MULTI-LEVEL 3D CONVOLUTIONAL NEURAL NETWORK FOR OBJECT RECOGNITION SAMBIT GHADAI XIAN LEE ADITYA BALU SOUMIK SARKAR ADARSH KRISHNAMURTHY

Size: px
Start display at page:

Download "MULTI-LEVEL 3D CONVOLUTIONAL NEURAL NETWORK FOR OBJECT RECOGNITION SAMBIT GHADAI XIAN LEE ADITYA BALU SOUMIK SARKAR ADARSH KRISHNAMURTHY"

Transcription

1 MULTI-LEVEL 3D CONVOLUTIONAL NEURAL NETWORK FOR OBJECT RECOGNITION SAMBIT GHADAI XIAN LEE ADITYA BALU SOUMIK SARKAR ADARSH KRISHNAMURTHY

2 Outline Object Recognition Multi-Level Volumetric Representations for CAD Models Object Recognition using Dense Voxels Object Recognition using Multi-level Voxels March 26,

3 Motivation Object recognition of 3D models from volumetric data Learn volumetric features from CAD models Local features 3D spatial features Memory efficient way to learn from volumetric data March 26,

4 Boundary Representation (B-Rep) CAD Models De-facto representation for CAD models Can be easily tessellated into triangles for rendering Difficult to interpret volumetric information Size of a feature Internal location of a feature March 26,

5 Voxel Representation Binary occupancy information Augmented with extra geometry information Can be used as direct input to a convolutional neural network Dense resolution voxel grid has high memory and computation requirements March 26,

6 Why we need Multi-Resolution? As the resolution increases, the fraction of occupancy reduces Still need to store empty voxels An hierarchical (multi-level) representation is useful to capture key features at a finer resolution Level 1 Voxels Level 2 Voxels [2] March 26,

7 ModelNet10 Dataset 3D CAD models for objects 10 categories of objects: Bathtub Chair Dresser Night Stand Table Bed Desk Monitor Sofa Toilet Source: Princeton ModelNet [1] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang and J. Xiao, 3D ShapeNets: A Deep Representation for Volumetric Shapes, Proceedings of 28th IEEE Conference on Computer Vision and Pattern Recognition (CVPR2015) March 26,

8 Outline Object Recognition Multi-Level Volumetric Representations for CAD Models Object Recognition using Dense Voxels Object Recognition using Multi-level Voxels March 26,

9 Volumetric Voxelization of ModelNet10 Overlay a regular voxel grid on the object Test point membership of the voxel bounding-box center points, classify as in or out March 26,

10 Identifying Boundary Voxels Boundary Voxels need to be identified in order to generate fine level voxel grid Identify the voxels that contain vertices Use separating-axis test for all other voxels within the bound Classify Vertices Triangle Box Intersection March 26,

11 Fine Level Voxelization (Level 2) Same method as coarse level Clip the model using AABB of boundary voxels Perform similar Tri-Box intersection to identify level 2 Boundary voxels All the information is stored in a flat data structure March 26,

12 Outline Object Recognition Multi-Level Volumetric Representations for CAD Models Object Recognition using Dense Voxels Object Recognition using Multi-level Voxels March 26,

13 3D CNN on Dense Voxel Grid Dense voxel grid as input model 3D-CNN with two convolutional layers and a max-pooling layer for feature extraction Dense Voxel Grid 10 Classes A fully connected dense layer to flatten the data to get 10 class classification Convolution Layer 1 Convolution Layer 2 Pooling Layer Dense Layer 1 Dense Layer 2 March 26,

14 Data Augmentation ModelNet10: 3991 training and 908 testing 3D models Dataset size is insufficient to train the parameters of 3D-CNN 6 rigid body transformations on voxel grid for data augmentation 7x original data size used for training Rotation (x, y, z axis) Mirroring (x, y, z axis) Original model y y x x 90 Rot-z March 26,

15 Outline Object Recognition Multi-Level Volumetric Representations for CAD Models Object Recognition using Dense Voxels Object Recognition using Multi-level Voxels March 26,

16 Need to learn from Multi-Resolution data Learn efficiently from complex and intricate features of a CAD model Improve performance with fewer computations Amenable to model interpretability by learning finer features at specific spatial locations Low memory usage March 26,

17 Data Augmentation Similar to data augmentation at coarse level voxels Rigid body transformation first applied on coarse voxels Transformation then applied on finer voxels inside each coarse voxel y 90 Level 1 Rot-z y 90 Level 2 Rot-z y x x x March 26,

18 Multi-Level 3D CNN Boundary Voxels Level-2 Forward Linking Level-2 with Level-1 Level-1 Forward Classification 4 x 4 x 4 Voxel Grid 8 x 8 x 8 Voxel Grid 10 Classes Fine Voxels Convolution layers Pooling Dense Sigmoid Output Coarse Level Fusion Convolution Layer 1 Convolution Layer 2 Pooling Layer Dense Layer 1 Dense Layer 2 Update Weights Compute Level-2 Gradients Extract Voxel gradients based on forwards pass Compute Level-1 Gradients Compute Loss March 26,

19 Results Multi-level training parameters: Batch size: 64 3D models of size 8x8x8 coarse & 4x4x4 fine voxels Optimizer: SGD with learning rate of Loss Function: Softmax cross-entropy Network (Level-1): Convolution: 64 filters Convolution: 128 filters Max Pooling Dense Layer: 256 filters Network (Level-2): Convolution: 8 filters Convolution: 16 filters Max Pooling Dense Layer: 32 filters March 26,

20 Results (Contd.) Dense level training parameters: Batch size: 64 3D models of size 32 x 32 x 32 voxels Optimizer: SGD with learning rate of Loss Function: Softmax cross-entropy Network A: Convolution: 64 filters Max Pooling Convolution: 128 filters Max Pooling Dense Layer: 256 filters Network B: Convolution: 64 filters Convolution: 128 filters Max Pooling Dense Layer: 256 filters March 26,

21 Accuracy Results (Contd.) 1 Coarse 2 Multi-Level 3 Dense 1 Coarse 2 Multi-Level 3 Dense 8x8x8 8x8x8 and 4x4x4 32x32x32 March 26,

22 Results (Contd.) March 26,

23 Results (Contd.) Memory Usage in GPU of Multi-Resolution voxel training & equivalent single resolution training Memory Usage in GPU (MB) Multi-Level Dense with MaxPool Dense wihout MaxPool March 26,

24 Conclusions We have developed methods to represent CAD models using a multi-resolution voxel grid Developed a multi-level 3D-CNN for object recognition using the multi-resolution voxel grid Memory usage by the multi-level 3D-CNN is much lower than the dense voxel 3D-CNN without compromising the accuracy March 26,

25 Future work Efficient training algorithms for Level-2 3D-CNN Explore different resolutions effect on training 3D-CNN Build model interpretability for hierarchical learning Experiment the algorithm with different datasets March 26,

26 Acknowledgements AI-based Design and Manufacturability Lab (ADAM Lab) Xian Lee Aditya Balu Gavin Young Funding Sources National Science Foundation CMMI: CM: Machine-Learning Driven Decision Support in Design for Manufacturability nvidia Titan Xp GPU for Academic Research March 26,

27 Thank You! Questions? March 26,

Volumetric and Multi-View CNNs for Object Classification on 3D Data Supplementary Material

Volumetric and Multi-View CNNs for Object Classification on 3D Data Supplementary Material Volumetric and Multi-View CNNs for Object Classification on 3D Data Supplementary Material Charles R. Qi Hao Su Matthias Nießner Angela Dai Mengyuan Yan Leonidas J. Guibas Stanford University 1. Details

More information

POINT CLOUD DEEP LEARNING

POINT CLOUD DEEP LEARNING POINT CLOUD DEEP LEARNING Innfarn Yoo, 3/29/28 / 57 Introduction AGENDA Previous Work Method Result Conclusion 2 / 57 INTRODUCTION 3 / 57 2D OBJECT CLASSIFICATION Deep Learning for 2D Object Classification

More information

Multi-level voxel representation for GPUaccelerated

Multi-level voxel representation for GPUaccelerated Graduate Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 2017 Multi-level voxel representation for GPUaccelerated solid modeling Gavin Young Iowa State University Follow

More information

ECCV Presented by: Boris Ivanovic and Yolanda Wang CS 331B - November 16, 2016

ECCV Presented by: Boris Ivanovic and Yolanda Wang CS 331B - November 16, 2016 ECCV 2016 Presented by: Boris Ivanovic and Yolanda Wang CS 331B - November 16, 2016 Fundamental Question What is a good vector representation of an object? Something that can be easily predicted from 2D

More information

3D model classification using convolutional neural network

3D model classification using convolutional neural network 3D model classification using convolutional neural network JunYoung Gwak Stanford jgwak@cs.stanford.edu Abstract Our goal is to classify 3D models directly using convolutional neural network. Most of existing

More information

DeepIM: Deep Iterative Matching for 6D Pose Estimation - Supplementary Material

DeepIM: Deep Iterative Matching for 6D Pose Estimation - Supplementary Material DeepIM: Deep Iterative Matching for 6D Pose Estimation - Supplementary Material Yi Li 1, Gu Wang 1, Xiangyang Ji 1, Yu Xiang 2, and Dieter Fox 2 1 Tsinghua University, BNRist 2 University of Washington

More information

Learning from 3D Data

Learning from 3D Data Learning from 3D Data Thomas Funkhouser Princeton University* * On sabbatical at Stanford and Google Disclaimer: I am talking about the work of these people Shuran Song Andy Zeng Fisher Yu Yinda Zhang

More information

Deep Learning for 3D Shape Classification Based on Volumetric Density and Surface Approximation Clues

Deep Learning for 3D Shape Classification Based on Volumetric Density and Surface Approximation Clues Deep Learning for 3D Shape Classification Based on Volumetric Density and Surface Approximation Clues Ludovico Minto, Pietro Zanuttigh and Giampaolo Pagnutti Department of Information Engineering, University

More information

Deep Learning with Tensorflow AlexNet

Deep Learning with Tensorflow   AlexNet Machine Learning and Computer Vision Group Deep Learning with Tensorflow http://cvml.ist.ac.at/courses/dlwt_w17/ AlexNet Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton, "Imagenet classification

More information

DEEP LEARNING FOR 3D SHAPE CLASSIFICATION FROM MULTIPLE DEPTH MAPS. Pietro Zanuttigh and Ludovico Minto

DEEP LEARNING FOR 3D SHAPE CLASSIFICATION FROM MULTIPLE DEPTH MAPS. Pietro Zanuttigh and Ludovico Minto DEEP LEARNING FOR 3D SHAPE CLASSIFICATION FROM MULTIPLE DEPTH MAPS Pietro Zanuttigh and Ludovico Minto Department of Information Engineering, University of Padova, Italy ABSTRACT This paper proposes a

More information

Learning to generate 3D shapes

Learning to generate 3D shapes Learning to generate 3D shapes Subhransu Maji College of Information and Computer Sciences University of Massachusetts, Amherst http://people.cs.umass.edu/smaji August 10, 2018 @ Caltech Creating 3D shapes

More information

Deep Learning and Its Applications

Deep Learning and Its Applications Convolutional Neural Network and Its Application in Image Recognition Oct 28, 2016 Outline 1 A Motivating Example 2 The Convolutional Neural Network (CNN) Model 3 Training the CNN Model 4 Issues and Recent

More information

3D Object Classification using Shape Distributions and Deep Learning

3D Object Classification using Shape Distributions and Deep Learning 3D Object Classification using Shape Distributions and Deep Learning Melvin Low Stanford University mwlow@cs.stanford.edu Abstract This paper shows that the Absolute Angle shape distribution (AAD) feature

More information

Sparse 3D Convolutional Neural Networks for Large-Scale Shape Retrieval

Sparse 3D Convolutional Neural Networks for Large-Scale Shape Retrieval Sparse 3D Convolutional Neural Networks for Large-Scale Shape Retrieval Alexandr Notchenko, Ermek Kapushev, Evgeny Burnaev {avnotchenko,kapushev,burnaevevgeny}@gmail.com Skolkovo Institute of Science and

More information

DeepPano: Deep Panoramic Representation for 3-D Shape Recognition

DeepPano: Deep Panoramic Representation for 3-D Shape Recognition IEEE SIGNAL PROCESSING LETTERS, VOL. 22, NO. 12, DECEMBER 2015 2339 DeepPano: Deep Panoramic Representation for 3-D Shape Recognition Baoguang Shi, Student Member, IEEE, Song Bai, Student Member, IEEE,

More information

LEARNING TO GENERATE CHAIRS WITH CONVOLUTIONAL NEURAL NETWORKS

LEARNING TO GENERATE CHAIRS WITH CONVOLUTIONAL NEURAL NETWORKS LEARNING TO GENERATE CHAIRS WITH CONVOLUTIONAL NEURAL NETWORKS Alexey Dosovitskiy, Jost Tobias Springenberg and Thomas Brox University of Freiburg Presented by: Shreyansh Daftry Visual Learning and Recognition

More information

Beam Search for Learning a Deep Convolutional Neural Network of 3D Shapes

Beam Search for Learning a Deep Convolutional Neural Network of 3D Shapes Beam Search for Learning a Deep Convolutional Neural Network of 3D Shapes Xu Xu and Sinisa Todorovic School of Electrical Engineering and Computer Science Oregon State University, Corvallis, Oregon 97330

More information

Dynamic Routing Between Capsules

Dynamic Routing Between Capsules Report Explainable Machine Learning Dynamic Routing Between Capsules Author: Michael Dorkenwald Supervisor: Dr. Ullrich Köthe 28. Juni 2018 Inhaltsverzeichnis 1 Introduction 2 2 Motivation 2 3 CapusleNet

More information

Semantic Segmentation

Semantic Segmentation Semantic Segmentation UCLA:https://goo.gl/images/I0VTi2 OUTLINE Semantic Segmentation Why? Paper to talk about: Fully Convolutional Networks for Semantic Segmentation. J. Long, E. Shelhamer, and T. Darrell,

More information

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. Charles R. Qi* Hao Su* Kaichun Mo Leonidas J. Guibas

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. Charles R. Qi* Hao Su* Kaichun Mo Leonidas J. Guibas PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation Charles R. Qi* Hao Su* Kaichun Mo Leonidas J. Guibas Big Data + Deep Representation Learning Robot Perception Augmented Reality

More information

Multi-Task Self-Supervised Visual Learning

Multi-Task Self-Supervised Visual Learning Multi-Task Self-Supervised Visual Learning Sikai Zhong March 4, 2018 COMPUTER SCIENCE Table of contents 1. Introduction 2. Self-supervised Tasks 3. Architectures 4. Experiments 1 Introduction Self-supervised

More information

3D ShapeNets for 2.5D Object Recognition and Next-Best-View Prediction

3D ShapeNets for 2.5D Object Recognition and Next-Best-View Prediction 3D ShapeNets for 2.5D Object Recognition and Next-Best-View Prediction Zhirong Wu Shuran Song Aditya Khosla Xiaoou Tang Jianxiong Xiao Princeton University MIT CUHK arxiv:1406.5670v2 [cs.cv] 1 Sep 2014

More information

Lecture 7: Semantic Segmentation

Lecture 7: Semantic Segmentation Semantic Segmentation CSED703R: Deep Learning for Visual Recognition (207F) Segmenting images based on its semantic notion Lecture 7: Semantic Segmentation Bohyung Han Computer Vision Lab. bhhanpostech.ac.kr

More information

YOLO9000: Better, Faster, Stronger

YOLO9000: Better, Faster, Stronger YOLO9000: Better, Faster, Stronger Date: January 24, 2018 Prepared by Haris Khan (University of Toronto) Haris Khan CSC2548: Machine Learning in Computer Vision 1 Overview 1. Motivation for one-shot object

More information

3D Object Classification via Spherical Projections

3D Object Classification via Spherical Projections 3D Object Classification via Spherical Projections Zhangjie Cao 1,QixingHuang 2,andRamaniKarthik 3 1 School of Software Tsinghua University, China 2 Department of Computer Science University of Texas at

More information

Cross-domain Deep Encoding for 3D Voxels and 2D Images

Cross-domain Deep Encoding for 3D Voxels and 2D Images Cross-domain Deep Encoding for 3D Voxels and 2D Images Jingwei Ji Stanford University jingweij@stanford.edu Danyang Wang Stanford University danyangw@stanford.edu 1. Introduction 3D reconstruction is one

More information

3D Shape Analysis with Multi-view Convolutional Networks. Evangelos Kalogerakis

3D Shape Analysis with Multi-view Convolutional Networks. Evangelos Kalogerakis 3D Shape Analysis with Multi-view Convolutional Networks Evangelos Kalogerakis 3D model repositories [3D Warehouse - video] 3D geometry acquisition [KinectFusion - video] 3D shapes come in various flavors

More information

Classification of 3D Shapes with Convolutional Neural Networks

Classification of 3D Shapes with Convolutional Neural Networks Classification of D Shapes with Convolutional Neural Networks Leonid Keselman Stanford University leonidk@stanford.edu various designs and tests of convolutional neural networks to solve this object classification

More information

Holistic 3D Scene Parsing and Reconstruction from a Single RGB Image. Supplementary Material

Holistic 3D Scene Parsing and Reconstruction from a Single RGB Image. Supplementary Material Holistic 3D Scene Parsing and Reconstruction from a Single RGB Image Supplementary Material Siyuan Huang 1,2, Siyuan Qi 1,2, Yixin Zhu 1,2, Yinxue Xiao 1, Yuanlu Xu 1,2, and Song-Chun Zhu 1,2 1 University

More information

3D Object Detection with Sparse Sampling Neural Networks. Ryan Goy

3D Object Detection with Sparse Sampling Neural Networks. Ryan Goy 3D Object Detection with Sparse Sampling Neural Networks by Ryan Goy A thesis submitted in partial satisfaction of the requirements for the degree of Master of Science, Plan II in Electrical Engineering

More information

Structured Prediction using Convolutional Neural Networks

Structured Prediction using Convolutional Neural Networks Overview Structured Prediction using Convolutional Neural Networks Bohyung Han bhhan@postech.ac.kr Computer Vision Lab. Convolutional Neural Networks (CNNs) Structured predictions for low level computer

More information

Spatial Localization and Detection. Lecture 8-1

Spatial Localization and Detection. Lecture 8-1 Lecture 8: Spatial Localization and Detection Lecture 8-1 Administrative - Project Proposals were due on Saturday Homework 2 due Friday 2/5 Homework 1 grades out this week Midterm will be in-class on Wednesday

More information

PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space

PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space Sikai Zhong February 14, 2018 COMPUTER SCIENCE Table of contents 1. PointNet 2. PointNet++ 3. Experiments 1 PointNet Property

More information

arxiv: v3 [cs.cv] 9 Sep 2016

arxiv: v3 [cs.cv] 9 Sep 2016 arxiv:1604.03755v3 [cs.cv] 9 Sep 2016 VConv-DAE: Deep Volumetric Shape Learning Without Object Labels Abhishek Sharma 1, Oliver Grau 2, Mario Fritz 3 1 Intel Visual Computing Institute 2 Intel 3 Max Planck

More information

Keras: Handwritten Digit Recognition using MNIST Dataset

Keras: Handwritten Digit Recognition using MNIST Dataset Keras: Handwritten Digit Recognition using MNIST Dataset IIT PATNA January 31, 2018 1 / 30 OUTLINE 1 Keras: Introduction 2 Installing Keras 3 Keras: Building, Testing, Improving A Simple Network 2 / 30

More information

Using Faster-RCNN to Improve Shape Detection in LIDAR

Using Faster-RCNN to Improve Shape Detection in LIDAR Using Faster-RCNN to Improve Shape Detection in LIDAR TJ Melanson Stanford University Stanford, CA 94305 melanson@stanford.edu Abstract In this paper, I propose a method for extracting objects from unordered

More information

Yiqi Yan. May 10, 2017

Yiqi Yan. May 10, 2017 Yiqi Yan May 10, 2017 P a r t I F u n d a m e n t a l B a c k g r o u n d s Convolution Single Filter Multiple Filters 3 Convolution: case study, 2 filters 4 Convolution: receptive field receptive field

More information

Fuzzy Set Theory in Computer Vision: Example 3

Fuzzy Set Theory in Computer Vision: Example 3 Fuzzy Set Theory in Computer Vision: Example 3 Derek T. Anderson and James M. Keller FUZZ-IEEE, July 2017 Overview Purpose of these slides are to make you aware of a few of the different CNN architectures

More information

3D Attention-Driven Depth Acquisition for Object Identification

3D Attention-Driven Depth Acquisition for Object Identification 3D Attention-Driven Depth Acquisition for Object Identification Kai Xu, Yifei Shi, Lintao Zheng, Junyu Zhang, Min Liu, Hui Huang, Hao Su, Daniel Cohen-Or and Baoquan Chen National University of Defense

More information

Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting

Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting R. Maier 1,2, K. Kim 1, D. Cremers 2, J. Kautz 1, M. Nießner 2,3 Fusion Ours 1

More information

RGBD Occlusion Detection via Deep Convolutional Neural Networks

RGBD Occlusion Detection via Deep Convolutional Neural Networks 1 RGBD Occlusion Detection via Deep Convolutional Neural Networks Soumik Sarkar 1,2, Vivek Venugopalan 1, Kishore Reddy 1, Michael Giering 1, Julian Ryde 3, Navdeep Jaitly 4,5 1 United Technologies Research

More information

Learning Descriptor Networks for 3D Shape Synthesis and Analysis

Learning Descriptor Networks for 3D Shape Synthesis and Analysis Learning Descriptor Networks for 3D Shape Synthesis and Analysis Jianwen Xie 1, Zilong Zheng 2, Ruiqi Gao 2, Wenguan Wang 2,3, Song-Chun Zhu 2, Ying Nian Wu 2 1 Hikvision Research Institute 2 University

More information

Constrained Convolutional Neural Networks for Weakly Supervised Segmentation. Deepak Pathak, Philipp Krähenbühl and Trevor Darrell

Constrained Convolutional Neural Networks for Weakly Supervised Segmentation. Deepak Pathak, Philipp Krähenbühl and Trevor Darrell Constrained Convolutional Neural Networks for Weakly Supervised Segmentation Deepak Pathak, Philipp Krähenbühl and Trevor Darrell 1 Multi-class Image Segmentation Assign a class label to each pixel in

More information

End-to-End Localization and Ranking for Relative Attributes

End-to-End Localization and Ranking for Relative Attributes End-to-End Localization and Ranking for Relative Attributes Krishna Kumar Singh and Yong Jae Lee Presented by Minhao Cheng [Farhadi et al. 2009, Kumar et al. 2009, Lampert et al. 2009, [Slide: Xiao and

More information

Three-Dimensional Object Detection and Layout Prediction using Clouds of Oriented Gradients

Three-Dimensional Object Detection and Layout Prediction using Clouds of Oriented Gradients ThreeDimensional Object Detection and Layout Prediction using Clouds of Oriented Gradients Authors: Zhile Ren, Erik B. Sudderth Presented by: Shannon Kao, Max Wang October 19, 2016 Introduction Given an

More information

Supplementary Material for Ensemble Diffusion for Retrieval

Supplementary Material for Ensemble Diffusion for Retrieval Supplementary Material for Ensemble Diffusion for Retrieval Song Bai 1, Zhichao Zhou 1, Jingdong Wang, Xiang Bai 1, Longin Jan Latecki 3, Qi Tian 4 1 Huazhong University of Science and Technology, Microsoft

More information

Object Detection. CS698N Final Project Presentation AKSHAT AGARWAL SIDDHARTH TANWAR

Object Detection. CS698N Final Project Presentation AKSHAT AGARWAL SIDDHARTH TANWAR Object Detection CS698N Final Project Presentation AKSHAT AGARWAL SIDDHARTH TANWAR Problem Description Arguably the most important part of perception Long term goals for object recognition: Generalization

More information

Scene Text Recognition for Augmented Reality. Sagar G V Adviser: Prof. Bharadwaj Amrutur Indian Institute Of Science

Scene Text Recognition for Augmented Reality. Sagar G V Adviser: Prof. Bharadwaj Amrutur Indian Institute Of Science Scene Text Recognition for Augmented Reality Sagar G V Adviser: Prof. Bharadwaj Amrutur Indian Institute Of Science Outline Research area and motivation Finding text in natural scenes Prior art Improving

More information

3D ShapeNets: A Deep Representation for Volumetric Shapes

3D ShapeNets: A Deep Representation for Volumetric Shapes 3D ShapeNets: A Deep Representation for Volumetric Shapes Zhirong Wu Shuran Song Aditya Khosla Fisher Yu Linguang Zhang Xiaoou Tang Jianxiong Xiao Princeton University Chinese University of Hong Kong Massachusetts

More information

3D Deep Learning on Geometric Forms. Hao Su

3D Deep Learning on Geometric Forms. Hao Su 3D Deep Learning on Geometric Forms Hao Su Many 3D representations are available Candidates: multi-view images depth map volumetric polygonal mesh point cloud primitive-based CAD models 3D representation

More information

Deep Models for 3D Reconstruction

Deep Models for 3D Reconstruction Deep Models for 3D Reconstruction Andreas Geiger Autonomous Vision Group, MPI for Intelligent Systems, Tübingen Computer Vision and Geometry Group, ETH Zürich October 12, 2017 Max Planck Institute for

More information

Deep learning for dense per-pixel prediction. Chunhua Shen The University of Adelaide, Australia

Deep learning for dense per-pixel prediction. Chunhua Shen The University of Adelaide, Australia Deep learning for dense per-pixel prediction Chunhua Shen The University of Adelaide, Australia Image understanding Classification error Convolution Neural Networks 0.3 0.2 0.1 Image Classification [Krizhevsky

More information

Deep Learning for Computer Vision

Deep Learning for Computer Vision Deep Learning for Computer Vision Lecture 7: Universal Approximation Theorem, More Hidden Units, Multi-Class Classifiers, Softmax, and Regularization Peter Belhumeur Computer Science Columbia University

More information

CNN Basics. Chongruo Wu

CNN Basics. Chongruo Wu CNN Basics Chongruo Wu Overview 1. 2. 3. Forward: compute the output of each layer Back propagation: compute gradient Updating: update the parameters with computed gradient Agenda 1. Forward Conv, Fully

More information

CS468: 3D Deep Learning on Point Cloud Data. class label part label. Hao Su. image. May 10, 2017

CS468: 3D Deep Learning on Point Cloud Data. class label part label. Hao Su. image. May 10, 2017 CS468: 3D Deep Learning on Point Cloud Data class label part label Hao Su image. May 10, 2017 Agenda Point cloud generation Point cloud analysis CVPR 17, Point Set Generation Pipeline render CVPR 17, Point

More information

3D CONVOLUTIONAL NEURAL NETWORKS BY MODAL FUSION

3D CONVOLUTIONAL NEURAL NETWORKS BY MODAL FUSION 3D CONVOLUTIONAL NEURAL NETWORKS BY MODAL FUSION Yusuke Yoshiyasu, Eiichi Yoshida AIST Soeren Pirk, Leonidas Guibas Stanford University ABSTRACT We propose multi-view and volumetric convolutional neural

More information

Convolutional-Recursive Deep Learning for 3D Object Classification

Convolutional-Recursive Deep Learning for 3D Object Classification Convolutional-Recursive Deep Learning for 3D Object Classification Richard Socher, Brody Huval, Bharath Bhat, Christopher D. Manning, Andrew Y. Ng NIPS 2012 Iro Armeni, Manik Dhar Motivation Hand-designed

More information

Convolutional Layer Pooling Layer Fully Connected Layer Regularization

Convolutional Layer Pooling Layer Fully Connected Layer Regularization Semi-Parallel Deep Neural Networks (SPDNN), Convergence and Generalization Shabab Bazrafkan, Peter Corcoran Center for Cognitive, Connected & Computational Imaging, College of Engineering & Informatics,

More information

CAP 6412 Advanced Computer Vision

CAP 6412 Advanced Computer Vision CAP 6412 Advanced Computer Vision http://www.cs.ucf.edu/~bgong/cap6412.html Boqing Gong April 21st, 2016 Today Administrivia Free parameters in an approach, model, or algorithm? Egocentric videos by Aisha

More information

arxiv: v4 [cs.cv] 27 Nov 2016

arxiv: v4 [cs.cv] 27 Nov 2016 FusionNet: 3D Object Classification Using Multiple Data Representations Vishakh Hegde Stanford and Matroid vishakh@matroid.com Reza Zadeh Stanford and Matroid reza@matroid.com arxiv:1607.05695v4 [cs.cv]

More information

Training Convolutional Neural Networks for Translational Invariance on SAR ATR

Training Convolutional Neural Networks for Translational Invariance on SAR ATR Downloaded from orbit.dtu.dk on: Mar 28, 2019 Training Convolutional Neural Networks for Translational Invariance on SAR ATR Malmgren-Hansen, David; Engholm, Rasmus ; Østergaard Pedersen, Morten Published

More information

3D Convolutional Neural Networks for Landing Zone Detection from LiDAR

3D Convolutional Neural Networks for Landing Zone Detection from LiDAR 3D Convolutional Neural Networks for Landing Zone Detection from LiDAR Daniel Mataruna and Sebastian Scherer Presented by: Sabin Kafle Outline Introduction Preliminaries Approach Volumetric Density Mapping

More information

Object Localization, Segmentation, Classification, and Pose Estimation in 3D Images using Deep Learning

Object Localization, Segmentation, Classification, and Pose Estimation in 3D Images using Deep Learning Allan Zelener Dissertation Proposal December 12 th 2016 Object Localization, Segmentation, Classification, and Pose Estimation in 3D Images using Deep Learning Overview 1. Introduction to 3D Object Identification

More information

Lecture 5: Object Detection

Lecture 5: Object Detection Object Detection CSED703R: Deep Learning for Visual Recognition (2017F) Lecture 5: Object Detection Bohyung Han Computer Vision Lab. bhhan@postech.ac.kr 2 Traditional Object Detection Algorithms Region-based

More information

Introduction to Deep Learning for Facial Understanding Part III: Regional CNNs

Introduction to Deep Learning for Facial Understanding Part III: Regional CNNs Introduction to Deep Learning for Facial Understanding Part III: Regional CNNs Raymond Ptucha, Rochester Institute of Technology, USA Tutorial-9 May 19, 218 www.nvidia.com/dli R. Ptucha 18 1 Fair Use Agreement

More information

arxiv: v1 [cs.cv] 28 Nov 2018

arxiv: v1 [cs.cv] 28 Nov 2018 MeshNet: Mesh Neural Network for 3D Shape Representation Yutong Feng, 1 Yifan Feng, 2 Haoxuan You, 1 Xibin Zhao 1, Yue Gao 1 1 BNRist, KLISS, School of Software, Tsinghua University, China. 2 School of

More information

CEA LIST s participation to the Scalable Concept Image Annotation task of ImageCLEF 2015

CEA LIST s participation to the Scalable Concept Image Annotation task of ImageCLEF 2015 CEA LIST s participation to the Scalable Concept Image Annotation task of ImageCLEF 2015 Etienne Gadeski, Hervé Le Borgne, and Adrian Popescu CEA, LIST, Laboratory of Vision and Content Engineering, France

More information

Learning 3D Shapes as Multi-Layered Height-maps using 2D Convolutional Networks

Learning 3D Shapes as Multi-Layered Height-maps using 2D Convolutional Networks Learning 3D Shapes as Multi-Layered Height-maps using 2D Convolutional Networks Kripasindhu Sarkar 1,2, Basavaraj Hampiholi 2, Kiran Varanasi 1, and Didier Stricker 1,2 1 DFKI Kaiserslautern 2 Technische

More information

Deep Learning for Computer Vision II

Deep Learning for Computer Vision II IIIT Hyderabad Deep Learning for Computer Vision II C. V. Jawahar Paradigm Shift Feature Extraction (SIFT, HoG, ) Part Models / Encoding Classifier Sparrow Feature Learning Classifier Sparrow L 1 L 2 L

More information

Perceptron: This is convolution!

Perceptron: This is convolution! Perceptron: This is convolution! v v v Shared weights v Filter = local perceptron. Also called kernel. By pooling responses at different locations, we gain robustness to the exact spatial location of image

More information

ECE 5470 Classification, Machine Learning, and Neural Network Review

ECE 5470 Classification, Machine Learning, and Neural Network Review ECE 5470 Classification, Machine Learning, and Neural Network Review Due December 1. Solution set Instructions: These questions are to be answered on this document which should be submitted to blackboard

More information

Machine Learning for Shape Analysis and Processing. Evangelos Kalogerakis

Machine Learning for Shape Analysis and Processing. Evangelos Kalogerakis Machine Learning for Shape Analysis and Processing Evangelos Kalogerakis 3D shapes for computer aided design Architecture Interior design 3D shapes for information visualization Geo visualization Scientific

More information

OBJECT DETECTION HYUNG IL KOO

OBJECT DETECTION HYUNG IL KOO OBJECT DETECTION HYUNG IL KOO INTRODUCTION Computer Vision Tasks Classification + Localization Classification: C-classes Input: image Output: class label Evaluation metric: accuracy Localization Input:

More information

An Empirical Study of Generative Adversarial Networks for Computer Vision Tasks

An Empirical Study of Generative Adversarial Networks for Computer Vision Tasks An Empirical Study of Generative Adversarial Networks for Computer Vision Tasks Report for Undergraduate Project - CS396A Vinayak Tantia (Roll No: 14805) Guide: Prof Gaurav Sharma CSE, IIT Kanpur, India

More information

Paired 3D Model Generation with Conditional Generative Adversarial Networks

Paired 3D Model Generation with Conditional Generative Adversarial Networks Accepted to 3D Reconstruction in the Wild Workshop European Conference on Computer Vision (ECCV) 2018 Paired 3D Model Generation with Conditional Generative Adversarial Networks Cihan Öngün Alptekin Temizel

More information

Recurrent Convolutional Neural Networks for Scene Labeling

Recurrent Convolutional Neural Networks for Scene Labeling Recurrent Convolutional Neural Networks for Scene Labeling Pedro O. Pinheiro, Ronan Collobert Reviewed by Yizhe Zhang August 14, 2015 Scene labeling task Scene labeling: assign a class label to each pixel

More information

3D Deep Learning

3D Deep Learning 3D Deep Learning Tutorial@CVPR2017 Hao Su (UCSD) Leonidas Guibas (Stanford) Michael Bronstein (Università della Svizzera Italiana) Evangelos Kalogerakis (UMass) Jimei Yang (Adobe Research) Charles Qi (Stanford)

More information

Encoder-Decoder Networks for Semantic Segmentation. Sachin Mehta

Encoder-Decoder Networks for Semantic Segmentation. Sachin Mehta Encoder-Decoder Networks for Semantic Segmentation Sachin Mehta Outline > Overview of Semantic Segmentation > Encoder-Decoder Networks > Results What is Semantic Segmentation? Input: RGB Image Output:

More information

SUN RGB-D: A RGB-D Scene Understanding Benchmark Suite Supplimentary Material

SUN RGB-D: A RGB-D Scene Understanding Benchmark Suite Supplimentary Material SUN RGB-D: A RGB-D Scene Understanding Benchmark Suite Supplimentary Material Shuran Song Samuel P. Lichtenberg Jianxiong Xiao Princeton University http://rgbd.cs.princeton.edu. Segmetation Result wall

More information

Training Deep Neural Networks (in parallel)

Training Deep Neural Networks (in parallel) Lecture 9: Training Deep Neural Networks (in parallel) Visual Computing Systems How would you describe this professor? Easy? Mean? Boring? Nerdy? Professor classification task Classifies professors as

More information

Supplementary Material for Learning 3D Shape Completion from Laser Scan Data with Weak Supervision

Supplementary Material for Learning 3D Shape Completion from Laser Scan Data with Weak Supervision Supplementary Material for Learning 3D Shape Completion from Laser Scan Data with Weak Supervision David Stutz 1,2 Andreas Geiger 1,3 1 Autonomous Vision Group, MPI for Intelligent Systems and University

More information

Channel Locality Block: A Variant of Squeeze-and-Excitation

Channel Locality Block: A Variant of Squeeze-and-Excitation Channel Locality Block: A Variant of Squeeze-and-Excitation 1 st Huayu Li Northern Arizona University Flagstaff, United State Northern Arizona University hl459@nau.edu arxiv:1901.01493v1 [cs.lg] 6 Jan

More information

Real-time convolutional networks for sonar image classification in low-power embedded systems

Real-time convolutional networks for sonar image classification in low-power embedded systems Real-time convolutional networks for sonar image classification in low-power embedded systems Matias Valdenegro-Toro Ocean Systems Laboratory - School of Engineering & Physical Sciences Heriot-Watt University,

More information

arxiv: v3 [cs.cv] 30 Oct 2017

arxiv: v3 [cs.cv] 30 Oct 2017 Improved Adversarial Systems for 3D Object Generation and Reconstruction Edward J. Smith Department of Computer Science McGill University Canada edward.smith@mail.mcgill.ca David Meger Department of Computer

More information

3D ShapeNets: A Deep Representation for Volumetric Shape Modeling

3D ShapeNets: A Deep Representation for Volumetric Shape Modeling 3D ShapeNets: A Deep Representation for Volumetric Shape Modeling Zhirong Wu Shuran Song Aditya Khosla Fisher Yu Linguang Zhang Xiaoou Tang Jianxiong Xiao Princeton University Chinese University of Hong

More information

Clipping. CSC 7443: Scientific Information Visualization

Clipping. CSC 7443: Scientific Information Visualization Clipping Clipping to See Inside Obscuring critical information contained in a volume data Contour displays show only exterior visible surfaces Isosurfaces can hide other isosurfaces Other displays can

More information

Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs Supplementary Material

Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs Supplementary Material Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs Supplementary Material Peak memory usage, GB 10 1 0.1 0.01 OGN Quadratic Dense Cubic Iteration time, s 10

More information

Deep Learning Benchmarks Mumtaz Vauhkonen, Quaizar Vohra, Saurabh Madaan Collaboration with Adam Coates, Stanford Unviersity

Deep Learning Benchmarks Mumtaz Vauhkonen, Quaizar Vohra, Saurabh Madaan Collaboration with Adam Coates, Stanford Unviersity Deep Learning Benchmarks Mumtaz Vauhkonen, Quaizar Vohra, Saurabh Madaan Collaboration with Adam Coates, Stanford Unviersity Abstract: This project aims at creating a benchmark for Deep Learning (DL) algorithms

More information

Generative Modeling with Convolutional Neural Networks. Denis Dus Data Scientist at InData Labs

Generative Modeling with Convolutional Neural Networks. Denis Dus Data Scientist at InData Labs Generative Modeling with Convolutional Neural Networks Denis Dus Data Scientist at InData Labs What we will discuss 1. 2. 3. 4. Discriminative vs Generative modeling Convolutional Neural Networks How to

More information

Parallel Deep Network Training

Parallel Deep Network Training Lecture 26: Parallel Deep Network Training Parallel Computer Architecture and Programming CMU 15-418/15-618, Spring 2016 Tunes Speech Debelle Finish This Album (Speech Therapy) Eat your veggies and study

More information

MRI Segmentation. MRI Bootcamp, 14 th of January J. Miguel Valverde

MRI Segmentation. MRI Bootcamp, 14 th of January J. Miguel Valverde MRI Segmentation MRI Bootcamp, 14 th of January 2019 Segmentation Segmentation Information Segmentation Algorithms Approach Types of Information Local 4 45 100 110 80 50 76 42 27 186 177 120 167 111 56

More information

CSG obj. oper3. obj1 obj2 obj3. obj5. obj4

CSG obj. oper3. obj1 obj2 obj3. obj5. obj4 Solid Modeling Solid: Boundary + Interior Volume occupied by geometry Solid representation schemes Constructive Solid Geometry (CSG) Boundary representations (B-reps) Space-partition representations Operations

More information

arxiv: v1 [cs.cv] 26 Jul 2018

arxiv: v1 [cs.cv] 26 Jul 2018 A Better Baseline for AVA Rohit Girdhar João Carreira Carl Doersch Andrew Zisserman DeepMind Carnegie Mellon University University of Oxford arxiv:1807.10066v1 [cs.cv] 26 Jul 2018 Abstract We introduce

More information

Two-Stream Convolutional Networks for Action Recognition in Videos

Two-Stream Convolutional Networks for Action Recognition in Videos Two-Stream Convolutional Networks for Action Recognition in Videos Karen Simonyan Andrew Zisserman Cemil Zalluhoğlu Introduction Aim Extend deep Convolution Networks to action recognition in video. Motivation

More information

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Si Chen The George Washington University sichen@gwmail.gwu.edu Meera Hahn Emory University mhahn7@emory.edu Mentor: Afshin

More information

Deep Learning For Video Classification. Presented by Natalie Carlebach & Gil Sharon

Deep Learning For Video Classification. Presented by Natalie Carlebach & Gil Sharon Deep Learning For Video Classification Presented by Natalie Carlebach & Gil Sharon Overview Of Presentation Motivation Challenges of video classification Common datasets 4 different methods presented in

More information

Elastic Neural Networks for Classification

Elastic Neural Networks for Classification Elastic Neural Networks for Classification Yi Zhou 1, Yue Bai 1, Shuvra S. Bhattacharyya 1, 2 and Heikki Huttunen 1 1 Tampere University of Technology, Finland, 2 University of Maryland, USA arxiv:1810.00589v3

More information

Large-Scale Point Cloud Classification Benchmark

Large-Scale Point Cloud Classification Benchmark Large-Scale Point Cloud Classification Benchmark www.semantic3d.net IGP & CVG, ETH Zürich www.semantic3d.net, info@semantic3d.net 7/6/2016 1 Timo Hackel Nikolay Savinov Ľubor Ladický Jan Dirk Wegner Konrad

More information

arxiv: v1 [cs.cv] 20 Dec 2016

arxiv: v1 [cs.cv] 20 Dec 2016 End-to-End Pedestrian Collision Warning System based on a Convolutional Neural Network with Semantic Segmentation arxiv:1612.06558v1 [cs.cv] 20 Dec 2016 Heechul Jung heechul@dgist.ac.kr Min-Kook Choi mkchoi@dgist.ac.kr

More information

Parallel Deep Network Training

Parallel Deep Network Training Lecture 19: Parallel Deep Network Training Parallel Computer Architecture and Programming How would you describe this professor? Easy? Mean? Boring? Nerdy? Professor classification task Classifies professors

More information