Spring 2010 CPE231 Digital Logic Section 1 Quiz 1-A. Convert the following numbers from the given base to the other three bases listed in the table:
|
|
- Allan Gray
- 2 years ago
- Views:
Transcription
1 Section 1 Quiz 1-A Convert the following numbers from the given base to the other three bases listed in the table: Decimal Binary Hexadecimal C6.5 Simplify the following Boolean expressions to expressions containing a minimum number of literals Name: Number:
2 Section 2 Quiz 1-A Convert the following numbers from one notation to another = = 3B = AC9 16 = For each expression below, use DeMorgan s theorem to obtain an equivalent expression which contains ANDs and ORs of the inputs (e.g. A) and their complements (e.g. A ). There should be no complements (bars) in the final expression except those over the inputs. Name: Number:
3 Section 1 Quiz 1-B Convert the following numbers from the given base to the other three bases listed in the table: Decimal Binary Hexadecimal F3C7.A Simplify the following Boolean expressions to expressions containing a minumium number of literals (a) A B C + A C (b) A B D + A C D + B D Name: Student No.: -
4 Section 1 Quiz 1-B Convert the following numbers from the given base to the other three bases listed in the table: Decimal Binary Hexadecimal F3C7.A Simplify the following Boolean expressions to expressions containing a minimum number of literals (a) (b) Name: Student No.: -
5 Section 2 Quiz 1-B Convert the following numbers from one notation to another = = DEAF = ED5 16 = For each expression below, use DeMorgan s theorem to obtain an equivalent expression which contains ANDs and ORs of the inputs (e.g. A) and their complements (e.g. A ). There should be no complements (bars) in the final expression except those over the inputs. Name: Number:
6 Digital Logic () Quiz 1 Form A Solutions are in RED COLOR رقم التسجيل : الاسم : الشعبة: رقم ====================================================================== Instructions: Time 15 minutes. Closed books and notes. No calculators. No questions are allowed. ======================================================================= Q1. Convert (325) 10 to binary. (8 points) (325) 10 = OR: = = = 1 (325) 10 = = = Q2. Convert (A63) 16 to binary. (4 points) (A63) 16 = Q3. Analyze the following circuit to find Boolean Functions F(X,Y,Z) are being implemented. Then simplify your answer if possible. (16 points) F(X,Y,Z) = X YZ +X YZ + XZ Before simplification = X Y(Z +Z ) + XZ By identity 14 = X Y.1 + XZ By identity 7 = X Y + XZ By identity 2 F(X,Y,Z) = X Y + XZ After simplification 1
7 Q4. Evaluate the following binary addition. (4 points) carry Q5. From the truth table, write the function F(X,Y,Z) in the SOP terms then draw circuit implementing the followin function using AND, Or, and NOT gates without simplification. (18 points). (8 points for the function and 10 points for the circuit) X Y Z F minterm X Y Z X Y Z XY Z XYZ XYZ F(X,Y,Z) = X Y Z + X Y Z + XY Z + XYZ + XYZ 2
8 Digital Logic () Quiz 1. Form B Solutions are in RED COLOR رقم التسجيل : الاسم : الشعبة: رقم ====================================================================== Instructions: Time 15 minutes. Closed books and notes. No calculators. No questions are allowed. ======================================================================= Q1. Convert (295) 10 to binary. (8 points) (295) 10 = OR: = = = = 1 (295) 10 = = = Q2. Evaluate the following binary addition. (4 points) Carry Q3. Analyze the following circuit to find Boolean Functions F(X,Y,Z) are being implemented. Then simplify your answer if possible. (16 points) (6 points for the function and 10 points for simplification) F(X,Y,Z) = X(Y + Z)(X+Y+Z ) Before simplification = X [Y (X+Y+Z ) + Z(X+Y+Z )] = X [XY +0+Y Z + XZ+YZ+0] = X [XY +Y Z + XZ+YZ] = X.XY +XY Z +X.XZ+XYZ = XY +XY Z + XZ+XYZ = XY (1+Z ) + XZ(1+Y) = XY + XZ F(X,Y,Z) = XY + XZ After simplification
9 Q4. Convert (B32) 16 to binary. (4 points) (B32) 16 = Q5. From the truth table, write the function F(X,Y,Z) in the SOP terms then draw circuit implementing the followin function using AND, OR, and NOT gates without simplification. (18 points) (6 points for the function and 12 points for the circuit) X Y Z F minterm X YZ X YZ XY Z XYZ F(X,Y,Z) = X YZ + X YZ + XY Z + XYZ 4
Experiment 3: Logic Simplification
Module: Logic Design Name:... University no:.. Group no:. Lab Partner Name: Mr. Mohamed El-Saied Experiment : Logic Simplification Objective: How to implement and verify the operation of the logical functions
Standard Forms of Expression. Minterms and Maxterms
Standard Forms of Expression Minterms and Maxterms Standard forms of expressions We can write expressions in many ways, but some ways are more useful than others A sum of products (SOP) expression contains:
Philadelphia University Faculty of Information Technology Department of Computer Science. Computer Logic Design. By Dareen Hamoudeh.
Philadelphia University Faculty of Information Technology Department of Computer Science Computer Logic Design By Dareen Hamoudeh Dareen Hamoudeh 1 Canonical Forms (Standard Forms of Expression) Minterms
Circuit analysis summary
Boolean Algebra Circuit analysis summary After finding the circuit inputs and outputs, you can come up with either an expression or a truth table to describe what the circuit does. You can easily convert
Menu. Algebraic Simplification - Boolean Algebra EEL3701 EEL3701. MSOP, MPOS, Simplification
Menu Minterms & Maxterms SOP & POS MSOP & MPOS Simplification using the theorems/laws/axioms Look into my... 1 Definitions (Review) Algebraic Simplification - Boolean Algebra Minterms (written as m i ):
Bawar Abid Abdalla. Assistant Lecturer Software Engineering Department Koya University
Logic Design First Stage Lecture No.6 Boolean Algebra Bawar Abid Abdalla Assistant Lecturer Software Engineering Department Koya University Outlines Boolean Operations Laws of Boolean Algebra Rules of
Unit-IV Boolean Algebra
Unit-IV Boolean Algebra Boolean Algebra Chapter: 08 Truth table: Truth table is a table, which represents all the possible values of logical variables/statements along with all the possible results of
Chapter 2. Boolean Expressions:
Chapter 2 Boolean Expressions: A Boolean expression or a function is an expression which consists of binary variables joined by the Boolean connectives AND and OR along with NOT operation. Any Boolean
Lecture 5. Chapter 2: Sections 4-7
Lecture 5 Chapter 2: Sections 4-7 Outline Boolean Functions What are Canonical Forms? Minterms and Maxterms Index Representation of Minterms and Maxterms Sum-of-Minterm (SOM) Representations Product-of-Maxterm
QUESTION BANK FOR TEST
CSCI 2121 Computer Organization and Assembly Language PRACTICE QUESTION BANK FOR TEST 1 Note: This represents a sample set. Please study all the topics from the lecture notes. Question 1. Multiple Choice
Simplification of Boolean Functions
Simplification of Boolean Functions Contents: Why simplification? The Map Method Two, Three, Four and Five variable Maps. Simplification of two, three, four and five variable Boolean function by Map method.
Chapter 3. Gate-Level Minimization. Outlines
Chapter 3 Gate-Level Minimization Introduction The Map Method Four-Variable Map Five-Variable Map Outlines Product of Sums Simplification Don t-care Conditions NAND and NOR Implementation Other Two-Level
Review: Standard forms of expressions
Karnaugh maps Last time we saw applications of Boolean logic to circuit design. The basic Boolean operations are AND, OR and NOT. These operations can be combined to form complex expressions, which can
Announcements. Chapter 2 - Part 1 1
Announcements If you haven t shown the grader your proof of prerequisite, please do so by 11:59 pm on 09/05/2018 (Wednesday). I will drop students that do not show us the prerequisite proof after this
Basic circuit analysis and design. Circuit analysis. Write algebraic expressions or make a truth table
Basic circuit analysis and design Circuit analysis Circuit analysis involves figuring out what some circuit does. Every circuit computes some function, which can be described with Boolean expressions or
Assignment (3-6) Boolean Algebra and Logic Simplification - General Questions
Assignment (3-6) Boolean Algebra and Logic Simplification - General Questions 1. Convert the following SOP expression to an equivalent POS expression. 2. Determine the values of A, B, C, and D that make
Binary logic. Dr.Abu-Arqoub
Binary logic Binary logic deals with variables like (a, b, c,, x, y) that take on two discrete values (, ) and with operations that assume logic meaning ( AND, OR, NOT) Truth table is a table of all possible
Chapter 2 Combinational Logic Circuits
Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 2 Circuit Optimization Overview Part Gate Circuits and Boolean Equations Binary Logic and Gates Boolean Algebra Standard
UNIT-4 BOOLEAN LOGIC. NOT Operator Operates on single variable. It gives the complement value of variable.
UNIT-4 BOOLEAN LOGIC Boolean algebra is an algebra that deals with Boolean values((true and FALSE). Everyday we have to make logic decisions: Should I carry the book or not?, Should I watch TV or not?
SYNERGY INSTITUTE OF ENGINEERING & TECHNOLOGY,DHENKANAL LECTURE NOTES ON DIGITAL ELECTRONICS CIRCUIT(SUBJECT CODE:PCEC4202)
Lecture No:5 Boolean Expressions and Definitions Boolean Algebra Boolean Algebra is used to analyze and simplify the digital (logic) circuits. It uses only the binary numbers i.e. 0 and 1. It is also called
Code No: R Set No. 1
Code No: R059210504 Set No. 1 II B.Tech I Semester Supplementary Examinations, February 2007 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science
Question Total Possible Test Score Total 100
Computer Engineering 2210 Final Name 11 problems, 100 points. Closed books, closed notes, no calculators. You would be wise to read all problems before beginning, note point values and difficulty of problems,
Chapter 2 Boolean algebra and Logic Gates
Chapter 2 Boolean algebra and Logic Gates 2. Introduction In working with logic relations in digital form, we need a set of rules for symbolic manipulation which will enable us to simplify complex expressions
1. Mark the correct statement(s)
1. Mark the correct statement(s) 1.1 A theorem in Boolean algebra: a) Can easily be proved by e.g. logic induction b) Is a logical statement that is assumed to be true, c) Can be contradicted by another
Gate-Level Minimization. BME208 Logic Circuits Yalçın İŞLER
Gate-Level Minimization BME28 Logic Circuits Yalçın İŞLER islerya@yahoo.com http://me.islerya.com Complexity of Digital Circuits Directly related to the complexity of the algebraic expression we use to
Boolean algebra. June 17, Howard Huang 1
Boolean algebra Yesterday we talked about how analog voltages can represent the logical values true and false. We introduced the basic Boolean operations AND, OR and NOT, which can be implemented in hardware
X Y Z F=X+Y+Z
This circuit is used to obtain the compliment of a value. If X = 0, then X = 1. The truth table for NOT gate is : X X 0 1 1 0 2. OR gate : The OR gate has two or more input signals but only one output
2.6 BOOLEAN FUNCTIONS
2.6 BOOLEAN FUNCTIONS Binary variables have two values, either 0 or 1. A Boolean function is an expression formed with binary variables, the two binary operators AND and OR, one unary operator NOT, parentheses
CS February 17
Discrete Mathematics CS 26 February 7 Equal Boolean Functions Two Boolean functions F and G of degree n are equal iff for all (x n,..x n ) B, F (x,..x n ) = G (x,..x n ) Example: F(x,y,z) = x(y+z), G(x,y,z)
Digital Logic Lecture 7 Gate Level Minimization
Digital Logic Lecture 7 Gate Level Minimization By Ghada Al-Mashaqbeh The Hashemite University Computer Engineering Department Outline Introduction. K-map principles. Simplification using K-maps. Don t-care
Variable, Complement, and Literal are terms used in Boolean Algebra.
We have met gate logic and combination of gates. Another way of representing gate logic is through Boolean algebra, a way of algebraically representing logic gates. You should have already covered the
Chapter 2: Combinational Systems
Uchechukwu Ofoegbu Chapter 2: Combinational Systems Temple University Adapted from Alan Marcovitz s Introduction to Logic and Computer Design Riddle Four switches can be turned on or off. One is the switch
S1 Teknik Telekomunikasi Fakultas Teknik Elektro FEH2H3 2016/2017
S1 Teknik Telekomunikasi Fakultas Teknik Elektro FEH2H3 2016/2017 Karnaugh Map Karnaugh maps Last time we saw applications of Boolean logic to circuit design. The basic Boolean operations are AND, OR and
Objectives: 1- Bolean Algebra. Eng. Ayman Metwali
Objectives: Chapter 3 : 1- Boolean Algebra Boolean Expressions Boolean Identities Simplification of Boolean Expressions Complements Representing Boolean Functions 2- Logic gates 3- Digital Components 4-
Lecture 4: Implementation AND, OR, NOT Gates and Complement
EE210: Switching Systems Lecture 4: Implementation AND, OR, NOT Gates and Complement Prof. YingLi Tian Feb. 13, 2018 Department of Electrical Engineering The City College of New York The City University
Gate Level Minimization
Gate Level Minimization By Dr. M. Hebaishy Digital Logic Design Ch- Simplifying Boolean Equations Example : Y = AB + AB Example 2: = B (A + A) T8 = B () T5 = B T Y = A(AB + ABC) = A (AB ( + C ) ) T8 =
Class Subject Code Subject Prepared By Lesson Plan for Time: Lesson. No 1.CONTENT LIST: Introduction to UnitI 2. SKILLS ADDRESSED: Listening I year, 02 sem CS6201 Digital Principles & System Design S.Seedhanadevi
Code No: R Set No. 1
Code No: R059210504 Set No. 1 II B.Tech I Semester Regular Examinations, November 2006 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science & Systems
Code No: 07A3EC03 Set No. 1
Code No: 07A3EC03 Set No. 1 II B.Tech I Semester Regular Examinations, November 2008 SWITCHING THEORY AND LOGIC DESIGN ( Common to Electrical & Electronic Engineering, Electronics & Instrumentation Engineering,
CMPE223/CMSE222 Digital Logic
CMPE223/CMSE222 Digital Logic Optimized Implementation of Logic Functions: Strategy for Minimization, Minimum Product-of-Sums Forms, Incompletely Specified Functions Terminology For a given term, each
Gate Level Minimization Map Method
Gate Level Minimization Map Method Complexity of hardware implementation is directly related to the complexity of the algebraic expression Truth table representation of a function is unique Algebraically
Experiment 4 Boolean Functions Implementation
Experiment 4 Boolean Functions Implementation Introduction: Generally you will find that the basic logic functions AND, OR, NAND, NOR, and NOT are not sufficient to implement complex digital logic functions.
Code No: R Set No. 1
Code No: R059210504 Set No. 1 II B.Tech I Semester Regular Examinations, November 2007 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science & Systems
IT 201 Digital System Design Module II Notes
IT 201 Digital System Design Module II Notes BOOLEAN OPERATIONS AND EXPRESSIONS Variable, complement, and literal are terms used in Boolean algebra. A variable is a symbol used to represent a logical quantity.
LSN 4 Boolean Algebra & Logic Simplification. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology
LSN 4 Boolean Algebra & Logic Simplification Department of Engineering Technology LSN 4 Key Terms Variable: a symbol used to represent a logic quantity Compliment: the inverse of a variable Literal: a
BOOLEAN ALGEBRA. Logic circuit: 1. From logic circuit to Boolean expression. Derive the Boolean expression for the following circuits.
COURSE / CODE DIGITAL SYSTEMS FUNDAMENTAL (ECE 421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE 422) BOOLEAN ALGEBRA Boolean Logic Boolean logic is a complete system for logical operations. It is used in countless
MULTIMEDIA COLLEGE JALAN GURNEY KIRI KUALA LUMPUR
STUDENT IDENTIFICATION NO MULTIMEDIA COLLEGE JALAN GURNEY KIRI 54100 KUALA LUMPUR SECOND SEMESTER FINAL EXAMINATION, 2013/2014 SESSION ITC2223 COMPUTER ORGANIZATION & ARCHITECTURE DSEW-E-F 1/13 18 FEBRUARY
UNIT 2 BOOLEAN ALGEBRA
UNIT 2 BOOLEN LGEBR Spring 2 2 Contents Introduction Basic operations Boolean expressions and truth tables Theorems and laws Basic theorems Commutative, associative, and distributive laws Simplification
Boolean Algebra. P1. The OR operation is closed for all x, y B x + y B
Boolean Algebra A Boolean Algebra is a mathematical system consisting of a set of elements B, two binary operations OR (+) and AND ( ), a unary operation NOT ('), an equality sign (=) to indicate equivalence
Software Engineering 2DA4. Slides 2: Introduction to Logic Circuits
Software Engineering 2DA4 Slides 2: Introduction to Logic Circuits Dr. Ryan Leduc Department of Computing and Software McMaster University Material based on S. Brown and Z. Vranesic, Fundamentals of Digital
ECE380 Digital Logic
ECE38 Digital Logic Optimized Implementation of Logic Functions: Strategy for Minimization, Minimum Product-of-Sums Forms, Incompletely Specified Functions Dr. D. J. Jackson Lecture 8- Terminology For
Module -7. Karnaugh Maps
1 Module -7 Karnaugh Maps 1. Introduction 2. Canonical and Standard forms 2.1 Minterms 2.2 Maxterms 2.3 Canonical Sum of Product or Sum-of-Minterms (SOM) 2.4 Canonical product of sum or Product-of-Maxterms(POM)
SUBJECT CODE: IT T35 DIGITAL SYSTEM DESIGN YEAR / SEM : 2 / 3
UNIT - I PART A (2 Marks) 1. Using Demorgan s theorem convert the following Boolean expression to an equivalent expression that has only OR and complement operations. Show the function can be implemented
2.1 Binary Logic and Gates
1 EED2003 Digital Design Presentation 2: Boolean Algebra Asst. Prof.Dr. Ahmet ÖZKURT Asst. Prof.Dr Hakkı T. YALAZAN Based on the Lecture Notes by Jaeyoung Choi choi@comp.ssu.ac.kr Fall 2000 2.1 Binary
Chapter 3. Boolean Algebra and Digital Logic
Chapter 3 Boolean Algebra and Digital Logic Chapter 3 Objectives Understand the relationship between Boolean logic and digital computer circuits. Learn how to design simple logic circuits. Understand how
Digital logic fundamentals. Question Bank. Unit I
Digital logic fundamentals Question Bank Subject Name : Digital Logic Fundamentals Subject code: CA102T Staff Name: R.Roseline Unit I 1. What is Number system? 2. Define binary logic. 3. Show how negative
Digital Design. Chapter 4. Principles Of. Simplification of Boolean Functions
Principles Of Digital Design Chapter 4 Simplification of Boolean Functions Karnaugh Maps Don t Care Conditions Technology Mapping Optimization, Conversions, Decomposing, Retiming Boolean Cubes for n =,
Boolean Algebra and Logic Gates
Boolean Algebra and Logic Gates Binary logic is used in all of today's digital computers and devices Cost of the circuits is an important factor Finding simpler and cheaper but equivalent circuits can
ENGIN 112 Intro to Electrical and Computer Engineering
ENGIN 2 Intro to Electrical and Computer Engineering Lecture 5 Boolean Algebra Overview Logic functions with s and s Building digital circuitry Truth tables Logic symbols and waveforms Boolean algebra
Gate-Level Minimization
Gate-Level Minimization ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2011 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Outlines The Map Method
60-265: Winter ANSWERS Exercise 4 Combinational Circuit Design
60-265: Winter 2010 Computer Architecture I: Digital Design ANSWERS Exercise 4 Combinational Circuit Design Question 1. One-bit Comparator [ 1 mark ] Consider two 1-bit inputs, A and B. If we assume that
Lecture (05) Boolean Algebra and Logic Gates
Lecture (05) Boolean Algebra and Logic Gates By: Dr. Ahmed ElShafee ١ Minterms and Maxterms consider two binary variables x and y combined with an AND operation. Since eachv ariable may appear in either
B.Tech II Year I Semester (R13) Regular Examinations December 2014 DIGITAL LOGIC DESIGN
B.Tech II Year I Semester () Regular Examinations December 2014 (Common to IT and CSE) (a) If 1010 2 + 10 2 = X 10, then X is ----- Write the first 9 decimal digits in base 3. (c) What is meant by don
2008 The McGraw-Hill Companies, Inc. All rights reserved.
28 The McGraw-Hill Companies, Inc. All rights reserved. 28 The McGraw-Hill Companies, Inc. All rights reserved. All or Nothing Gate Boolean Expression: A B = Y Truth Table (ee next slide) or AB = Y 28
Midterm Exam Review. CS 2420 :: Fall 2016 Molly O'Neil
Midterm Exam Review CS 2420 :: Fall 2016 Molly O'Neil Midterm Exam Thursday, October 20 In class, pencil & paper exam Closed book, closed notes, no cell phones or calculators, clean desk 20% of your final
Combinational Circuits Digital Logic (Materials taken primarily from:
Combinational Circuits Digital Logic (Materials taken primarily from: http://www.facstaff.bucknell.edu/mastascu/elessonshtml/eeindex.html http://www.cs.princeton.edu/~cos126 ) Digital Systems What is a
Combinational Logic Circuits
Chapter 3 Combinational Logic Circuits 12 Hours 24 Marks 3.1 Standard representation for logical functions Boolean expressions / logic expressions / logical functions are expressed in terms of logical
Date Performed: Marks Obtained: /10. Group Members (ID):. Experiment # 04. Boolean Expression Simplification and Implementation
Name: Instructor: Engr. Date Performed: Marks Obtained: /10 Group Members (ID):. Checked By: Date: Experiment # 04 Boolean Expression Simplification and Implementation OBJECTIVES: To understand the utilization
ENGIN 112 Intro to Electrical and Computer Engineering
ENGIN 2 Intro to Electrical and Computer Engineering Lecture 8 Minimization with Karnaugh Maps Overview K-maps: an alternate approach to representing oolean functions K-map representation can be used to
R.M.D. ENGINEERING COLLEGE R.S.M. Nagar, Kavaraipettai
L T P C R.M.D. ENGINEERING COLLEGE R.S.M. Nagar, Kavaraipettai- 601206 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC8392 UNIT - I 3 0 0 3 OBJECTIVES: To present the Digital fundamentals, Boolean
MODULE 5 - COMBINATIONAL LOGIC
Introduction to Digital Electronics Module 5: Combinational Logic 1 MODULE 5 - COMBINATIONAL LOGIC OVERVIEW: For any given combination of input binary bits or variables, the logic will have a specific
Summary. Boolean Addition
Summary Boolean Addition In Boolean algebra, a variable is a symbol used to represent an action, a condition, or data. A single variable can only have a value of or 0. The complement represents the inverse
Boolean Analysis of Logic Circuits
Course: B.Sc. Applied Physical Science (Computer Science) Year & Sem.: IInd Year, Sem - IIIrd Subject: Computer Science Paper No.: IX Paper Title: Computer System Architecture Lecture No.: 7 Lecture Title:
Computer Science. Unit-4: Introduction to Boolean Algebra
Unit-4: Introduction to Boolean Algebra Learning Objective At the end of the chapter students will: Learn Fundamental concepts and basic laws of Boolean algebra. Learn about Boolean expression and will
Computer Organization
Computer Organization (Logic circuits design and minimization) KR Chowdhary Professor & Head Email: kr.chowdhary@gmail.com webpage: krchowdhary.com Department of Computer Science and Engineering MBM Engineering
ISC 2007 COMPUTER SCIENCE PAPER 1 THEORY PART I Answer all questions in this part
ISC 2007 COMPUTER SCIENCE PAPER 1 THEORY PART I Answer all questions in this part Question 1. a) Simplify the following Boolean expression using laws of Boolean Algebra. At each step state clearly the
R10. II B. Tech I Semester, Supplementary Examinations, May
SET - 1 1. a) Convert the following decimal numbers into an equivalent binary numbers. i) 53.625 ii) 4097.188 iii) 167 iv) 0.4475 b) Add the following numbers using 2 s complement method. i) -48 and +31
Get Free notes at Module-I One s Complement: Complement all the bits.i.e. makes all 1s as 0s and all 0s as 1s Two s Complement: One s complement+1 SIGNED BINARY NUMBERS Positive integers (including zero)
Gate-Level Minimization
Gate-Level Minimization ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2017 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Outlines The Map Method
ENGIN 112. Intro to Electrical and Computer Engineering
ENIN 2 Intro to Electrical and Computer Engineering Lecture 6 More Boolean Algebra ENIN2 L6: More Boolean Algebra September 5, 23 A B Overview Epressing Boolean functions Relationships between algebraic
CDA 3103 Computer Organization Exam 1 (Sep. 22th, 2014)
CDA 3103 Computer Organization Exam 1 (Sep. 22th, 2014) Name: USF ID: Problem Points Score 1 10 2 10 3 15 4 15 5 10 6 20 otal 80 Exam Rules Use the back of the exam paper as necessary. But indicate clearly
ENGINEERS ACADEMY. 7. Given Boolean theorem. (a) A B A C B C A B A C. (b) AB AC BC AB BC. (c) AB AC BC A B A C B C.
Digital Electronics Boolean Function QUESTION BANK. The Boolean equation Y = C + C + C can be simplified to (a) (c) A (B + C) (b) AC (d) C. The Boolean equation Y = (A + B) (A + B) can be simplified to
ELCT201: DIGITAL LOGIC DESIGN
ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 3 Following the slides of Dr. Ahmed H. Madian محرم 1439 ه Winter
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE)
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : STLD(16EC402) Year & Sem: II-B.Tech & I-Sem Course & Branch: B.Tech
SWITCHING THEORY AND LOGIC CIRCUITS
SWITCHING THEORY AND LOGIC CIRCUITS COURSE OBJECTIVES. To understand the concepts and techniques associated with the number systems and codes 2. To understand the simplification methods (Boolean algebra
A B AB CD Objectives:
Objectives:. Four variables maps. 2. Simplification using prime implicants. 3. "on t care" conditions. 4. Summary.. Four variables Karnaugh maps Minterms A A m m m3 m2 A B C m4 C A B C m2 m8 C C m5 C m3
Literal Cost F = BD + A B C + A C D F = BD + A B C + A BD + AB C F = (A + B)(A + D)(B + C + D )( B + C + D) L = 10
Circuit Optimization Goal: To obtain the simplest implementation for a given function Optimization is a more formal approach to simplification that is performed using a specific procedure or algorithm
Combinational Logic & Circuits
Week-I Combinational Logic & Circuits Spring' 232 - Logic Design Page Overview Binary logic operations and gates Switching algebra Algebraic Minimization Standard forms Karnaugh Map Minimization Other
DSAS Laboratory no 4. Laboratory 4. Logic forms
Laboratory 4 Logic forms 4.1 Laboratory work goals Going from Boolean functions to Boolean forms. Logic forms equivalence. Boolean forms simplification. Shannon s theorems. Representation in NAND and NOR
Bawar Abid Abdalla. Assistant Lecturer Software Engineering Department Koya University
Logic Design First Stage Lecture No.5 Boolean Algebra Bawar Abid Abdalla Assistant Lecturer Software Engineering Department Koya University Boolean Operations Laws of Boolean Algebra Rules of Boolean Algebra
BOOLEAN ALGEBRA. 1. State & Verify Laws by using :
BOOLEAN ALGEBRA. State & Verify Laws by using :. State and algebraically verify Absorption Laws. (2) Absorption law states that (i) X + XY = X and (ii) X(X + Y) = X (i) X + XY = X LHS = X + XY = X( + Y)
CHAPTER-2 STRUCTURE OF BOOLEAN FUNCTION USING GATES, K-Map and Quine-McCluskey
CHAPTER-2 STRUCTURE OF BOOLEAN FUNCTION USING GATES, K-Map and Quine-McCluskey 2. Introduction Logic gates are connected together to produce a specified output for certain specified combinations of input
Permutation Matrices. Permutation Matrices. Permutation Matrices. Permutation Matrices. Isomorphisms of Graphs. 19 Nov 2015
9 Nov 25 A permutation matrix is an n by n matrix with a single in each row and column, elsewhere. If P is a permutation (bijection) on {,2,..,n} let A P be the permutation matrix with A ip(i) =, A ij
Digital Logic Design (CEN-120) (3+1)
Digital Logic Design (CEN-120) (3+1) ASSISTANT PROFESSOR Engr. Syed Rizwan Ali, MS(CAAD)UK, PDG(CS)UK, PGD(PM)IR, BS(CE)PK HEC Certified Master Trainer (MT-FPDP) PEC Certified Professional Engineer (COM/2531)
Points Addressed in this Lecture. Standard form of Boolean Expressions. Lecture 4: Logic Simplication & Karnaugh Map
Points Addressed in this Lecture Lecture 4: Logic Simplication & Karnaugh Map Professor Peter Cheung Department of EEE, Imperial College London Standard form of Boolean Expressions Sum-of-Products (SOP),
Gate-Level Minimization
MEC520 디지털공학 Gate-Level Minimization Jee-Hwan Ryu School of Mechanical Engineering Gate-Level Minimization-The Map Method Truth table is unique Many different algebraic expression Boolean expressions may
UNIT II. Circuit minimization
UNIT II Circuit minimization The complexity of the digital logic gates that implement a Boolean function is directly related to the complexity of the algebraic expression from which the function is implemented.
CprE 281: Digital Logic
CprE 28: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Minimization CprE 28: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev Administrative
Introduction to Boolean Algebra
Introduction to Boolean Algebra Boolean algebra which deals with two-valued (true / false or and ) variables and functions find its use in modern digital computers since they too use two-level systems
Introduction to Boolean Algebra
Introduction to Boolean Algebra Boolean algebra which deals with two-valued (true / false or and ) variables and functions find its use in modern digital computers since they too use two-level systems