarity between the two groups. Cut(A,B) is the sum of weights of all edges in V that have one end in A and the other in B Minimum cut is the cut of minimum weight, where weight of Cut <A,B> is given as A B There can be more than one minimum cut in a given graph

51 Minimum Cut

52 Minimum Cut Problem with minimum cut: Weight of cut proportional to number of edges in the cut; tends to produce small, isolated components. Cuts with lesser weight than the ideal cut Ideal Cut

53 Normalized Cut We d like to maximize the within cluster similarity compared to the across cluster difference In other words the approach is to cut the graph into two connected components such that the cost of the cut is a small fraction of the total affinity within each group

54 Normalized Cut Normalized cut is defined as: Cut( A, B) Cut( A, B) Assoc( A, V ) Assoc( B, V ) i.e. construct A, B such that their within cluster similarity is high compared to their association with the rest of the graph Cut(A,B) = Sum of weights of all edges in V that touch both A and B Assoc(A,V) = Sum of weights of all edges that touch A Ncut value small when we get two clusters with many edges with high weights, and few edges of low weight between them Approximate solution for minimizing the Ncut value is Generalized eigenvalue problem det( A I) 0

55 Finding Minimum Normalized Cut

56 Finding Minimum Normalized Cut

57 Normalized Cut - Example results Berkley Segmentation Engine

58 Normalized Cut Pros: Generic framework, flexible to choice of function that computes weights ( affinities ) between nodes Does not require model of the data distribution Cons: Time complexity can be high Bias towards partitioning into equal segments Sample student project:

Segmentation. Bottom Up Segmentation

Segmentation. Bottom Up Segmentation Segmentation Bottom up Segmentation Semantic Segmentation Bottom Up Segmentation 1 Segmentation as clustering Depending on what we choose as the feature space, we can group pixels in different ways. Grouping

More information

Segmentation and Grouping April 19 th, 2018

Segmentation and Grouping April 19 th, 2018 Segmentation and Grouping April 19 th, 2018 Yong Jae Lee UC Davis Features and filters Transforming and describing images; textures, edges 2 Grouping and fitting [fig from Shi et al] Clustering, segmentation,

More information

Outline. Segmentation & Grouping. Examples of grouping in vision. Grouping in vision. Grouping in vision 2/9/2011. CS 376 Lecture 7 Segmentation 1

Outline. Segmentation & Grouping. Examples of grouping in vision. Grouping in vision. Grouping in vision 2/9/2011. CS 376 Lecture 7 Segmentation 1 Outline What are grouping problems in vision? Segmentation & Grouping Wed, Feb 9 Prof. UT-Austin Inspiration from human perception Gestalt properties Bottom-up segmentation via clustering Algorithms: Mode

More information

CS 4495 Computer Vision. Segmentation. Aaron Bobick (slides by Tucker Hermans) School of Interactive Computing. Segmentation

CS 4495 Computer Vision. Segmentation. Aaron Bobick (slides by Tucker Hermans) School of Interactive Computing. Segmentation CS 4495 Computer Vision Aaron Bobick (slides by Tucker Hermans) School of Interactive Computing Administrivia PS 4: Out but I was a bit late so due date pushed back to Oct 29. OpenCV now has real SIFT

More information

Grouping and Segmentation

Grouping and Segmentation Grouping and Segmentation CS 554 Computer Vision Pinar Duygulu Bilkent University (Source:Kristen Grauman ) Goals: Grouping in vision Gather features that belong together Obtain an intermediate representation

More information

Segmentation and Grouping

Segmentation and Grouping CS 1699: Intro to Computer Vision Segmentation and Grouping Prof. Adriana Kovashka University of Pittsburgh September 24, 2015 Goals: Grouping in vision Gather features that belong together Obtain an intermediate

More information

Segmentation and Grouping April 21 st, 2015

Segmentation and Grouping April 21 st, 2015 Segmentation and Grouping April 21 st, 2015 Yong Jae Lee UC Davis Announcements PS0 grades are up on SmartSite Please put name on answer sheet 2 Features and filters Transforming and describing images;

More information

The goals of segmentation

The goals of segmentation Image segmentation The goals of segmentation Group together similar-looking pixels for efficiency of further processing Bottom-up process Unsupervised superpixels X. Ren and J. Malik. Learning a classification

More information

Segmentation & Grouping Kristen Grauman UT Austin. Announcements

Segmentation & Grouping Kristen Grauman UT Austin. Announcements Segmentation & Grouping Kristen Grauman UT Austin Tues Feb 7 A0 on Canvas Announcements No office hours today TA office hours this week as usual Guest lecture Thursday by Suyog Jain Interactive segmentation

More information

CMPSCI 670: Computer Vision! Grouping

CMPSCI 670: Computer Vision! Grouping CMPSCI 670: Computer Vision! Grouping University of Massachusetts, Amherst October 14, 2014 Instructor: Subhransu Maji Slides credit: Kristen Grauman and others Final project guidelines posted Milestones

More information

Applications. Foreground / background segmentation Finding skin-colored regions. Finding the moving objects. Intelligent scissors

Applications. Foreground / background segmentation Finding skin-colored regions. Finding the moving objects. Intelligent scissors Segmentation I Goal Separate image into coherent regions Berkeley segmentation database: http://www.eecs.berkeley.edu/research/projects/cs/vision/grouping/segbench/ Slide by L. Lazebnik Applications Intelligent

More information

CS 2750: Machine Learning. Clustering. Prof. Adriana Kovashka University of Pittsburgh January 17, 2017

CS 2750: Machine Learning. Clustering. Prof. Adriana Kovashka University of Pittsburgh January 17, 2017 CS 2750: Machine Learning Clustering Prof. Adriana Kovashka University of Pittsburgh January 17, 2017 What is clustering? Grouping items that belong together (i.e. have similar features) Unsupervised:

More information

CS 2770: Computer Vision. Edges and Segments. Prof. Adriana Kovashka University of Pittsburgh February 21, 2017

CS 2770: Computer Vision. Edges and Segments. Prof. Adriana Kovashka University of Pittsburgh February 21, 2017 CS 2770: Computer Vision Edges and Segments Prof. Adriana Kovashka University of Pittsburgh February 21, 2017 Edges vs Segments Figure adapted from J. Hays Edges vs Segments Edges More low-level Don t

More information

Segmentation & Clustering

Segmentation & Clustering EECS 442 Computer vision Segmentation & Clustering Segmentation in human vision K-mean clustering Mean-shift Graph-cut Reading: Chapters 14 [FP] Some slides of this lectures are courtesy of prof F. Li,

More information

Lecture 7: Segmentation. Thursday, Sept 20

Lecture 7: Segmentation. Thursday, Sept 20 Lecture 7: Segmentation Thursday, Sept 20 Outline Why segmentation? Gestalt properties, fun illusions and/or revealing examples Clustering Hierarchical K-means Mean Shift Graph-theoretic Normalized cuts

More information

Image Segmentation. Selim Aksoy. Bilkent University

Image Segmentation. Selim Aksoy. Bilkent University Image Segmentation Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr Examples of grouping in vision [http://poseidon.csd.auth.gr/lab_research/latest/imgs/s peakdepvidindex_img2.jpg]

More information

Image Segmentation. Selim Aksoy. Bilkent University

Image Segmentation. Selim Aksoy. Bilkent University Image Segmentation Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr Examples of grouping in vision [http://poseidon.csd.auth.gr/lab_research/latest/imgs/s peakdepvidindex_img2.jpg]

More information

CS 534: Computer Vision Segmentation and Perceptual Grouping

CS 534: Computer Vision Segmentation and Perceptual Grouping CS 534: Computer Vision Segmentation and Perceptual Grouping Ahmed Elgammal Dept of Computer Science CS 534 Segmentation - 1 Outlines Mid-level vision What is segmentation Perceptual Grouping Segmentation

More information

Lecture 16 Segmentation and Scene understanding

Lecture 16 Segmentation and Scene understanding Lecture 16 Segmentation and Scene understanding Introduction! Mean-shift! Graph-based segmentation! Top-down segmentation! Silvio Savarese Lecture 15 -! 3-Mar-14 Segmentation Silvio Savarese Lecture 15

More information

Lecture: k-means & mean-shift clustering

Lecture: k-means & mean-shift clustering Lecture: k-means & mean-shift clustering Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab Lecture 11-1 Recap: Image Segmentation Goal: identify groups of pixels that go together

More information

Lecture: k-means & mean-shift clustering

Lecture: k-means & mean-shift clustering Lecture: k-means & mean-shift clustering Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab 1 Recap: Image Segmentation Goal: identify groups of pixels that go together 2 Recap: Gestalt

More information

CS 534: Computer Vision Segmentation II Graph Cuts and Image Segmentation

CS 534: Computer Vision Segmentation II Graph Cuts and Image Segmentation CS 534: Computer Vision Segmentation II Graph Cuts and Image Segmentation Spring 2005 Ahmed Elgammal Dept of Computer Science CS 534 Segmentation II - 1 Outlines What is Graph cuts Graph-based clustering

More information

Clustering. Subhransu Maji. CMPSCI 689: Machine Learning. 2 April April 2015

Clustering. Subhransu Maji. CMPSCI 689: Machine Learning. 2 April April 2015 Clustering Subhransu Maji CMPSCI 689: Machine Learning 2 April 2015 7 April 2015 So far in the course Supervised learning: learning with a teacher You had training data which was (feature, label) pairs

More information

Image Segmentation continued Graph Based Methods. Some slides: courtesy of O. Capms, Penn State, J.Ponce and D. Fortsyth, Computer Vision Book

Image Segmentation continued Graph Based Methods. Some slides: courtesy of O. Capms, Penn State, J.Ponce and D. Fortsyth, Computer Vision Book Image Segmentation continued Graph Based Methods Some slides: courtesy of O. Capms, Penn State, J.Ponce and D. Fortsyth, Computer Vision Book Previously Binary segmentation Segmentation by thresholding

More information

CSE 473/573 Computer Vision and Image Processing (CVIP) Ifeoma Nwogu. Lectures 21 & 22 Segmentation and clustering

CSE 473/573 Computer Vision and Image Processing (CVIP) Ifeoma Nwogu. Lectures 21 & 22 Segmentation and clustering CSE 473/573 Computer Vision and Image Processing (CVIP) Ifeoma Nwogu Lectures 21 & 22 Segmentation and clustering 1 Schedule Last class We started on segmentation Today Segmentation continued Readings

More information

Segmentation Computer Vision Spring 2018, Lecture 27

Segmentation Computer Vision Spring 2018, Lecture 27 Segmentation http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 218, Lecture 27 Course announcements Homework 7 is due on Sunday 6 th. - Any questions about homework 7? - How many of you have

More information

CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt.

CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt. CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt. Session 11 Segmentation And Clustering Mani Golparvar-Fard Department of Civil and Environmental Engineering 3129D, Newmark Civil Engineering

More information

Segmentation and low-level grouping.

Segmentation and low-level grouping. Segmentation and low-level grouping. Bill Freeman, MIT 6.869 April 14, 2005 Readings: Mean shift paper and background segmentation paper. Mean shift IEEE PAMI paper by Comanici and Meer, http://www.caip.rutgers.edu/~comanici/papers/msrobustapproach.pdf

More information

Image Segmentation continued Graph Based Methods

Image Segmentation continued Graph Based Methods Image Segmentation continued Graph Based Methods Previously Images as graphs Fully-connected graph node (vertex) for every pixel link between every pair of pixels, p,q affinity weight w pq for each link

More information

Lecture 11: E-M and MeanShift. CAP 5415 Fall 2007

Lecture 11: E-M and MeanShift. CAP 5415 Fall 2007 Lecture 11: E-M and MeanShift CAP 5415 Fall 2007 Review on Segmentation by Clustering Each Pixel Data Vector Example (From Comanciu and Meer) Review of k-means Let's find three clusters in this data These

More information

Lecture 10: Semantic Segmentation and Clustering

Lecture 10: Semantic Segmentation and Clustering Lecture 10: Semantic Segmentation and Clustering Vineet Kosaraju, Davy Ragland, Adrien Truong, Effie Nehoran, Maneekwan Toyungyernsub Department of Computer Science Stanford University Stanford, CA 94305

More information

Clustering. So far in the course. Clustering. Clustering. Subhransu Maji. CMPSCI 689: Machine Learning. dist(x, y) = x y 2 2

Clustering. So far in the course. Clustering. Clustering. Subhransu Maji. CMPSCI 689: Machine Learning. dist(x, y) = x y 2 2 So far in the course Clustering Subhransu Maji : Machine Learning 2 April 2015 7 April 2015 Supervised learning: learning with a teacher You had training data which was (feature, label) pairs and the goal

More information

Segmentation by Clustering

Segmentation by Clustering KECE471 Computer Vision Segmentation by Clustering Chang-Su Kim Chapter 14, Computer Vision by Forsyth and Ponce Note: Dr. Forsyth s notes are partly used. Jae-Kyun Ahn in Korea University made the first

More information

6.801/866. Segmentation and Line Fitting. T. Darrell

6.801/866. Segmentation and Line Fitting. T. Darrell 6.801/866 Segmentation and Line Fitting T. Darrell Segmentation and Line Fitting Gestalt grouping Background subtraction K-Means Graph cuts Hough transform Iterative fitting (Next time: Probabilistic segmentation)

More information

Lecture 13: k-means and mean-shift clustering

Lecture 13: k-means and mean-shift clustering Lecture 13: k-means and mean-shift clustering Juan Carlos Niebles Stanford AI Lab Professor Stanford Vision Lab Lecture 13-1 Recap: Image Segmentation Goal: identify groups of pixels that go together Lecture

More information

Edge Detection Lecture 03 Computer Vision

Edge Detection Lecture 03 Computer Vision Edge Detection Lecture 3 Computer Vision Suggested readings Chapter 5 Linda G. Shapiro and George Stockman, Computer Vision, Upper Saddle River, NJ, Prentice Hall,. Chapter David A. Forsyth and Jean Ponce,

More information

Computer Vision Lecture 6

Computer Vision Lecture 6 Computer Vision Lecture 6 Segmentation 12.11.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Course Outline Image Processing Basics Structure Extraction Segmentation

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Segmentation Material in this presentation is largely based on/derived from presentations by: Sventlana Lazebnik, and Noah Snavely Brent M. Dingle, Ph.D. 2015 Game Design and Development

More information

Targil 12 : Image Segmentation. Image segmentation. Why do we need it? Image segmentation

Targil 12 : Image Segmentation. Image segmentation. Why do we need it? Image segmentation Targil : Image Segmentation Image segmentation Many slides from Steve Seitz Segment region of the image which: elongs to a single object. Looks uniform (gray levels, color ) Have the same attributes (texture

More information

Image Analysis. Segmentation by Clustering

Image Analysis. Segmentation by Clustering Image Analysis Segmentation by Clustering Christophoros Nikou cnikou@cs.uoi.gr Images taken from: D. Forsyth and J. Ponce. Computer Vision: A Modern Approach, Prentice Hall, 2003. Computer Vision course

More information

Fitting: Voting and the Hough Transform April 23 rd, Yong Jae Lee UC Davis

Fitting: Voting and the Hough Transform April 23 rd, Yong Jae Lee UC Davis Fitting: Voting and the Hough Transform April 23 rd, 2015 Yong Jae Lee UC Davis Last time: Grouping Bottom-up segmentation via clustering To find mid-level regions, tokens General choices -- features,

More information

Idea. Found boundaries between regions (edges) Didn t return the actual region

Idea. Found boundaries between regions (edges) Didn t return the actual region Region Segmentation Idea Edge detection Found boundaries between regions (edges) Didn t return the actual region Segmentation Partition image into regions find regions based on similar pixel intensities,

More information

Segmentation and Grouping

Segmentation and Grouping 02/23/10 Segmentation and Grouping Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Last week Clustering EM Today s class More on EM Segmentation and grouping Gestalt cues By boundaries

More information

EE 701 ROBOT VISION. Segmentation

EE 701 ROBOT VISION. Segmentation EE 701 ROBOT VISION Regions and Image Segmentation Histogram-based Segmentation Automatic Thresholding K-means Clustering Spatial Coherence Merging and Splitting Graph Theoretic Segmentation Region Growing

More information

human vision: grouping k-means clustering graph-theoretic clustering Hough transform line fitting RANSAC

human vision: grouping k-means clustering graph-theoretic clustering Hough transform line fitting RANSAC COS 429: COMPUTER VISON Segmentation human vision: grouping k-means clustering graph-theoretic clustering Hough transform line fitting RANSAC Reading: Chapters 14, 15 Some of the slides are credited to:

More information

Lecture 8: Fitting. Tuesday, Sept 25

Lecture 8: Fitting. Tuesday, Sept 25 Lecture 8: Fitting Tuesday, Sept 25 Announcements, schedule Grad student extensions Due end of term Data sets, suggestions Reminder: Midterm Tuesday 10/9 Problem set 2 out Thursday, due 10/11 Outline Review

More information

Image Analysis - Lecture 5

Image Analysis - Lecture 5 Texture Segmentation Clustering Review Image Analysis - Lecture 5 Texture and Segmentation Magnus Oskarsson Lecture 5 Texture Segmentation Clustering Review Contents Texture Textons Filter Banks Gabor

More information

Content-based Image and Video Retrieval. Image Segmentation

Content-based Image and Video Retrieval. Image Segmentation Content-based Image and Video Retrieval Vorlesung, SS 2011 Image Segmentation 2.5.2011 / 9.5.2011 Image Segmentation One of the key problem in computer vision Identification of homogenous region in the

More information

Grouping and Segmentation

Grouping and Segmentation 03/17/15 Grouping and Segmentation Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Today s class Segmentation and grouping Gestalt cues By clustering (mean-shift) By boundaries (watershed)

More information

Segmentation by Clustering. Segmentation by Clustering Reading: Chapter 14 (skip 14.5) General ideas

Segmentation by Clustering. Segmentation by Clustering Reading: Chapter 14 (skip 14.5) General ideas Reading: Chapter 14 (skip 14.5) Data reduction - obtain a compact representation for interesting image data in terms of a set of components Find components that belong together (form clusters) Frame differencing

More information

CS 534: Computer Vision Segmentation and Perceptual Grouping

CS 534: Computer Vision Segmentation and Perceptual Grouping CS 534: Computer Vision Segmentation and Perceptual Grouping Spring 2005 Ahmed Elgammal Dept of Computer Science CS 534 Segmentation - 1 Where are we? Image Formation Human vision Cameras Geometric Camera

More information

Segmentation by Clustering Reading: Chapter 14 (skip 14.5)

Segmentation by Clustering Reading: Chapter 14 (skip 14.5) Segmentation by Clustering Reading: Chapter 14 (skip 14.5) Data reduction - obtain a compact representation for interesting image data in terms of a set of components Find components that belong together

More information

Announcements. Segmentation & Grouping. Review questions. Outline. Grouping in vision. Examples of grouping in vision 9/21/2015

Announcements. Segmentation & Grouping. Review questions. Outline. Grouping in vision. Examples of grouping in vision 9/21/2015 Announcements Segmentation & Grouping Tues Sept 22 A2 goes out Thursday, due in 2 weeks Late submissions on Canvas Final exam dates now posted by registrar. Ours is Dec 9, 2-5 pm. Check in on pace Review

More information

Computer Vision Lecture 6

Computer Vision Lecture 6 Course Outline Computer Vision Lecture 6 Segmentation Image Processing Basics Structure Extraction Segmentation Segmentation as Clustering Graph-theoretic Segmentation 12.11.2015 Recognition Global Representations

More information

Image Segmentation. Marc Pollefeys. ETH Zurich. Slide credits: V. Ferrari, K. Grauman, B. Leibe, S. Lazebnik, S. Seitz,Y Boykov, W. Freeman, P.

Image Segmentation. Marc Pollefeys. ETH Zurich. Slide credits: V. Ferrari, K. Grauman, B. Leibe, S. Lazebnik, S. Seitz,Y Boykov, W. Freeman, P. Image Segmentation Perceptual and Sensory Augmented Computing Computer Vision WS 0/09 Marc Pollefeys ETH Zurich Slide credits: V. Ferrari, K. Grauman, B. Leibe, S. Lazebnik, S. Seitz,Y Boykov, W. Freeman,

More information

Image Segmentation. Shengnan Wang

Image Segmentation. Shengnan Wang Image Segmentation Shengnan Wang shengnan@cs.wisc.edu Contents I. Introduction to Segmentation II. Mean Shift Theory 1. What is Mean Shift? 2. Density Estimation Methods 3. Deriving the Mean Shift 4. Mean

More information

Image Segmentation. Luc Van Gool, ETH Zurich. Vittorio Ferrari, Un. of Edinburgh. With important contributions by

Image Segmentation. Luc Van Gool, ETH Zurich. Vittorio Ferrari, Un. of Edinburgh. With important contributions by Image Segmentation Perceptual and Sensory Augmented Computing Computer Vision WS 0/09 Luc Van Gool, ETH Zurich With important contributions by Vittorio Ferrari, Un. of Edinburgh Slide credits: K. Grauman,

More information

Clustering Part 3. Hierarchical Clustering

Clustering Part 3. Hierarchical Clustering Clustering Part Dr Sanjay Ranka Professor Computer and Information Science and Engineering University of Florida, Gainesville Hierarchical Clustering Two main types: Agglomerative Start with the points

More information

Computer Vision 5 Segmentation by Clustering

Computer Vision 5 Segmentation by Clustering Computer Vision 5 Segmentation by Clustering MAP-I Doctoral Programme Miguel Tavares Coimbra Outline Introduction Applications Simple clustering K-means clustering Graph-theoretic clustering Acknowledgements:

More information

Visual Representations for Machine Learning

Visual Representations for Machine Learning Visual Representations for Machine Learning Spectral Clustering and Channel Representations Lecture 1 Spectral Clustering: introduction and confusion Michael Felsberg Klas Nordberg The Spectral Clustering

More information

Local Features: Detection, Description & Matching

Local Features: Detection, Description & Matching Local Features: Detection, Description & Matching Lecture 08 Computer Vision Material Citations Dr George Stockman Professor Emeritus, Michigan State University Dr David Lowe Professor, University of British

More information

Clustering. Discover groups such that samples within a group are more similar to each other than samples across groups.

Clustering. Discover groups such that samples within a group are more similar to each other than samples across groups. Clustering 1 Clustering Discover groups such that samples within a group are more similar to each other than samples across groups. 2 Clustering Discover groups such that samples within a group are more

More information

University of Florida CISE department Gator Engineering. Clustering Part 2

University of Florida CISE department Gator Engineering. Clustering Part 2 Clustering Part 2 Dr. Sanjay Ranka Professor Computer and Information Science and Engineering University of Florida, Gainesville Partitional Clustering Original Points A Partitional Clustering Hierarchical

More information

In this lecture, we are going to talk about image segmentation, essentially defined as methods for grouping pixels together.

In this lecture, we are going to talk about image segmentation, essentially defined as methods for grouping pixels together. In this lecture, we are going to talk about image segmentation, essentially defined as methods for grouping pixels together. We will first define the segmentation problem, overview some basic ideas of

More information

Announcements. Image Segmentation. From images to objects. Extracting objects. Status reports next Thursday ~5min presentations in class

Announcements. Image Segmentation. From images to objects. Extracting objects. Status reports next Thursday ~5min presentations in class Image Segmentation Announcements Status reports next Thursday ~5min presentations in class Project voting From Sandlot Science Today s Readings Forsyth & Ponce, Chapter 1 (plus lots of optional references

More information

University of Florida CISE department Gator Engineering. Clustering Part 4

University of Florida CISE department Gator Engineering. Clustering Part 4 Clustering Part 4 Dr. Sanjay Ranka Professor Computer and Information Science and Engineering University of Florida, Gainesville DBSCAN DBSCAN is a density based clustering algorithm Density = number of

More information

Normalized cuts and image segmentation

Normalized cuts and image segmentation Normalized cuts and image segmentation Department of EE University of Washington Yeping Su Xiaodan Song Normalized Cuts and Image Segmentation, IEEE Trans. PAMI, August 2000 5/20/2003 1 Outline 1. Image

More information

Clustering Part 4 DBSCAN

Clustering Part 4 DBSCAN Clustering Part 4 Dr. Sanjay Ranka Professor Computer and Information Science and Engineering University of Florida, Gainesville DBSCAN DBSCAN is a density based clustering algorithm Density = number of

More information

Image Processing and Image Analysis VU

Image Processing and Image Analysis VU Image Processing and Image Analysis 052617 VU Yll Haxhimusa yll.haxhimusa@medunwien.ac.at vda.univie.ac.at/teaching/ipa/17w/ Outline What are grouping problems in vision? Inspiration from human perception

More information

Segmentation and Grouping

Segmentation and Grouping Segmentation and Grouping How and what do we see? Fundamental Problems ' Focus of attention, or grouping ' What subsets of pixels do we consider as possible objects? ' All connected subsets? ' Representation

More information

2%34 #5 +,,% ! # %& ()% #% +,,%. & /%0%)( 1 ! # %& % %()# +(& ,.+/ +&0%//#/ &

2%34 #5 +,,% ! # %& ()% #% +,,%. & /%0%)( 1 ! # %& % %()# +(& ,.+/ +&0%//#/ & ! # %& ()% #% +,,%. & /%0%)( 1 2%34 #5 +,,%! # %& % %()# +(&,.+/ +&0%//#/ & & Many slides in this lecture are due to other authors; they are credited on the bottom right Topics of This Lecture Problem

More information

From Pixels to Blobs

From Pixels to Blobs From Pixels to Blobs 15-463: Rendering and Image Processing Alexei Efros Today Blobs Need for blobs Extracting blobs Image Segmentation Working with binary images Mathematical Morphology Blob properties

More information

Hierarchical Clustering

Hierarchical Clustering Hierarchical Clustering Hierarchical Clustering Produces a set of nested clusters organized as a hierarchical tree Can be visualized as a dendrogram A tree-like diagram that records the sequences of merges

More information

Data Mining Cluster Analysis: Basic Concepts and Algorithms. Slides From Lecture Notes for Chapter 8. Introduction to Data Mining

Data Mining Cluster Analysis: Basic Concepts and Algorithms. Slides From Lecture Notes for Chapter 8. Introduction to Data Mining Data Mining Cluster Analysis: Basic Concepts and Algorithms Slides From Lecture Notes for Chapter 8 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining

More information

Image Segmentation. April 24, Stanford University. Philipp Krähenbühl (Stanford University) Segmentation April 24, / 63

Image Segmentation. April 24, Stanford University. Philipp Krähenbühl (Stanford University) Segmentation April 24, / 63 Image Segmentation Philipp Krähenbühl Stanford University April 24, 2013 Philipp Krähenbühl (Stanford University) Segmentation April 24, 2013 1 / 63 Image Segmentation Goal: identify groups of pixels that

More information

BBS654 Data Mining. Pinar Duygulu. Slides are adapted from Nazli Ikizler

BBS654 Data Mining. Pinar Duygulu. Slides are adapted from Nazli Ikizler BBS654 Data Mining Pinar Duygulu Slides are adapted from Nazli Ikizler 1 Classification Classification systems: Supervised learning Make a rational prediction given evidence There are several methods for

More information

Clustering CS 550: Machine Learning

Clustering CS 550: Machine Learning Clustering CS 550: Machine Learning This slide set mainly uses the slides given in the following links: http://www-users.cs.umn.edu/~kumar/dmbook/ch8.pdf http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/chap8_basic_cluster_analysis.pdf

More information

Clustering Lecture 3: Hierarchical Methods

Clustering Lecture 3: Hierarchical Methods Clustering Lecture 3: Hierarchical Methods Jing Gao SUNY Buffalo 1 Outline Basics Motivation, definition, evaluation Methods Partitional Hierarchical Density-based Mixture model Spectral methods Advanced

More information

Lecture 13 Segmentation and Scene Understanding Chris Choy, Ph.D. candidate Stanford Vision and Learning Lab (SVL)

Lecture 13 Segmentation and Scene Understanding Chris Choy, Ph.D. candidate Stanford Vision and Learning Lab (SVL) Lecture 13 Segmentation and Scene Understanding Chris Choy, Ph.D. candidate Stanford Vision and Learning Lab (SVL) http://chrischoy.org Stanford CS231A 1 Understanding a Scene Objects Chairs, Cups, Tables,

More information

SYDE Winter 2011 Introduction to Pattern Recognition. Clustering

SYDE Winter 2011 Introduction to Pattern Recognition. Clustering SYDE 372 - Winter 2011 Introduction to Pattern Recognition Clustering Alexander Wong Department of Systems Design Engineering University of Waterloo Outline 1 2 3 4 5 All the approaches we have learned

More information

CAP 5415 Computer Vision Fall 2012

CAP 5415 Computer Vision Fall 2012 CAP 5415 Computer Vision Fall 01 Dr. Mubarak Shah Univ. of Central Florida Office 47-F HEC Lecture-5 SIFT: David Lowe, UBC SIFT - Key Point Extraction Stands for scale invariant feature transform Patented

More information

CSSE463: Image Recognition Day 21

CSSE463: Image Recognition Day 21 CSSE463: Image Recognition Day 21 Sunset detector due. Foundations of Image Recognition completed This wee: K-means: a method of Image segmentation Questions? An image to segment Segmentation The process

More information

Normalized Graph cuts. by Gopalkrishna Veni School of Computing University of Utah

Normalized Graph cuts. by Gopalkrishna Veni School of Computing University of Utah Normalized Graph cuts by Gopalkrishna Veni School of Computing University of Utah Image segmentation Image segmentation is a grouping technique used for image. It is a way of dividing an image into different

More information

Fitting. Lecture 8. Cristian Sminchisescu. Slide credits: K. Grauman, S. Seitz, S. Lazebnik, D. Forsyth, J. Ponce

Fitting. Lecture 8. Cristian Sminchisescu. Slide credits: K. Grauman, S. Seitz, S. Lazebnik, D. Forsyth, J. Ponce Fitting Lecture 8 Cristian Sminchisescu Slide credits: K. Grauman, S. Seitz, S. Lazebnik, D. Forsyth, J. Ponce Fitting We want to associate a model with observed features [Fig from Marszalek & Schmid,

More information

Hierarchical Clustering Lecture 9

Hierarchical Clustering Lecture 9 Hierarchical Clustering Lecture 9 Marina Santini Acknowledgements Slides borrowed and adapted from: Data Mining by I. H. Witten, E. Frank and M. A. Hall 1 Lecture 9: Required Reading Witten et al. (2011:

More information

Unsupervised Learning. Presenter: Anil Sharma, PhD Scholar, IIIT-Delhi

Unsupervised Learning. Presenter: Anil Sharma, PhD Scholar, IIIT-Delhi Unsupervised Learning Presenter: Anil Sharma, PhD Scholar, IIIT-Delhi Content Motivation Introduction Applications Types of clustering Clustering criterion functions Distance functions Normalization Which

More information

k-means demo Administrative Machine learning: Unsupervised learning" Assignment 5 out

k-means demo Administrative Machine learning: Unsupervised learning Assignment 5 out Machine learning: Unsupervised learning" David Kauchak cs Spring 0 adapted from: http://www.stanford.edu/class/cs76/handouts/lecture7-clustering.ppt http://www.youtube.com/watch?v=or_-y-eilqo Administrative

More information

CS7267 MACHINE LEARNING

CS7267 MACHINE LEARNING S7267 MAHINE LEARNING HIERARHIAL LUSTERING Ref: hengkai Li, Department of omputer Science and Engineering, University of Texas at Arlington (Slides courtesy of Vipin Kumar) Mingon Kang, Ph.D. omputer Science,

More information

Dr. Ulas Bagci

Dr. Ulas Bagci CAP5415-Computer Vision Lecture 11-Image Segmentation (BASICS): Thresholding, Region Growing, Clustering Dr. Ulas Bagci bagci@ucf.edu 1 Image Segmentation Aim: to partition an image into a collection of

More information

Clustering Lecture 8. David Sontag New York University. Slides adapted from Luke Zettlemoyer, Vibhav Gogate, Carlos Guestrin, Andrew Moore, Dan Klein

Clustering Lecture 8. David Sontag New York University. Slides adapted from Luke Zettlemoyer, Vibhav Gogate, Carlos Guestrin, Andrew Moore, Dan Klein Clustering Lecture 8 David Sontag New York University Slides adapted from Luke Zettlemoyer, Vibhav Gogate, Carlos Guestrin, Andrew Moore, Dan Klein Clustering: Unsupervised learning Clustering Requires

More information

2D image segmentation based on spatial coherence

2D image segmentation based on spatial coherence 2D image segmentation based on spatial coherence Václav Hlaváč Czech Technical University in Prague Center for Machine Perception (bridging groups of the) Czech Institute of Informatics, Robotics and Cybernetics

More information

Lecture Notes for Chapter 7. Introduction to Data Mining, 2 nd Edition. by Tan, Steinbach, Karpatne, Kumar

Lecture Notes for Chapter 7. Introduction to Data Mining, 2 nd Edition. by Tan, Steinbach, Karpatne, Kumar Data Mining Cluster Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 7 Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar Hierarchical Clustering Produces a set

More information

Image Segmentation for Image Object Extraction

Image Segmentation for Image Object Extraction Image Segmentation for Image Object Extraction Rohit Kamble, Keshav Kaul # Computer Department, Vishwakarma Institute of Information Technology, Pune kamble.rohit@hotmail.com, kaul.keshav@gmail.com ABSTRACT

More information

Cluster analysis. Agnieszka Nowak - Brzezinska

Cluster analysis. Agnieszka Nowak - Brzezinska Cluster analysis Agnieszka Nowak - Brzezinska Outline of lecture What is cluster analysis? Clustering algorithms Measures of Cluster Validity What is Cluster Analysis? Finding groups of objects such that

More information

Hierarchical Clustering

Hierarchical Clustering Hierarchical Clustering Produces a set of nested clusters organized as a hierarchical tree Can be visualized as a dendrogram A tree like diagram that records the sequences of merges or splits 0 0 0 00

More information

CSE 5243 INTRO. TO DATA MINING

CSE 5243 INTRO. TO DATA MINING CSE 5243 INTRO. TO DATA MINING Cluster Analysis: Basic Concepts and Methods Huan Sun, CSE@The Ohio State University 09/25/2017 Slides adapted from UIUC CS412, Fall 2017, by Prof. Jiawei Han 2 Chapter 10.

More information

Automatic Segmentation of Semantic Classes in Raster Map Images

Automatic Segmentation of Semantic Classes in Raster Map Images Automatic Segmentation of Semantic Classes in Raster Map Images Thomas C. Henderson, Trevor Linton, Sergey Potupchik and Andrei Ostanin School of Computing, University of Utah, Salt Lake City, UT 84112

More information

Unit 3 : Image Segmentation

Unit 3 : Image Segmentation Unit 3 : Image Segmentation K-means Clustering Mean Shift Segmentation Active Contour Models Snakes Normalized Cut Segmentation CS 6550 0 Histogram-based segmentation Goal Break the image into K regions

More information

Data Mining Concepts & Techniques

Data Mining Concepts & Techniques Data Mining Concepts & Techniques Lecture No 08 Cluster Analysis Naeem Ahmed Email: naeemmahoto@gmailcom Department of Software Engineering Mehran Univeristy of Engineering and Technology Jamshoro Outline

More information

CS 558: Computer Vision 4 th Set of Notes

CS 558: Computer Vision 4 th Set of Notes 1 CS 558: Computer Vision 4 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Overview Keypoint matching Hessian

More information