Sub-Graph Detection Theory

Size: px
Start display at page:

Download "Sub-Graph Detection Theory"

Transcription

1 Sub-Graph Detection Theory Jeremy Kepner, Nadya Bliss, and Eric Robinson This work is sponsored by the Department of Defense under Air Force Contract FA C Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the United States Government. Slide-1

2 Outline Introduction Backgrounds and foregrounds Goals Detection Theory Sparse Matrix Duality Tree Finding Summary Slide-2

3 Goals Detection Theory Apply basic postulates of detection theory (signal, background, ) Quantitatively estimate difficulty of problem (SNR) Develop better detection algorithms Linear Algebraic Graph algorithms Additional tools for algorithm development Compact representation Parallel implementation well understood Slide-3

4 Detection Theory DETECTION OF SIGNAL IN NOISE THRESHOLD DETECTION OF SUBGRAPHS IN GRAPHS Example subgraph of interest: Fully connected (complete) SIGNAL NOISE SIGNAL H 0 H 1 NOISE N-D SPACE ASSUMPTIONS Background (noise) statistics Foreground (signal) statistics Foreground/background separation Model reality Example background model: Powerlaw graph Goal: Develop basic detection theory for finding subgraphs of interest in large background graphs Slide-4

5 Graphs as Matrices A T x A T x Graphs can be represented as a sparse matrices Multiply by adjacency matrix step to neighbor vertices Work-efficient implementation from sparse data structures Most algorithms reduce to products on semi-rings: C = A +. x B x : associative, distributes over + Slide-5 + : associative, commutative Examples: +.* min.+ or.and

6 Algorithm Comparison Algorithm (Problem) Canonical Complexity Array-Based Complexity Critical Path (for array) Bellman-Ford (SSSP) Θ(mn) Θ(mn) Θ(n) Generalized B-F (APSP) NA Θ(n 3 log n) Θ(log n) Floyd-Warshall (APSP) Θ(n 3 ) Θ(n 3 ) Θ(n) Prim (MST) Θ(m+n log n) Θ(n 2 ) Θ(n) Borůvka (MST) Θ(m log n) Θ(m log n) Θ(log 2 n) Edmonds-Karp (Max Flow) Θ(m 2 n) Θ(m 2 n) Θ(mn) Push-Relabel (Max Flow) Θ(mn 2 ) O(mn 2 )? (or Θ(n 3 )) Greedy MIS (MIS) Θ(m+n log n) Θ(mn+n 2 ) Θ(n) Luby (MIS) Θ(m+n log n) Θ(m log n) Θ(log n) Majority of selected algorithms can be represented with array-based constructs with equivalent complexity. Slide-6 (n = V and m = E.)

7 Adjacency Matrix Types: Distributed Array Mapping RANDOM TOROIDAL POWER LAW (PL) PL SCRAMBLED Distributions: 1D BLOCK 2D BLOCK 2D CYCLIC ANTI-DIAGONAL EVOLVED Slide-7 Sparse Matrix duality provides a natural way of exploiting distributed data distributions

8 Reference Book: Graph Algorithms in the Language of Linear Algebra Editors: Kepner (MIT-LL) and Gilbert (UCSB) Contributors Bader (Ga Tech) Chakrabart (CMU) Dunlavy (Sandia) Faloutsos (CMU) Fineman (MIT-LL & MIT) Gilbert (UCSB) Kahn (MIT-LL & Brown) Kegelmeyer (Sandia) Kepner (MIT-LL) Kleinberg (Cornell) Kolda (Sandia) Leskovec (CMU) Madduri (Ga Tech) Robinson (MIT-LL & NEU), Shah (UCSB) Graph Algorithms in the Language of Linear Algebra Jeremy Kepner and John Gilbert (editors) Slide-8

9 Outline Introduction Background and foregrounds Tree Finding Random Power Law Clique Source/Sink Tree Summary Slide-9

10 Background: Random (Erdos-Renyi) Graph N Adjacency Matrix N A M = s N 2 Slide-10 A : B N N A(i,j) = (r < s) r [0,1] Algebraic Form number of nodes s N node degree Degree Distribution

11 Background: Power Law (Kronecker) Graph N Adjacency Matrix = N A M ~ 8 N G : R n n A G k = G k-1 G Slide-11 M Algebraic Form number of nodes node degree Degree Distribution

12 Graph Foreground: Dense Subgraph n Adjacency Matrix n A m = s n 2 Slide-12 A : B n n A(i,j) = (r < s) r [0,1] Algebraic Form number of nodes s n node degree Degree Distribution

13 Foreground: Source Sink Graph k kn+2 Adjacency Matrix n kn+2 A m = (k+1)n A= = 1 Algebraic Form Slide-13 k k k k n n nn 1 k k n 11 n number of nodes kn 2 2 n node degree Degree Distribution

14 Foreground: Trees Graph k n k Adjacency Matrix n n k A m = n k A= n 1 n n k -1 1 ( 1 1) 1 n number of nodes (n-1)n k n n k-1-1 n+1 node degree Algebraic Form Slide-14 Degree Distribution

15 Background/Foreground Combinations Dense Subgraph Foregrounds Source/Sink Tree Backgrounds Random Power Law X Many interesting background/foreground combinations Rest of talk will focus on power law/tree Slide-15

16 Outline Introduction Background and foregrounds Tree Finding Summary Embedding Cued vs Uncued Set-Vector Representation Algorithm Results Slide-16

17 Tree Embedding A(T,T) = A T T A T T A Tree Foreground N T vertices, M T edges Power Law Background N vertices, M edges Assignment of A T T to a random set of vertices T in A embeds Tree in background Detection problem: find T given A Assume N >> N T and M >> M T Slide-17

18 Cued vs. Uncued Detection Uncued detection No information about T is provided Signal-to-noise ratio ~ N T /N Extremely difficult Cued detection T is divided into two sets V (given) and U* (unknown) More tractable V U* A VxV A U*xV A VxU* A U*xU* Slide-18

19 Set-Vector Dual Representation V U* Set Representation A VxV A U*xV A VxU* A U*xU* Vector Representation A vxv A vxu* A u*xv A u*xu* v = ( ) u*= ( ) Set of vertices V can also be represented as an N element vector where v(v) = 1, allows multiple adjacency matrix representations A V V = A(V,V) or A v v = I v A I v Set representation better for visualization V contains only elements of interest Vector better for algorithm development and implementation v allows linear algebraic transformations and preserves graph context Slide-19

20 Tree Finding Algorithm Summary Step 0: Find all vertices that are 1st neighbors of v A u0 v = A I v - A v v d u0 v = A u 0 v + A v u 0 u 0 = d u0 v > 0 Step 1a: Eliminate vertices that create too many connections to v Step 1b: Eliminate vertices that connect to v that are filled Step 2: Find all vertices that are 1st neighbors of v that satisfy 1a & 1b Step 3: Select highest probability vertices based on (edges available) / (number candidates) Step 4: Select vertices with multiple connections into v Slide-20

21 Signal-to-Noise Estimate Background power law: N = 2 20 Foreground binary tree N T = 2 7, f = 0.5 (fraction known) Baseline SNR ~ 2-14 ~ st and 2nd neighbors SNR ~ 5/2 12 ~ st neighbors SNR ~ 7/2 8 ~ 0.03 Step 0 Multiply attached neighbors SNR ~ 2 4 ~ 16 Step 4 Slide-21

22 Probability of Detection (PD) vs Probability of False Alarm (PFA) 1st & 2nd neighbors probability of detection 1st neighbors PD vs PFA consistent with SNR estimates Can find most of tree with high PFA Can find subset of tree with very low PFA multiply attached high probability 1st neighbors Slide-22 probability of false alarm

23 Summary Detection Theory Apply basic postulates of detection theory (signal, background, ) Quantitatively estimate difficulty of problem (SNR) Develop better detection algorithms Linear Algebraic Graph algorithms Additional tools for algorithm development Compact representation Parallel implementation well understood Slide-23

24 Parallel Matlab Book Universal Parallel Matlab programming Amap = map([np 1],{},0:Np-1); Bmap = map([1 Np],{},0:Np-1); A = rand(m,n,amap); B = zeros(m,n,bmap); B(:,:) = fft(a); pmatlab runs in all parallel Matlab environments Only a few functions are needed Np Pid map local put_local global_index agg SendMsg/RecvMsg Jeremy Kepner Parallel MATLAB for Multicore and Multinode Computers Distributed arrays have been recognized as the easiest way to program a parallel computers since the 1970s Only a small number of distributed array functions are necessary to write nearly all parallel programs Slide-24

Analysis and Mapping of Sparse Matrix Computations

Analysis and Mapping of Sparse Matrix Computations Analysis and Mapping of Sparse Matrix Computations Nadya Bliss & Sanjeev Mohindra Varun Aggarwal & Una-May O Reilly MIT Computer Science and AI Laboratory September 19th, 2007 HPEC2007-1 This work is sponsored

More information

Dynamic Distributed Dimensional Data Model (D4M) Database and Computation System

Dynamic Distributed Dimensional Data Model (D4M) Database and Computation System Dynamic Distributed Dimensional Data Model (D4M) Database and Computation System Jeremy Kepner, William Arcand, William Bergeron, Nadya Bliss, Robert Bond, Chansup Byun, Gary Condon, Kenneth Gregson, Matthew

More information

Signal Processing on Databases

Signal Processing on Databases Signal Processing on Databases Jeremy Kepner Lecture 0: Introduction 3 October 2012 This work is sponsored by the Department of the Air Force under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations,

More information

Array Based Betweenness Centrality

Array Based Betweenness Centrality Array Based Betweenness Centrality Eric Robinson Northeastern University MIT Lincoln Labs Jeremy Kepner MIT Lincoln Labs Vertex Betweenness Centrality Which Vertices are Important? Vertex Betweenness Centrality

More information

Perfect Power Law Graphs: Generation, Sampling, Construction, and Fitting

Perfect Power Law Graphs: Generation, Sampling, Construction, and Fitting Perfect Power Law Graphs: Generation, Sampling, Construction, and Fitting Jeremy Kepner SIAM Annual Meeting, Minneapolis, July 9, 2012 This work is sponsored by the Department of the Air Force under Air

More information

Signal Processing on Databases

Signal Processing on Databases Signal Processing on Databases Jeremy Kepner Lecture 1: Using Associative Arrays This work is sponsored by the Department of the Air Force under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations,

More information

( ). Which of ( ) ( ) " #& ( ) " # g( n) ( ) " # f ( n) Test 1

( ). Which of ( ) ( )  #& ( )  # g( n) ( )  # f ( n) Test 1 CSE 0 Name Test Summer 006 Last Digits of Student ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. The time to multiply two n x n matrices is: A. "( n) B. "( nlogn) # C.

More information

Cluster-based 3D Reconstruction of Aerial Video

Cluster-based 3D Reconstruction of Aerial Video Cluster-based 3D Reconstruction of Aerial Video Scott Sawyer (scott.sawyer@ll.mit.edu) MIT Lincoln Laboratory HPEC 12 12 September 2012 This work is sponsored by the Assistant Secretary of Defense for

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory Tandy Warnow January 20, 2017 Graphs Tandy Warnow Graphs A graph G = (V, E) is an object that contains a vertex set V and an edge set E. We also write V (G) to denote the vertex

More information

Graphs, graph algorithms (for image segmentation),... in progress

Graphs, graph algorithms (for image segmentation),... in progress Graphs, graph algorithms (for image segmentation),... in progress Václav Hlaváč Czech Technical University in Prague Czech Institute of Informatics, Robotics and Cybernetics 66 36 Prague 6, Jugoslávských

More information

Index. stack-based, 400 A* algorithm, 325

Index. stack-based, 400 A* algorithm, 325 Index Abstract transitive closure, 174-175, 217-221 Active vertex, 411 Acyclic graph. See Digraph; Directed acyclic graph (DAG) Acyclic network, 313-321, 334-335 maxflow, 427-429 Adjacency-lists representation,

More information

Introduction to Parallel & Distributed Computing Parallel Graph Algorithms

Introduction to Parallel & Distributed Computing Parallel Graph Algorithms Introduction to Parallel & Distributed Computing Parallel Graph Algorithms Lecture 16, Spring 2014 Instructor: 罗国杰 gluo@pku.edu.cn In This Lecture Parallel formulations of some important and fundamental

More information

Test 1 Last 4 Digits of Mav ID # Multiple Choice. Write your answer to the LEFT of each problem. 2 points each t 1

Test 1 Last 4 Digits of Mav ID # Multiple Choice. Write your answer to the LEFT of each problem. 2 points each t 1 CSE 0 Name Test Fall 00 Last Digits of Mav ID # Multiple Choice. Write your answer to the LEFT of each problem. points each t. What is the value of k? k=0 A. k B. t C. t+ D. t+ +. Suppose that you have

More information

n 2 ( ) ( ) + n is in Θ n logn

n 2 ( ) ( ) + n is in Θ n logn CSE Test Spring Name Last Digits of Mav ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. The time to multiply an m n matrix and a n p matrix is in: A. Θ( n) B. Θ( max(

More information

Algorithm Engineering

Algorithm Engineering Algorithm Engineering Paolo D Alberto Electrical and Computer Engineering Carnegie Mellon University Personal Research Background Embedded and High Performance Computing Compiler: Static and Dynamic Theory

More information

Week 11: Minimum Spanning trees

Week 11: Minimum Spanning trees Week 11: Minimum Spanning trees Agenda: Minimum Spanning Trees Prim s Algorithm Reading: Textbook : 61-7 1 Week 11: Minimum Spanning trees Minimum spanning tree (MST) problem: Input: edge-weighted (simple,

More information

Covert and Anomalous Network Discovery and Detection (CANDiD)

Covert and Anomalous Network Discovery and Detection (CANDiD) Covert and Anomalous Network Discovery and Detection (CANDiD) Rajmonda S. Caceres, Edo Airoldi, Garrett Bernstein, Edward Kao, Benjamin A. Miller, Raj Rao Nadakuditi, Matthew C. Schmidt, Kenneth Senne,

More information

1. To reduce the probability of having any collisions to < 0.5 when hashing n keys, the table should have at least this number of elements.

1. To reduce the probability of having any collisions to < 0.5 when hashing n keys, the table should have at least this number of elements. CSE 5311 Test 1 - Closed Book Spring 004 Name Student ID # Multiple Choice. Write your answer to the LEFT of each problem. 4 points each 1. To reduce the probability of having any collisions to < 0.5 when

More information

Scott Philips, Edward Kao, Michael Yee and Christian Anderson. Graph Exploitation Symposium August 9 th 2011

Scott Philips, Edward Kao, Michael Yee and Christian Anderson. Graph Exploitation Symposium August 9 th 2011 Activity-Based Community Detection Scott Philips, Edward Kao, Michael Yee and Christian Anderson Graph Exploitation Symposium August 9 th 2011 23-1 This work is sponsored by the Office of Naval Research

More information

Sparse Matrices and Graphs: There and Back Again

Sparse Matrices and Graphs: There and Back Again Sparse Matrices and Graphs: There and Back Again John R. Gilbert University of California, Santa Barbara Simons Institute Workshop on Parallel and Distributed Algorithms for Inference and Optimization

More information

Parallel Combinatorial BLAS and Applications in Graph Computations

Parallel Combinatorial BLAS and Applications in Graph Computations Parallel Combinatorial BLAS and Applications in Graph Computations Aydın Buluç John R. Gilbert University of California, Santa Barbara SIAM ANNUAL MEETING 2009 July 8, 2009 1 Primitives for Graph Computations

More information

LLMORE: Mapping and Optimization Framework

LLMORE: Mapping and Optimization Framework LORE: Mapping and Optimization Framework Michael Wolf, MIT Lincoln Laboratory 11 September 2012 This work is sponsored by Defense Advanced Research Projects Agency (DARPA) under Air Force contract FA8721-05-C-0002.

More information

Reference Sheet for CO142.2 Discrete Mathematics II

Reference Sheet for CO142.2 Discrete Mathematics II Reference Sheet for CO14. Discrete Mathematics II Spring 017 1 Graphs Defintions 1. Graph: set of N nodes and A arcs such that each a A is associated with an unordered pair of nodes.. Simple graph: no

More information

CSE 417 Network Flows (pt 4) Min Cost Flows

CSE 417 Network Flows (pt 4) Min Cost Flows CSE 417 Network Flows (pt 4) Min Cost Flows Reminders > HW6 is due Monday Review of last three lectures > Defined the maximum flow problem find the feasible flow of maximum value flow is feasible if it

More information

The HPEC Challenge Benchmark Suite

The HPEC Challenge Benchmark Suite The HPEC Challenge Benchmark Suite Ryan Haney, Theresa Meuse, Jeremy Kepner and James Lebak Massachusetts Institute of Technology Lincoln Laboratory HPEC 2005 This work is sponsored by the Defense Advanced

More information

Review of course COMP-251B winter 2010

Review of course COMP-251B winter 2010 Review of course COMP-251B winter 2010 Lecture 1. Book Section 15.2 : Chained matrix product Matrix product is associative Computing all possible ways of parenthesizing Recursive solution Worst-case running-time

More information

ECE 242. Data Structures

ECE 242. Data Structures ECE 242 Data Structures Lecture 28 Introduction to Graphs Overview Problem: How do we represent irregular connections between locations? Graphs Definition Directed and Undirected graph Simple path and

More information

HPCS Scalable Synthetic Compact Applications #2 Graph Analysis

HPCS Scalable Synthetic Compact Applications #2 Graph Analysis HPCS Scalable Synthetic Compact Applications #2 Graph Analysis Contributors: David A. Bader (Georgia Tech), John Feo (Cray), John Gilbert (UC Santa Barbara), Jeremy Kepner (MIT/LL), David Koester (Mitre),

More information

Lecture 4: Graph Algorithms

Lecture 4: Graph Algorithms Lecture 4: Graph Algorithms Definitions Undirected graph: G =(V, E) V finite set of vertices, E finite set of edges any edge e = (u,v) is an unordered pair Directed graph: edges are ordered pairs If e

More information

from notes written mostly by Dr. Carla Savage: All Rights Reserved

from notes written mostly by Dr. Carla Savage: All Rights Reserved CSC 505, Fall 2000: Week 9 Objectives: learn about various issues related to finding shortest paths in graphs learn algorithms for the single-source shortest-path problem observe the relationship among

More information

ECE250: Algorithms and Data Structures Final Review Course

ECE250: Algorithms and Data Structures Final Review Course ECE250: Algorithms and Data Structures Final Review Course Ladan Tahvildari, PEng, SMIEEE Professor Software Technologies Applied Research (STAR) Group Dept. of Elect. & Comp. Eng. University of Waterloo

More information

Algorithms. All-Pairs Shortest Paths. Dong Kyue Kim Hanyang University

Algorithms. All-Pairs Shortest Paths. Dong Kyue Kim Hanyang University Algorithms All-Pairs Shortest Paths Dong Kyue Kim Hanyang University dqkim@hanyang.ac.kr Contents Using single source shortest path algorithms Presents O(V 4 )-time algorithm, O(V 3 log V)-time algorithm,

More information

HPCS Scalable Synthetic Compact Applications #2 Graph Analysis

HPCS Scalable Synthetic Compact Applications #2 Graph Analysis HPCS Scalable Synthetic Compact Applications #2 Graph Analysis Contributors: David A. Bader (Georgia Tech), John Feo (Cray), John Gilbert (UC Santa Barbara), Jeremy Kepner (MIT/LL), David Koester (Mitre),

More information

Tools and Primitives for High Performance Graph Computation

Tools and Primitives for High Performance Graph Computation Tools and Primitives for High Performance Graph Computation John R. Gilbert University of California, Santa Barbara Aydin Buluç (LBNL) Adam Lugowski (UCSB) SIAM Minisymposium on Analyzing Massive Real-World

More information

Graph Algorithms. A Brief Introduction. 高晓沨 (Xiaofeng Gao) Department of Computer Science Shanghai Jiao Tong Univ.

Graph Algorithms. A Brief Introduction. 高晓沨 (Xiaofeng Gao) Department of Computer Science Shanghai Jiao Tong Univ. Graph Algorithms A Brief Introduction 高晓沨 (Xiaofeng Gao) Department of Computer Science Shanghai Jiao Tong Univ. 目录 2015/5/7 1 Graph and Its Applications 2 Introduction to Graph Algorithms 3 References

More information

Cooperative Computing for Autonomous Data Centers

Cooperative Computing for Autonomous Data Centers Cooperative Computing for Autonomous Data Centers Jared Saia (U. New Mexico) Joint with: Jon Berry, Cindy Phillips (Sandia Labs), Aaron Kearns (U. New Mexico) Outline 1) Bounding clustering coefficients

More information

Graph Exploitation Testbed

Graph Exploitation Testbed Graph Exploitation Testbed Peter Jones and Eric Robinson Graph Exploitation Symposium April 18, 2012 This work was sponsored by the Office of Naval Research under Air Force Contract FA8721-05-C-0002. Opinions,

More information

Lecture 19. Broadcast routing

Lecture 19. Broadcast routing Lecture 9 Broadcast routing Slide Broadcast Routing Route a packet from a source to all nodes in the network Possible solutions: Flooding: Each node sends packet on all outgoing links Discard packets received

More information

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Shortest Paths Date: 10/13/15

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Shortest Paths Date: 10/13/15 600.363 Introduction to Algorithms / 600.463 Algorithms I Lecturer: Michael Dinitz Topic: Shortest Paths Date: 10/13/15 14.1 Introduction Today we re going to talk about algorithms for computing shortest

More information

Dynamic Programming II

Dynamic Programming II Lecture 11 Dynamic Programming II 11.1 Overview In this lecture we continue our discussion of dynamic programming, focusing on using it for a variety of path-finding problems in graphs. Topics in this

More information

Parallel Graph Algorithms

Parallel Graph Algorithms Parallel Graph Algorithms Design and Analysis of Parallel Algorithms 5DV050/VT3 Part I Introduction Overview Graphs definitions & representations Minimal Spanning Tree (MST) Prim s algorithm Single Source

More information

1. For the sieve technique we solve the problem, recursively mathematically precisely accurately 2. We do sorting to, keep elements in random positions keep the algorithm run in linear order keep the algorithm

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Chapter 9 Graph Algorithms 2 Introduction graph theory useful in practice represent many real-life problems can be if not careful with data structures 3 Definitions an undirected graph G = (V, E) is a

More information

Dijkstra s Algorithm Last time we saw two methods to solve the all-pairs shortest path problem: Min-plus matrix powering in O(n 3 log n) time and the

Dijkstra s Algorithm Last time we saw two methods to solve the all-pairs shortest path problem: Min-plus matrix powering in O(n 3 log n) time and the Dijkstra s Algorithm Last time we saw two methods to solve the all-pairs shortest path problem: Min-plus matrix powering in O(n 3 log n) time and the Floyd-Warshall algorithm in O(n 3 ) time. Neither of

More information

Problem 1. Which of the following is true of functions =100 +log and = + log? Problem 2. Which of the following is true of functions = 2 and =3?

Problem 1. Which of the following is true of functions =100 +log and = + log? Problem 2. Which of the following is true of functions = 2 and =3? Multiple-choice Problems: Problem 1. Which of the following is true of functions =100+log and =+log? a) = b) =Ω c) =Θ d) All of the above e) None of the above Problem 2. Which of the following is true

More information

High performance graph algorithms from parallel sparse matrices

High performance graph algorithms from parallel sparse matrices High performance graph algorithms from parallel sparse matrices John R. Gilbert 1, Steve Reinhardt 2, and Viral B. Shah 1 1 University of California, Santa Barbara {gilbert,viral}@cs.ucsb.edu 2 Silicon

More information

( ) ( ) C. " 1 n. ( ) $ f n. ( ) B. " log( n! ) ( ) and that you already know ( ) ( ) " % g( n) ( ) " #&

( ) ( ) C.  1 n. ( ) $ f n. ( ) B.  log( n! ) ( ) and that you already know ( ) ( )  % g( n) ( )  #& CSE 0 Name Test Summer 008 Last 4 Digits of Mav ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. The time for the following code is in which set? for (i=0; i

More information

Analysis of Algorithms, I

Analysis of Algorithms, I Analysis of Algorithms, I CSOR W4231.002 Eleni Drinea Computer Science Department Columbia University Thursday, March 8, 2016 Outline 1 Recap Single-source shortest paths in graphs with real edge weights:

More information

Models and Algorithms for Complex Networks

Models and Algorithms for Complex Networks Models and Algorithms for Complex Networks with network with parametrization, elements maintaining typically characteristic local profiles with categorical attributes [C. Faloutsos MMDS8] Milena Mihail

More information

Solving problems on graph algorithms

Solving problems on graph algorithms Solving problems on graph algorithms Workshop Organized by: ACM Unit, Indian Statistical Institute, Kolkata. Tutorial-3 Date: 06.07.2017 Let G = (V, E) be an undirected graph. For a vertex v V, G {v} is

More information

An Advanced Graph Processor Prototype

An Advanced Graph Processor Prototype An Advanced Graph Processor Prototype Vitaliy Gleyzer GraphEx 2016 DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited. This material is based upon work supported by the Assistant

More information

University of New Mexico Department of Computer Science. Final Examination. CS 362 Data Structures and Algorithms Spring, 2006

University of New Mexico Department of Computer Science. Final Examination. CS 362 Data Structures and Algorithms Spring, 2006 University of New Mexico Department of Computer Science Final Examination CS 6 Data Structures and Algorithms Spring, 006 Name: Email: Print your name and email, neatly in the space provided above; print

More information

COMP 251 Winter 2017 Online quizzes with answers

COMP 251 Winter 2017 Online quizzes with answers COMP 251 Winter 2017 Online quizzes with answers Open Addressing (2) Which of the following assertions are true about open address tables? A. You cannot store more records than the total number of slots

More information

CSE 502 Class 23. Jeremy Buhler Steve Cole. April BFS solves unweighted shortest path problem. Every edge traversed adds one to path length

CSE 502 Class 23. Jeremy Buhler Steve Cole. April BFS solves unweighted shortest path problem. Every edge traversed adds one to path length CSE 502 Class 23 Jeremy Buhler Steve Cole April 14 2015 1 Weighted Version of Shortest Paths BFS solves unweighted shortest path problem Every edge traversed adds one to path length What if edges have

More information

Weighted Graph Algorithms Presented by Jason Yuan

Weighted Graph Algorithms Presented by Jason Yuan Weighted Graph Algorithms Presented by Jason Yuan Slides: Zachary Friggstad Programming Club Meeting Weighted Graphs struct Edge { int u, v ; int w e i g h t ; // can be a double } ; Edge ( int uu = 0,

More information

GRAPHS: THEORY AND ALGORITHMS

GRAPHS: THEORY AND ALGORITHMS GRAPHS: THEORY AND ALGORITHMS K. THULASIRAMAN M. N. S. SWAMY Concordia University Montreal, Canada A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York / Chichester / Brisbane / Toronto /

More information

GraphBLAS Mathematics - Provisional Release 1.0 -

GraphBLAS Mathematics - Provisional Release 1.0 - GraphBLAS Mathematics - Provisional Release 1.0 - Jeremy Kepner Generated on April 26, 2017 Contents 1 Introduction: Graphs as Matrices........................... 1 1.1 Adjacency Matrix: Undirected Graphs,

More information

On the Approximability of Modularity Clustering

On the Approximability of Modularity Clustering On the Approximability of Modularity Clustering Newman s Community Finding Approach for Social Nets Bhaskar DasGupta Department of Computer Science University of Illinois at Chicago Chicago, IL 60607,

More information

Distribution-Free Models of Social and Information Networks

Distribution-Free Models of Social and Information Networks Distribution-Free Models of Social and Information Networks Tim Roughgarden (Stanford CS) joint work with Jacob Fox (Stanford Math), Rishi Gupta (Stanford CS), C. Seshadhri (UC Santa Cruz), Fan Wei (Stanford

More information

Graphs and Algorithms 2016

Graphs and Algorithms 2016 Graphs and Algorithms 2016 Teachers: Nikhil Bansal and Jesper Nederlof TA: Shashwat Garg (Office Hours: Thursday: Pick??) Webpage: www.win.tue.nl/~nikhil/courses/2wo08 (for up to date information, links

More information

Sampling Large Graphs for Anticipatory Analysis

Sampling Large Graphs for Anticipatory Analysis Sampling Large Graphs for Anticipatory Analysis Lauren Edwards*, Luke Johnson, Maja Milosavljevic, Vijay Gadepally, Benjamin A. Miller IEEE High Performance Extreme Computing Conference September 16, 2015

More information

& ( D. " mnp ' ( ) n 3. n 2. ( ) C. " n

& ( D.  mnp ' ( ) n 3. n 2. ( ) C.  n CSE Name Test Summer Last Digits of Mav ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. The time to multiply two n " n matrices is: A. " n C. "% n B. " max( m,n, p). The

More information

UML CS Algorithms Qualifying Exam Fall, 2003 ALGORITHMS QUALIFYING EXAM

UML CS Algorithms Qualifying Exam Fall, 2003 ALGORITHMS QUALIFYING EXAM NAME: This exam is open: - books - notes and closed: - neighbors - calculators ALGORITHMS QUALIFYING EXAM The upper bound on exam time is 3 hours. Please put all your work on the exam paper. (Partial credit

More information

Retiming. Adapted from: Synthesis and Optimization of Digital Circuits, G. De Micheli Stanford. Outline. Structural optimization methods. Retiming.

Retiming. Adapted from: Synthesis and Optimization of Digital Circuits, G. De Micheli Stanford. Outline. Structural optimization methods. Retiming. Retiming Adapted from: Synthesis and Optimization of Digital Circuits, G. De Micheli Stanford Outline Structural optimization methods. Retiming. Modeling. Retiming for minimum delay. Retiming for minimum

More information

Lecture 6 Basic Graph Algorithms

Lecture 6 Basic Graph Algorithms CS 491 CAP Intro to Competitive Algorithmic Programming Lecture 6 Basic Graph Algorithms Uttam Thakore University of Illinois at Urbana-Champaign September 30, 2015 Updates ICPC Regionals teams will be

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Introduction graph theory useful in practice represent many real-life problems can be if not careful with data structures Chapter 9 Graph s 2 Definitions Definitions an undirected graph is a finite set

More information

CAP5415-Computer Vision Lecture 13-Image/Video Segmentation Part II. Dr. Ulas Bagci

CAP5415-Computer Vision Lecture 13-Image/Video Segmentation Part II. Dr. Ulas Bagci CAP-Computer Vision Lecture -Image/Video Segmentation Part II Dr. Ulas Bagci bagci@ucf.edu Labeling & Segmentation Labeling is a common way for modeling various computer vision problems (e.g. optical flow,

More information

DataSToRM: Data Science and Technology Research Environment

DataSToRM: Data Science and Technology Research Environment The Future of Advanced (Secure) Computing DataSToRM: Data Science and Technology Research Environment This material is based upon work supported by the Assistant Secretary of Defense for Research and Engineering

More information

11/22/2016. Chapter 9 Graph Algorithms. Introduction. Definitions. Definitions. Definitions. Definitions

11/22/2016. Chapter 9 Graph Algorithms. Introduction. Definitions. Definitions. Definitions. Definitions Introduction Chapter 9 Graph Algorithms graph theory useful in practice represent many real-life problems can be slow if not careful with data structures 2 Definitions an undirected graph G = (V, E) is

More information

Test points UTA Student ID #

Test points UTA Student ID # CSE Name Test points UTA Student ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. Which of the following statements is true about HEAPSOT? A. It is stable.. It has a worse-case

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Chapter 9 Graph Algorithms 2 Introduction graph theory useful in practice represent many real-life problems can be slow if not careful with data structures 3 Definitions an undirected graph G = (V, E)

More information

Algorithms: Graphs. Amotz Bar-Noy. Spring 2012 CUNY. Amotz Bar-Noy (CUNY) Graphs Spring / 95

Algorithms: Graphs. Amotz Bar-Noy. Spring 2012 CUNY. Amotz Bar-Noy (CUNY) Graphs Spring / 95 Algorithms: Graphs Amotz Bar-Noy CUNY Spring 2012 Amotz Bar-Noy (CUNY) Graphs Spring 2012 1 / 95 Graphs Definition: A graph is a collection of edges and vertices. Each edge connects two vertices. Amotz

More information

Agenda. Graph Representation DFS BFS Dijkstra A* Search Bellman-Ford Floyd-Warshall Iterative? Non-iterative? MST Flow Edmond-Karp

Agenda. Graph Representation DFS BFS Dijkstra A* Search Bellman-Ford Floyd-Warshall Iterative? Non-iterative? MST Flow Edmond-Karp Graph Charles Lin genda Graph Representation FS BFS ijkstra * Search Bellman-Ford Floyd-Warshall Iterative? Non-iterative? MST Flow Edmond-Karp Graph Representation djacency Matrix bool way[100][100];

More information

( ) D. Θ ( ) ( ) Ο f ( n) ( ) Ω. C. T n C. Θ. B. n logn Ο

( ) D. Θ ( ) ( ) Ο f ( n) ( ) Ω. C. T n C. Θ. B. n logn Ο CSE 0 Name Test Fall 0 Multiple Choice. Write your answer to the LEFT of each problem. points each. The expected time for insertion sort for n keys is in which set? (All n! input permutations are equally

More information

Dynamic-Programming algorithms for shortest path problems: Bellman-Ford (for singlesource) and Floyd-Warshall (for all-pairs).

Dynamic-Programming algorithms for shortest path problems: Bellman-Ford (for singlesource) and Floyd-Warshall (for all-pairs). Lecture 13 Graph Algorithms I 13.1 Overview This is the first of several lectures on graph algorithms. We will see how simple algorithms like depth-first-search can be used in clever ways (for a problem

More information

Local Algorithms for Sparse Spanning Graphs

Local Algorithms for Sparse Spanning Graphs Local Algorithms for Sparse Spanning Graphs Reut Levi Dana Ron Ronitt Rubinfeld Intro slides based on a talk given by Reut Levi Minimum Spanning Graph (Spanning Tree) Local Access to a Minimum Spanning

More information

Last week: Breadth-First Search

Last week: Breadth-First Search 1 Last week: Breadth-First Search Set L i = [] for i=1,,n L 0 = {w}, where w is the start node For i = 0,, n-1: For u in L i : For each v which is a neighbor of u: If v isn t yet visited: - mark v as visited,

More information

( ) + n. ( ) = n "1) + n. ( ) = T n 2. ( ) = 2T n 2. ( ) = T( n 2 ) +1

( ) + n. ( ) = n 1) + n. ( ) = T n 2. ( ) = 2T n 2. ( ) = T( n 2 ) +1 CSE 0 Name Test Summer 00 Last Digits of Student ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. Suppose you are sorting millions of keys that consist of three decimal

More information

Graph Algorithms. Parallel and Distributed Computing. Department of Computer Science and Engineering (DEI) Instituto Superior Técnico.

Graph Algorithms. Parallel and Distributed Computing. Department of Computer Science and Engineering (DEI) Instituto Superior Técnico. Graph Algorithms Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico May, 0 CPD (DEI / IST) Parallel and Distributed Computing 0-0-0 / Outline

More information

n 2 C. Θ n ( ) Ο f ( n) B. n 2 Ω( n logn)

n 2 C. Θ n ( ) Ο f ( n) B. n 2 Ω( n logn) CSE 0 Name Test Fall 0 Last Digits of Mav ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. The time to find the maximum of the n elements of an integer array is in: A.

More information

UML CS Algorithms Qualifying Exam Spring, 2004 ALGORITHMS QUALIFYING EXAM

UML CS Algorithms Qualifying Exam Spring, 2004 ALGORITHMS QUALIFYING EXAM NAME: This exam is open: - books - notes and closed: - neighbors - calculators ALGORITHMS QUALIFYING EXAM The upper bound on exam time is 3 hours. Please put all your work on the exam paper. (Partial credit

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18 601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18 22.1 Introduction We spent the last two lectures proving that for certain problems, we can

More information

Parallel Greedy Matching Algorithms

Parallel Greedy Matching Algorithms Parallel Greedy Matching Algorithms Fredrik Manne Department of Informatics University of Bergen, Norway Rob Bisseling, University of Utrecht Md. Mostofa Patwary, University of Bergen 1 Outline Background

More information

Greedy and Local Ratio Algorithms in the MapReduce Model

Greedy and Local Ratio Algorithms in the MapReduce Model Greedy and Local Ratio Algorithms in the MapReduce Model Nick Harvey 1 Chris Liaw 1 Paul Liu 2 1 University of British Columbia 2 Stanford University Greedy and Local Ratio Algorithms in the MapReduce

More information

Best known solution time is Ω(V!) Check every permutation of vertices to see if there is a graph edge between adjacent vertices

Best known solution time is Ω(V!) Check every permutation of vertices to see if there is a graph edge between adjacent vertices Hard Problems Euler-Tour Problem Undirected graph G=(V,E) An Euler Tour is a path where every edge appears exactly once. The Euler-Tour Problem: does graph G have an Euler Path? Answerable in O(E) time.

More information

Algorithms and Data Structures: Minimum Spanning Trees I and II - Prim s Algorithm. ADS: lects 14 & 15 slide 1

Algorithms and Data Structures: Minimum Spanning Trees I and II - Prim s Algorithm. ADS: lects 14 & 15 slide 1 Algorithms and Data Structures: Minimum Spanning Trees I and II - Prim s Algorithm ADS: lects 14 & 15 slide 1 Weighted Graphs Definition 1 A weighted (directed or undirected graph) is a pair (G, W ) consisting

More information

Challenges and Advances in Parallel Sparse Matrix-Matrix Multiplication

Challenges and Advances in Parallel Sparse Matrix-Matrix Multiplication Challenges and Advances in Parallel Sparse Matrix-Matrix Multiplication Aydin Buluc John R. Gilbert University of California, Santa Barbara ICPP 2008 September 11, 2008 1 Support: DOE Office of Science,

More information

300x Matlab. Dr. Jeremy Kepner. MIT Lincoln Laboratory. September 25, 2002 HPEC Workshop Lexington, MA

300x Matlab. Dr. Jeremy Kepner. MIT Lincoln Laboratory. September 25, 2002 HPEC Workshop Lexington, MA 300x Matlab Dr. Jeremy Kepner September 25, 2002 HPEC Workshop Lexington, MA This work is sponsored by the High Performance Computing Modernization Office under Air Force Contract F19628-00-C-0002. Opinions,

More information

Topics. Trees Vojislav Kecman. Which graphs are trees? Terminology. Terminology Trees as Models Some Tree Theorems Applications of Trees CMSC 302

Topics. Trees Vojislav Kecman. Which graphs are trees? Terminology. Terminology Trees as Models Some Tree Theorems Applications of Trees CMSC 302 Topics VCU, Department of Computer Science CMSC 302 Trees Vojislav Kecman Terminology Trees as Models Some Tree Theorems Applications of Trees Binary Search Tree Decision Tree Tree Traversal Spanning Trees

More information

Graph Algorithms (part 3 of CSC 282),

Graph Algorithms (part 3 of CSC 282), Graph Algorithms (part of CSC 8), http://www.cs.rochester.edu/~stefanko/teaching/10cs8 1 Schedule Homework is due Thursday, Oct 1. The QUIZ will be on Tuesday, Oct. 6. List of algorithms covered in the

More information

9. Which situation is true regarding a cascading cut that produces c trees for a Fibonacci heap?

9. Which situation is true regarding a cascading cut that produces c trees for a Fibonacci heap? 1 1 Name Test 1 - Closed Book Student ID # Multiple Choice. Write your answer to the LEFT of each problem. points each 1. During which operation on a leftist heap may subtree swaps be needed? A. DECREASE-KEY

More information

Tutorial for Algorithm s Theory Problem Set 5. January 17, 2013

Tutorial for Algorithm s Theory Problem Set 5. January 17, 2013 Tutorial for Algorithm s Theory Problem Set 5 January 17, 2013 Exercise 1: Maximum Flow Algorithms Consider the following flow network: a) Solve the maximum flow problem on the above network by using the

More information

Single Source Shortest Path (SSSP) Problem

Single Source Shortest Path (SSSP) Problem Single Source Shortest Path (SSSP) Problem Single Source Shortest Path Problem Input: A directed graph G = (V, E); an edge weight function w : E R, and a start vertex s V. Find: for each vertex u V, δ(s,

More information

CSC 8301 Design & Analysis of Algorithms: Warshall s, Floyd s, and Prim s algorithms

CSC 8301 Design & Analysis of Algorithms: Warshall s, Floyd s, and Prim s algorithms CSC 8301 Design & Analysis of Algorithms: Warshall s, Floyd s, and Prim s algorithms Professor Henry Carter Fall 2016 Recap Space-time tradeoffs allow for faster algorithms at the cost of space complexity

More information

Exascale Analytics of Massive Social Networks David A. Bader

Exascale Analytics of Massive Social Networks David A. Bader Exascale Analytics of Massive Social Networks David A. Bader SIAM AN09 Minisymposium on HPC on Massive Real-World Graphs Session 1: Wednesday, July 8, 10:30 AM - 12:30 PM Exascale Analytics of Massive

More information

CS 5220: Parallel Graph Algorithms. David Bindel

CS 5220: Parallel Graph Algorithms. David Bindel CS 5220: Parallel Graph Algorithms David Bindel 2017-11-14 1 Graphs Mathematically: G = (V, E) where E V V Convention: V = n and E = m May be directed or undirected May have weights w V : V R or w E :

More information

Algorithms. Graphs. Algorithms

Algorithms. Graphs. Algorithms Algorithms Graphs Algorithms Graphs Definition: A graph is a collection of edges and vertices. Each edge connects two vertices. Algorithms 1 Graphs Vertices: Nodes, points, computers, users, items,...

More information

CHAPTER 13 GRAPH ALGORITHMS

CHAPTER 13 GRAPH ALGORITHMS CHAPTER 13 GRAPH ALGORITHMS SFO LAX ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND MOUNT (WILEY 00) AND SLIDES FROM NANCY

More information

Parallel Graph Algorithms

Parallel Graph Algorithms Parallel Graph Algorithms Design and Analysis of Parallel Algorithms 5DV050 Spring 202 Part I Introduction Overview Graphsdenitions, properties, representation Minimal spanning tree Prim's algorithm Shortest

More information

The Graph BLAS effort and its implications for Exascale

The Graph BLAS effort and its implications for Exascale The Graph BLAS effort and its implications for Exascale David Bader (GA Tech), Aydın Buluç (LBNL), John Gilbert (UCSB), Joseph Gonzalez (UCB), Jeremy Kepner (MIT LL), Tim MaDson (Intel) SIAM Workshop on

More information