This library uses only GL functions but contains code for creating common objects and simplifying viewing.

Size: px
Start display at page:

Download "This library uses only GL functions but contains code for creating common objects and simplifying viewing."

Transcription

1 PES Institute of Technology, Bangalore South Campus (Formerly PES School of Engineering) (Hosur Road, 1KM before Electronic City, Bangalore ) INTERNAL TEST (SCHEME AND SOLUTION) 1 Subject Name: Computer Graphics Subject Code: (13MCA34) 1. About Open GL GLU This library uses only GL functions but contains code for creating common objects and simplifying viewing. Functions in the GLU library begin with the letter glu. GLUT To interface with the window system and to get input from external devices into our programs, we need at least one more library. GLX : OpenGL Extension for the X Window System For the X window system, this library is called GLX WGL for windows, it is wgl WGL or Wiggle is the windowing system interface to the Microsoft Windows implementation of the OpenGL specification. AGL for the macintosh it is agl or(apple graphics library). Rather than using a different library for each system,we use a readily available library called the opengl utility Toolkit(GLUT). GLUT provides minimum functionality that should be expected in any modern windowing system.

2 OpenGL supports two classes of primitives: Geometric primitives Image (or) raster primitives Geometric primitives Include points, line segments, polygons, curves and surfaces. These primitives pass through a geometric pipeline. where they are subject to a series of geometric operations that determine whether a primitive is visible or not Where on the display it appears if it is visible. 2.DDA Algorithm Digital Differential Analyzer DDA was a mechanical device for numerical solution of differential equations Line y=mx+ h satisfies differential equation dy/dx = m = Dy/Dx = y 2 -y 1 /x 2 -x 1 Along scan line Dx = 1 For(x=x1; x<=x2,ix++) {

3 y+=m; write_pixel(x, round(y), line_color) } 3.Bresenham s Algorithm DDA requires one floating point addition per step We can eliminate all fp through Bresenham s algorithm Consider only 1 m 0 Other cases by symmetry Assume pixel centers are at half integers If we start at a pixel that has been written, there are only two candidates for the next pixel to be written into the frame buffer More efficient if we look at d k, the value of the decision variable at x = k d k+1 = d k 2Dy, if d k <0 d k+1 = d k 2(Dy- Dx), otherwise For each x, we need do only an integer addition and a test Single instruction on graphics chips 4. Circle: Bresenham algorithm Choice between two pixels: Mid-point algorithm: If the midpoint between pixels is inside the circle, E is closer, draw E If the midpoint is outside, SE is closer, draw SE Error function: d = x 2 +y 2 - r 2 Compute d at the midpoint:

4 If the last pixel drawn is (x,y), then E = (x+1,y), and SE = (x+1,y-1). Hence, the midpoint = (x+1,y-1/2). d(x,y) = (x+1) 2 + (y - 1/2) 2 - r 2 d < 0: draw E d ³ 0: draw SE In each step (go to E or SE), i.e., increment x: x+=1: d += 2x +3 If I go to SE, i.e., x+=1, y+=-1: d += -2y + 2 The error is not linear However, what I add to the error is Keep Dx and Dy: At each step: Dx += 2, Dy += -2 d += Dx If I decrement y, d += Dy 4 additions per pixel

5 5. Different types of Graphical functions Primitives (WHAT) Points Line Segments Polygons

6 Attributes (HOW) Viewing (CAMERA) Transformations Control (GLUT) Input (GLUT) Query (Device independent programs- 2 color) Define the low level objects or atomic entities that our system can display. Depending on the API, the primitives can include Example glbegin(gl_points); glvertex2f(100.0,200.0); glend(); glbegin(gl_lines); glvertex2f(100.0,200.0); glvertex2f(300.0,400.0); glend(); points, line segments, polygons, pixels, text, and various type of curves and surfaces..about Graphical Functions To perform operations ranging from choosing the color with which we display a line segment. Eg glcolor3f(1.0,0.0,0.0); gllinewidth(width); To picking a pattern with which to fill the inside of a polygon.

7 To selecting a typesafe for the title on a graph. The viewing functions allows us to specify various views,although APIs differ in the degree of flexibility they provide in choosing a view. glviewport (xvmin, yvmin, vpwidth, vpheight); gluortho2d (xwmin, xwmax, ywmin, ywmax); Transformation function that allows to carry out transformations of objects. such as rotation, translation and scaling. Input function gltranslatef (tx, ty, tz); glrotatef (theta, vx, vy, vz); glscalef (sx, sy, sz); Allows us to deal with the diverse forms of input that characterize modern graphics systems. Control function void glutkeyboardfunc(void (*func) (unsigned char key, int x, int y)); Enable us to communicate with the window system, to initialize our programs and to deal with any errors that take place during the execution of our programs. Query function glutinitwindowsize(500,500); How many color are supported or The size of the display. Camera parameters or values in the frame buffer. 6.About open GL Line and Polygon Drawing Functions The primitive and their type specification include the following:.

8 Points(GL_POINTS): Each vertex is displayed at a size of at least one pixel. Line segments(gl_lines): Successive pairs of vertices to be interpreted as the endpoints of individual segments. Polylines(GL_LINE_STRIP,GL_LINE_LOOP): GL_LINE_STRIP If successive vertices are to be connected, we can use the line strip or polyline form. GL_LINE_LOOP will draw a line segment from the final vertex to the first, thus creating a closed path. Polygons(GL_POLYGON): successive vertices define line segments and a line segment connects the final vertex to the first. use the function glpolygonmode to tell the renderer to generate only the edges or just points for the vertices, instead of fill. glpolygonmode(gl_front_and_back, GL_LINE); Triangle and quadrilaterals (GL_TRIANGLES,GL_QUADS): Successive groups of three and four vertices are interpreted as triangles and quadrilaterals Strips and Fans(GL_TRIANGLE_STRIP, GL_QUAD_STRIP, GL_TRIANGLE_FAN)

9 groups of triangles or quadrilaterals that share vertices and edges. Triangle strip Each additional vertex is combined with the previous two vertices to define a new triangle. Quadstrip Combine two new vertices with the previous two vertices to define a new quadrilateral. Triangle fan Triangle fan is based on the one fixed point. The next two points determine the first triangle, and subsequent triangles are formed from one new point, the previous point and the first point.

2D Drawing Primitives

2D Drawing Primitives THE SIERPINSKI GASKET We use as a sample problem the drawing of the Sierpinski gasket an interesting shape that has a long history and is of interest in areas such as fractal geometry. The Sierpinski gasket

More information

Pipeline implementation II

Pipeline implementation II Pipeline implementation II Overview Line Drawing Algorithms DDA Bresenham Filling polygons Antialiasing Rasterization Rasterization (scan conversion) Determine which pixels that are inside primitive specified

More information

Implementation III. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Implementation III. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Implementation III Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Objectives Survey Line Drawing Algorithms - DDA - Bresenham 2 Rasterization

More information

Computer Graphics. OpenGL

Computer Graphics. OpenGL Computer Graphics OpenGL What is OpenGL? OpenGL (Open Graphics Library) is a library for computer graphics It consists of several procedures and functions that allow a programmer to specify the objects

More information

Rasterization: Geometric Primitives

Rasterization: Geometric Primitives Rasterization: Geometric Primitives Outline Rasterizing lines Rasterizing polygons 1 Rasterization: What is it? How to go from real numbers of geometric primitives vertices to integer coordinates of pixels

More information

CS 450: COMPUTER GRAPHICS REVIEW: DRAWING LINES AND CIRCLES SPRING 2015 DR. MICHAEL J. REALE

CS 450: COMPUTER GRAPHICS REVIEW: DRAWING LINES AND CIRCLES SPRING 2015 DR. MICHAEL J. REALE CS 450: COMPUTER GRAPHICS REVIEW: DRAWING LINES AND CIRCLES SPRING 2015 DR. MICHAEL J. REALE DRAWING PRIMITIVES: LEGACY VS. NEW Legacy: specify primitive in glbegin() glbegin(gl_points); glvertex3f(1,5,0);

More information

Rasterization, or What is glbegin(gl_lines) really doing?

Rasterization, or What is glbegin(gl_lines) really doing? Rasterization, or What is glbegin(gl_lines) really doing? Course web page: http://goo.gl/eb3aa February 23, 2012 Lecture 4 Outline Rasterizing lines DDA/parametric algorithm Midpoint/Bresenham s algorithm

More information

Computer Graphics. Chapter 3 Computer Graphics Software

Computer Graphics. Chapter 3 Computer Graphics Software Computer Graphics Chapter 3 Computer Graphics Software Outline Graphics Software Packages Introduction to OpenGL Example Program 2 3 Graphics Software Software packages General Programming Graphics Packages

More information

From Vertices to Fragments: Rasterization. Reading Assignment: Chapter 7. Special memory where pixel colors are stored.

From Vertices to Fragments: Rasterization. Reading Assignment: Chapter 7. Special memory where pixel colors are stored. From Vertices to Fragments: Rasterization Reading Assignment: Chapter 7 Frame Buffer Special memory where pixel colors are stored. System Bus CPU Main Memory Graphics Card -- Graphics Processing Unit (GPU)

More information

Line Drawing. Foundations of Computer Graphics Torsten Möller

Line Drawing. Foundations of Computer Graphics Torsten Möller Line Drawing Foundations of Computer Graphics Torsten Möller Rendering Pipeline Hardware Modelling Transform Visibility Illumination + Shading Perception, Interaction Color Texture/ Realism Reading Angel

More information

Realtime 3D Computer Graphics Virtual Reality

Realtime 3D Computer Graphics Virtual Reality Realtime 3D Computer Graphics Virtual Reality From Vertices to Fragments Overview Overall goal recapitulation: Input: World description, e.g., set of vertices and states for objects, attributes, camera,

More information

Graphics Programming

Graphics Programming Graphics Programming 3 rd Week, 2011 OpenGL API (1) API (application programming interface) Interface between an application program and a graphics system Application Program OpenGL API Graphics Library

More information

OpenGL Introduction Computer Graphics and Visualization

OpenGL Introduction Computer Graphics and Visualization Fall 2009 2 OpenGL OpenGL System Interaction Portable Consistent visual display regardless of hardware, OS and windowing system Callable from Ada, C, C++, Fortran, Python, Perl and Java Runs on all major

More information

Today s Agenda. Basic design of a graphics system. Introduction to OpenGL

Today s Agenda. Basic design of a graphics system. Introduction to OpenGL Today s Agenda Basic design of a graphics system Introduction to OpenGL Image Compositing Compositing one image over another is most common choice can think of each image drawn on a transparent plastic

More information

Assignment 1. Simple Graphics program using OpenGL

Assignment 1. Simple Graphics program using OpenGL Assignment 1 Simple Graphics program using OpenGL In this assignment we will use basic OpenGL functions to draw some basic graphical figures. Example: Consider following program to draw a point on screen.

More information

Graphics Programming. August 31, Programming of the Sierpinski gasket. Programming with OpenGL and C/C++

Graphics Programming. August 31, Programming of the Sierpinski gasket. Programming with OpenGL and C/C++ Computer Graphics Graphics Programming August 31, 2005 Contents Our Goal in This Chapter Programming of the Sierpinski gasket How To? Programming with OpenGL and C/C++ OpenGL API (Application Programmer

More information

CS 4204 Computer Graphics

CS 4204 Computer Graphics CS 4204 Computer Graphics OpenGL Basics Yong Cao Virginia Tech References: 2001 Siggraph, An Interactive Introduction to OpenGL Programming, Dave Shreiner,Ed Angel, Vicki Shreiner Official Presentation

More information

CSC Graphics Programming. Budditha Hettige Department of Statistics and Computer Science

CSC Graphics Programming. Budditha Hettige Department of Statistics and Computer Science CSC 307 1.0 Graphics Programming Department of Statistics and Computer Science Graphics Programming 2 Common Uses for Computer Graphics Applications for real-time 3D graphics range from interactive games

More information

From Ver(ces to Fragments: Rasteriza(on

From Ver(ces to Fragments: Rasteriza(on From Ver(ces to Fragments: Rasteriza(on From Ver(ces to Fragments 3D vertices vertex shader rasterizer fragment shader final pixels 2D screen fragments l determine fragments to be covered l interpolate

More information

Topics. From vertices to fragments

Topics. From vertices to fragments Topics From vertices to fragments From Vertices to Fragments Assign a color to every pixel Pass every object through the system Required tasks: Modeling Geometric processing Rasterization Fragment processing

More information

OUTPUT PRIMITIVES. CEng 477 Introduction to Computer Graphics METU, 2007

OUTPUT PRIMITIVES. CEng 477 Introduction to Computer Graphics METU, 2007 OUTPUT PRIMITIVES CEng 477 Introduction to Computer Graphics METU, 007 Recap: The basic forward projection pipeline: MCS Model Model Modeling Transformations M M 3D World Scene Viewing Transformations

More information

ERKELEY DAVIS IRVINE LOS ANGELES RIVERSIDE SAN DIEGO SAN FRANCISCO EECS 104. Fundamentals of Computer Graphics. OpenGL

ERKELEY DAVIS IRVINE LOS ANGELES RIVERSIDE SAN DIEGO SAN FRANCISCO EECS 104. Fundamentals of Computer Graphics. OpenGL ERKELEY DAVIS IRVINE LOS ANGELES RIVERSIDE SAN DIEGO SAN FRANCISCO SANTA BARBARA SANTA CRUZ EECS 104 Fundamentals of Computer Graphics OpenGL Slides courtesy of Dave Shreine, Ed Angel and Vicki Shreiner

More information

FROM VERTICES TO FRAGMENTS. Lecture 5 Comp3080 Computer Graphics HKBU

FROM VERTICES TO FRAGMENTS. Lecture 5 Comp3080 Computer Graphics HKBU FROM VERTICES TO FRAGMENTS Lecture 5 Comp3080 Computer Graphics HKBU OBJECTIVES Introduce basic implementation strategies Clipping Scan conversion OCTOBER 9, 2011 2 OVERVIEW At end of the geometric pipeline,

More information

Computer Graphics (Basic OpenGL)

Computer Graphics (Basic OpenGL) Computer Graphics (Basic OpenGL) Thilo Kielmann Fall 2008 Vrije Universiteit, Amsterdam kielmann@cs.vu.nl http://www.cs.vu.nl/ graphics/ Computer Graphics (Basic OpenGL, Input and Interaction), ((57))

More information

Programming of Graphics

Programming of Graphics Peter Mileff PhD Programming of Graphics Introduction to OpenGL University of Miskolc Department of Information Technology OpenGL libraries GL (Graphics Library): Library of 2D, 3D drawing primitives and

More information

CSCI E-74. Simulation and Gaming

CSCI E-74. Simulation and Gaming CSCI E-74 Virtual and Augmented Reality for Simulation and Gaming Fall term 2017 Gianluca De Novi, PhD Lesson 3 General Introduction to OpenGL APIs and TRS Perspective Simulation Perspective simulation

More information

Rendering. Part 1 An introduction to OpenGL

Rendering. Part 1 An introduction to OpenGL Rendering Part 1 An introduction to OpenGL Olivier Gourmel VORTEX Team IRIT University of Toulouse gourmel@irit.fr Image synthesis The Graphics Processing Unit (GPU): A highly parallel architecture specialized

More information

Computer Graphics. Making Pictures. Computer Graphics CSC470 1

Computer Graphics. Making Pictures. Computer Graphics CSC470 1 Computer Graphics Making Pictures Computer Graphics CSC470 1 Getting Started Making Pictures Graphics display: Entire screen (a); windows system (b); [both have usual screen coordinates, with y-axis y

More information

Lecture 4 of 41. Lab 1a: OpenGL Basics

Lecture 4 of 41. Lab 1a: OpenGL Basics Lab 1a: OpenGL Basics William H. Hsu Department of Computing and Information Sciences, KSU KSOL course pages: http://snipurl.com/1y5gc Course web site: http://www.kddresearch.org/courses/cis636 Instructor

More information

CS 591B Lecture 9: The OpenGL Rendering Pipeline

CS 591B Lecture 9: The OpenGL Rendering Pipeline CS 591B Lecture 9: The OpenGL Rendering Pipeline 3D Polygon Rendering Many applications use rendering of 3D polygons with direct illumination Spring 2007 Rui Wang 3D Polygon Rendering Many applications

More information

Drawing Primitives. OpenGL basics

Drawing Primitives. OpenGL basics CSC 706 Computer Graphics / Dr. N. Gueorguieva 1 OpenGL Libraries Drawing Primitives OpenGL basics OpenGL core library OpenGL32 on Windows GL on most unix/linux systems (libgl.a) OpenGL Utility Library

More information

Computer Graphics. Chapter 7 2D Geometric Transformations

Computer Graphics. Chapter 7 2D Geometric Transformations Computer Graphics Chapter 7 2D Geometric Transformations Chapter 7 Two-Dimensional Geometric Transformations Part III. OpenGL Functions for Two-Dimensional Geometric Transformations OpenGL Geometric Transformation

More information

Fall CSCI 420: Computer Graphics. 7.1 Rasterization. Hao Li.

Fall CSCI 420: Computer Graphics. 7.1 Rasterization. Hao Li. Fall 2015 CSCI 420: Computer Graphics 7.1 Rasterization Hao Li http://cs420.hao-li.com 1 Rendering Pipeline 2 Outline Scan Conversion for Lines Scan Conversion for Polygons Antialiasing 3 Rasterization

More information

Digital Differential Analyzer Bresenhams Line Drawing Algorithm

Digital Differential Analyzer Bresenhams Line Drawing Algorithm Bresenham s Line Generation The Bresenham algorithm is another incremental scan conversion algorithm. The big advantage of this algorithm is that, it uses only integer calculations. Difference Between

More information

Basic Graphics Programming

Basic Graphics Programming 15-462 Computer Graphics I Lecture 2 Basic Graphics Programming Graphics Pipeline OpenGL API Primitives: Lines, Polygons Attributes: Color Example January 17, 2002 [Angel Ch. 2] Frank Pfenning Carnegie

More information

Exercise 1 Introduction to OpenGL

Exercise 1 Introduction to OpenGL Exercise 1 Introduction to OpenGL What we are going to do OpenGL Glut Small Example using OpenGl and Glut Alexandra Junghans 2 What is OpenGL? OpenGL Two Parts most widely used and supported graphics API

More information

Computer Graphics, Chapt 08

Computer Graphics, Chapt 08 Computer Graphics, Chapt 08 Creating an Image Components, parts of a scene to be displayed Trees, terrain Furniture, walls Store fronts and street scenes Atoms and molecules Stars and galaxies Describe

More information

Announcements. Midterms graded back at the end of class Help session on Assignment 3 for last ~20 minutes of class. Computer Graphics

Announcements. Midterms graded back at the end of class Help session on Assignment 3 for last ~20 minutes of class. Computer Graphics Announcements Midterms graded back at the end of class Help session on Assignment 3 for last ~20 minutes of class 1 Scan Conversion Overview of Rendering Scan Conversion Drawing Lines Drawing Polygons

More information

Topic #1: Rasterization (Scan Conversion)

Topic #1: Rasterization (Scan Conversion) Topic #1: Rasterization (Scan Conversion) We will generally model objects with geometric primitives points, lines, and polygons For display, we need to convert them to pixels for points it s obvious but

More information

CSCI 420 Computer Graphics Lecture 14. Rasterization. Scan Conversion Antialiasing [Angel Ch. 6] Jernej Barbic University of Southern California

CSCI 420 Computer Graphics Lecture 14. Rasterization. Scan Conversion Antialiasing [Angel Ch. 6] Jernej Barbic University of Southern California CSCI 420 Computer Graphics Lecture 14 Rasterization Scan Conversion Antialiasing [Angel Ch. 6] Jernej Barbic University of Southern California 1 Rasterization (scan conversion) Final step in pipeline:

More information

CS 4731: Computer Graphics Lecture 21: Raster Graphics: Drawing Lines. Emmanuel Agu

CS 4731: Computer Graphics Lecture 21: Raster Graphics: Drawing Lines. Emmanuel Agu CS 4731: Computer Graphics Lecture 21: Raster Graphics: Drawing Lines Emmanuel Agu 2D Graphics Pipeline Clipping Object World Coordinates Applying world window Object subset window to viewport mapping

More information

API Background. Prof. George Wolberg Dept. of Computer Science City College of New York

API Background. Prof. George Wolberg Dept. of Computer Science City College of New York API Background Prof. George Wolberg Dept. of Computer Science City College of New York Objectives Graphics API history OpenGL API OpenGL function format Immediate Mode vs Retained Mode Examples The Programmer

More information

COMP371 COMPUTER GRAPHICS

COMP371 COMPUTER GRAPHICS COMP371 COMPUTER GRAPHICS LECTURE 14 RASTERIZATION 1 Lecture Overview Review of last class Line Scan conversion Polygon Scan conversion Antialiasing 2 Rasterization The raster display is a matrix of picture

More information

GLUT. What is OpenGL? Introduction to OpenGL and GLUT

GLUT. What is OpenGL? Introduction to OpenGL and GLUT What is OpenGL? Introduction to OpenGL and An application programming interface (API) A (low-level) Graphics rendering API Generate high-quality h color images composed of geometric and image primitives

More information

Rasterization. Rasterization (scan conversion) Digital Differential Analyzer (DDA) Rasterizing a line. Digital Differential Analyzer (DDA)

Rasterization. Rasterization (scan conversion) Digital Differential Analyzer (DDA) Rasterizing a line. Digital Differential Analyzer (DDA) CSCI 420 Computer Graphics Lecture 14 Rasterization Jernej Barbic University of Southern California Scan Conversion Antialiasing [Angel Ch. 6] Rasterization (scan conversion) Final step in pipeline: rasterization

More information

Clipping and Scan Conversion

Clipping and Scan Conversion 15-462 Computer Graphics I Lecture 14 Clipping and Scan Conversion Line Clipping Polygon Clipping Clipping in Three Dimensions Scan Conversion (Rasterization) [Angel 7.3-7.6, 7.8-7.9] March 19, 2002 Frank

More information

Rendering approaches. 1.image-oriented. 2.object-oriented. foreach pixel... 3D rendering pipeline. foreach object...

Rendering approaches. 1.image-oriented. 2.object-oriented. foreach pixel... 3D rendering pipeline. foreach object... Rendering approaches 1.image-oriented foreach pixel... 2.object-oriented foreach object... geometry 3D rendering pipeline image 3D graphics pipeline Vertices Vertex processor Clipper and primitive assembler

More information

Introduction to Computer Graphics with OpenGL/GLUT

Introduction to Computer Graphics with OpenGL/GLUT Introduction to Computer Graphics with OpenGL/GLUT What is OpenGL? A software interface to graphics hardware Graphics rendering API (Low Level) High-quality color images composed of geometric and image

More information

1 Introduction to Graphics

1 Introduction to Graphics 1 1.1 Raster Displays The screen is represented by a 2D array of locations called pixels. Zooming in on an image made up of pixels The convention in these notes will follow that of OpenGL, placing the

More information

CSC 8470 Computer Graphics. What is Computer Graphics?

CSC 8470 Computer Graphics. What is Computer Graphics? CSC 8470 Computer Graphics What is Computer Graphics? For us, it is primarily the study of how pictures can be generated using a computer. But it also includes: software tools used to make pictures hardware

More information

Computer Graphics. Chapter 10 Three-Dimensional Viewing

Computer Graphics. Chapter 10 Three-Dimensional Viewing Computer Graphics Chapter 10 Three-Dimensional Viewing Chapter 10 Three-Dimensional Viewing Part I. Overview of 3D Viewing Concept 3D Viewing Pipeline vs. OpenGL Pipeline 3D Viewing-Coordinate Parameters

More information

Rendering. A simple X program to illustrate rendering

Rendering. A simple X program to illustrate rendering Rendering A simple X program to illustrate rendering The programs in this directory provide a simple x based application for us to develop some graphics routines. Please notice the following: All points

More information

Teacher Assistant : Tamir Grossinger Reception hours: by - Building 37 / office -102 Assignments: 4 programing using

Teacher Assistant : Tamir Grossinger   Reception hours: by  - Building 37 / office -102 Assignments: 4 programing using Teacher Assistant : Tamir Grossinger email: tamirgr@gmail.com Reception hours: by email - Building 37 / office -102 Assignments: 4 programing using C++ 1 theoretical You can find everything you need in

More information

Tópicos de Computação Gráfica Topics in Computer Graphics 10509: Doutoramento em Engenharia Informática. Chap. 2 Rasterization.

Tópicos de Computação Gráfica Topics in Computer Graphics 10509: Doutoramento em Engenharia Informática. Chap. 2 Rasterization. Tópicos de Computação Gráfica Topics in Computer Graphics 10509: Doutoramento em Engenharia Informática Chap. 2 Rasterization Rasterization Outline : Raster display technology. Basic concepts: pixel, resolution,

More information

CS Rasterization. Junqiao Zhao 赵君峤

CS Rasterization. Junqiao Zhao 赵君峤 CS10101001 Rasterization Junqiao Zhao 赵君峤 Department of Computer Science and Technology College of Electronics and Information Engineering Tongji University Vector Graphics Algebraic equations describe

More information

RECITATION - 1. Ceng477 Fall

RECITATION - 1. Ceng477 Fall RECITATION - 1 Ceng477 Fall 2007-2008 2/ 53 Agenda General rules for the course General info on the libraries GLUT OpenGL GLUI Details about GLUT Functions Probably we will not cover this part 3/ 53 General

More information

Part 3: 2D Transformation

Part 3: 2D Transformation Part 3: 2D Transformation 1. What do you understand by geometric transformation? Also define the following operation performed by ita. Translation. b. Rotation. c. Scaling. d. Reflection. 2. Explain two

More information

3D Transformation. In 3D, we have x, y, and z. We will continue use column vectors:. Homogenous systems:. x y z. x y z. glvertex3f(x, y,z);

3D Transformation. In 3D, we have x, y, and z. We will continue use column vectors:. Homogenous systems:. x y z. x y z. glvertex3f(x, y,z); 3D Transformation In 3D, we have x, y, and z. We will continue use column vectors:. Homogenous systems:. 3D Transformation glvertex3f(x, y,z); x y z x y z A Right Handle Coordinate System x y z; y z x;

More information

OpenGL Graphics System. 2D Graphics Primitives. Drawing 2D Graphics Primitives. 2D Graphics Primitives. Mathematical 2D Primitives.

OpenGL Graphics System. 2D Graphics Primitives. Drawing 2D Graphics Primitives. 2D Graphics Primitives. Mathematical 2D Primitives. D Graphics Primitives Eye sees Displays - CRT/LCD Frame buffer - Addressable pixel array (D) Graphics processor s main function is to map application model (D) by projection on to D primitives: points,

More information

Rasterization. CS4620/5620: Lecture 12. Announcements. Turn in HW 1. PPA 1 out. Friday lecture. History of graphics PPA 1 in 4621.

Rasterization. CS4620/5620: Lecture 12. Announcements. Turn in HW 1. PPA 1 out. Friday lecture. History of graphics PPA 1 in 4621. CS4620/5620: Lecture 12 Rasterization 1 Announcements Turn in HW 1 PPA 1 out Friday lecture History of graphics PPA 1 in 4621 2 The graphics pipeline The standard approach to object-order graphics Many

More information

Output Primitives. Dr. S.M. Malaek. Assistant: M. Younesi

Output Primitives. Dr. S.M. Malaek. Assistant: M. Younesi Output Primitives Dr. S.M. Malaek Assistant: M. Younesi Output Primitives Output Primitives: Basic geometric structures (points, straight line segment, circles and other conic sections, quadric surfaces,

More information

Programming using OpenGL: A first Introduction

Programming using OpenGL: A first Introduction Programming using OpenGL: A first Introduction CMPT 361 Introduction to Computer Graphics Torsten Möller Machiraju/Zhang/Möller 1 Today Overview GL, GLU, GLUT, and GLUI First example OpenGL functions and

More information

Scan Conversion. Drawing Lines Drawing Circles

Scan Conversion. Drawing Lines Drawing Circles Scan Conversion Drawing Lines Drawing Circles 1 How to Draw This? 2 Start From Simple How to draw a line: y(x) = mx + b? 3 Scan Conversion, a.k.a. Rasterization Ideal Picture Raster Representation Scan

More information

Geometry Primitives. Computer Science Department University of Malta. Sandro Spina Computer Graphics and Simulation Group. CGSG Geometry Primitives

Geometry Primitives. Computer Science Department University of Malta. Sandro Spina Computer Graphics and Simulation Group. CGSG Geometry Primitives Geometry Primitives Sandro Spina Computer Graphics and Simulation Group Computer Science Department University of Malta 1 The Building Blocks of Geometry The objects in our virtual worlds are composed

More information

CS 543 Lecture 1 (Part 3) Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI)

CS 543 Lecture 1 (Part 3) Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI) Computer Graphics CS 543 Lecture 1 (Part 3) Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) Recall: OpenGL Skeleton void main(int argc, char** argv){ // First initialize

More information

Computer Graphics 1 Computer Graphics 1

Computer Graphics 1 Computer Graphics 1 Projects: an example Developed by Nate Robbins Shapes Tutorial What is OpenGL? Graphics rendering API high-quality color images composed of geometric and image primitives window system independent operating

More information

CS450/550. Pipeline Architecture. Adapted From: Angel and Shreiner: Interactive Computer Graphics6E Addison-Wesley 2012

CS450/550. Pipeline Architecture. Adapted From: Angel and Shreiner: Interactive Computer Graphics6E Addison-Wesley 2012 CS450/550 Pipeline Architecture Adapted From: Angel and Shreiner: Interactive Computer Graphics6E Addison-Wesley 2012 0 Objectives Learn the basic components of a graphics system Introduce the OpenGL pipeline

More information

Programming with OpenGL Part 2: Complete Programs Computer Graphics I, Fall

Programming with OpenGL Part 2: Complete Programs Computer Graphics I, Fall Programming with OpenGL Part 2: Complete Programs 91.427 Computer Graphics I, Fall 2008 1 1 Objectives Refine first program Alter default values Introduce standard program structure Simple viewing 2-D

More information

Scan Converting Circles

Scan Converting Circles Scan Conversion Algorithms CS 460 Computer Graphics Professor Richard Eckert Circles Ellipses and Other 2-D Curves Text February 16, 2004 Scan Converting Circles Given: Center: (h,k) Radius: r Equation:

More information

To Do. Computer Graphics (Fall 2008) Course Outline. Course Outline. Methodology for Lecture. Demo: Surreal (HW 3)

To Do. Computer Graphics (Fall 2008) Course Outline. Course Outline. Methodology for Lecture. Demo: Surreal (HW 3) Computer Graphics (Fall 2008) COMS 4160, Lecture 9: OpenGL 1 http://www.cs.columbia.edu/~cs4160 To Do Start thinking (now) about HW 3. Milestones are due soon. Course Course 3D Graphics Pipeline 3D Graphics

More information

CSCI 4620/8626. Coordinate Reference Frames

CSCI 4620/8626. Coordinate Reference Frames CSCI 4620/8626 Computer Graphics Graphics Output Primitives Last update: 2014-02-03 Coordinate Reference Frames To describe a picture, the world-coordinate reference frame (2D or 3D) must be selected.

More information

3D Graphics Pipeline II Clipping. Instructor Stephen J. Guy

3D Graphics Pipeline II Clipping. Instructor Stephen J. Guy 3D Graphics Pipeline II Clipping Instructor Stephen J. Guy 3D Rendering Pipeline (for direct illumination) 3D Geometric Primitives 3D Model Primitives Modeling Transformation 3D World Coordinates Lighting

More information

Graphics Programming. 1. The Sierpinski Gasket. Chapter 2. Introduction:

Graphics Programming. 1. The Sierpinski Gasket. Chapter 2. Introduction: Graphics Programming Chapter 2 Introduction: - Our approach is programming oriented. - Therefore, we are going to introduce you to a simple but informative problem: the Sierpinski Gasket - The functionality

More information

Computer graphic -- Programming with OpenGL I

Computer graphic -- Programming with OpenGL I Computer graphic -- Programming with OpenGL I A simple example using OpenGL Download the example code "basic shapes", and compile and run it Take a look at it, and hit ESC when you're done. It shows the

More information

Computer Graphics and Visualization. Graphics Systems and Models

Computer Graphics and Visualization. Graphics Systems and Models UNIT -1 Graphics Systems and Models 1.1 Applications of computer graphics: Display Of Information Design Simulation & Animation User Interfaces 1.2 Graphics systems A Graphics system has 5 main elements:

More information

Fundamentals of Computer Graphics. Lecture 3 Generate a simple shape using OpenGL. Yong-Jin Liu

Fundamentals of Computer Graphics. Lecture 3 Generate a simple shape using OpenGL. Yong-Jin Liu Fundamentals of Computer Graphics Lecture 3 Generate a simple shape using OpenGL Yong-Jin Liu What is this course about? Generate an element shape point, line, region OpenGL command Window based programming

More information

Basic Graphics Programming

Basic Graphics Programming CSCI 480 Computer Graphics Lecture 2 Basic Graphics Programming January 11, 2012 Jernej Barbic University of Southern California http://www-bcf.usc.edu/~jbarbic/cs480-s12/ Graphics Pipeline OpenGL API

More information

The Traditional Graphics Pipeline

The Traditional Graphics Pipeline Last Time? The Traditional Graphics Pipeline Participating Media Measuring BRDFs 3D Digitizing & Scattering BSSRDFs Monte Carlo Simulation Dipole Approximation Today Ray Casting / Tracing Advantages? Ray

More information

Chapter 3: Graphics Output Primitives. OpenGL Line Functions. OpenGL Point Functions. Line Drawing Algorithms

Chapter 3: Graphics Output Primitives. OpenGL Line Functions. OpenGL Point Functions. Line Drawing Algorithms Chater : Grahics Outut Primitives Primitives: functions in grahics acage that we use to describe icture element Points and straight lines are the simlest rimitives Some acages include circles, conic sections,

More information

Line Drawing. Introduction to Computer Graphics Torsten Möller / Mike Phillips. Machiraju/Zhang/Möller

Line Drawing. Introduction to Computer Graphics Torsten Möller / Mike Phillips. Machiraju/Zhang/Möller Line Drawing Introduction to Computer Graphics Torsten Möller / Mike Phillips Rendering Pipeline Hardware Modelling Transform Visibility Illumination + Shading Perception, Color Interaction Texture/ Realism

More information

1.2 Basic Graphics Programming

1.2 Basic Graphics Programming Fall 2018 CSCI 420: Computer Graphics 1.2 Basic Graphics Programming Hao Li http://cs420.hao-li.com 1 Last time Last Time Story Computer Graphics Image Last Time 3D Printing 3D Capture Animation Modeling

More information

Computer Graphics Course 2005

Computer Graphics Course 2005 Computer Graphics Course 2005 Introduction to GLUT, GLU and OpenGL Administrative Stuff Teaching Assistant: Rony Goldenthal Reception Hour: Wed. 18:00 19:00 Room 31 (Ross 1) Questions: E-mail: cg@cs Newsgroups:

More information

Introduction to OpenGL Week 1

Introduction to OpenGL Week 1 CS 432/680 INTERACTIVE COMPUTER GRAPHICS Introduction to OpenGL Week 1 David Breen Department of Computer Science Drexel University Based on material from Ed Angel, University of New Mexico Objectives

More information

Objectives. Image Formation Revisited. Physical Approaches. The Programmer s Interface. Practical Approach. Introduction to OpenGL Week 1

Objectives. Image Formation Revisited. Physical Approaches. The Programmer s Interface. Practical Approach. Introduction to OpenGL Week 1 CS 432/680 INTERACTIVE COMPUTER GRAPHICS Introduction to OpenGL Week 1 David Breen Department of Computer Science Drexel University Objectives Learn the basic design of a graphics system Introduce graphics

More information

Rendering. A simple X program to illustrate rendering

Rendering. A simple X program to illustrate rendering Rendering A simple X program to illustrate rendering The programs in this directory provide a simple x based application for us to develop some graphics routines. Please notice the following: All points

More information

Luiz Fernando Martha André Pereira

Luiz Fernando Martha André Pereira Computer Graphics for Engineering Numerical simulation in technical sciences Color / OpenGL Luiz Fernando Martha André Pereira Graz, Austria June 2014 To Remember Computer Graphics Data Processing Data

More information

11/1/13. Basic Graphics Programming. Teaching Assistant. What is OpenGL. Course Producer. Where is OpenGL used. Graphics library (API)

11/1/13. Basic Graphics Programming. Teaching Assistant. What is OpenGL. Course Producer. Where is OpenGL used. Graphics library (API) CSCI 420 Computer Graphics Lecture 2 Basic Graphics Programming Teaching Assistant Yijing Li Office hours TBA Jernej Barbic University of Southern California Graphics Pipeline OpenGL API Primitives: Lines,

More information

Meshing and Geometry

Meshing and Geometry Meshing and Geometry Points in OpenGL glbegin(gl_points); glvertex2fv(p0); glvertex2fv(p1); p7 p0 p1 glvertex2fv(p2); glvertex2fv(p3); p6 p2 glvertex2fv(p4); glvertex2fv(p5); p5 p3 glvertex2fv(p6); glvertex2fv(p7);

More information

AC60/AT60 COMPUTER GRAPHICS JUN 2015

AC60/AT60 COMPUTER GRAPHICS JUN 2015 Q.2 a. Differentiate between raster and random scan displays. Also differentiate between horizontal and vertical retracing with examples. (6) Raster Scan Random Scan Resolution Electron- Beam Cost Refresh

More information

The Traditional Graphics Pipeline

The Traditional Graphics Pipeline Final Projects Proposals due Thursday 4/8 Proposed project summary At least 3 related papers (read & summarized) Description of series of test cases Timeline & initial task assignment The Traditional Graphics

More information

Programming with OpenGL Part 1: Background

Programming with OpenGL Part 1: Background Programming with OpenGL Part 1: Background Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico 1 Objectives Development of the OpenGL API

More information

Graphics System. Processor. Output Display. Input Devices. Frame Buffer. Memory. Array of pixels. Resolution: # of pixels Depth: # of bits/pixel

Graphics System. Processor. Output Display. Input Devices. Frame Buffer. Memory. Array of pixels. Resolution: # of pixels Depth: # of bits/pixel Graphics System Input Devices Processor Memory Frame Buffer Output Display Array of pixels Resolution: # of pixels Depth: # of bits/pixel Input Devices Physical Devices: Keyboard, Mouse, Tablet, etc. Logical

More information

Early History of APIs. PHIGS and X. SGI and GL. Programming with OpenGL Part 1: Background. Objectives

Early History of APIs. PHIGS and X. SGI and GL. Programming with OpenGL Part 1: Background. Objectives Programming with OpenGL Part 1: Background Early History of APIs Objectives Development of the OpenGL API OpenGL Architecture - OpenGL as a state machine Functions - Types -Formats Simple program IFIPS

More information

CS452/552; EE465/505. Clipping & Scan Conversion

CS452/552; EE465/505. Clipping & Scan Conversion CS452/552; EE465/505 Clipping & Scan Conversion 3-31 15 Outline! From Geometry to Pixels: Overview Clipping (continued) Scan conversion Read: Angel, Chapter 8, 8.1-8.9 Project#1 due: this week Lab4 due:

More information

CS 4731 Lecture 3: Introduction to OpenGL and GLUT: Part II. Emmanuel Agu

CS 4731 Lecture 3: Introduction to OpenGL and GLUT: Part II. Emmanuel Agu CS 4731 Lecture 3: Introduction to OpenGL and GLUT: Part II Emmanuel Agu Recall: OpenGL Skeleton void main(int argc, char** argv){ // First initialize toolkit, set display mode and create window glutinit(&argc,

More information

Information Coding / Computer Graphics, ISY, LiTH. OpenGL! ! where it fits!! what it contains!! how you work with it 11(40)

Information Coding / Computer Graphics, ISY, LiTH. OpenGL! ! where it fits!! what it contains!! how you work with it 11(40) 11(40) Information Coding / Computer Graphics, ISY, LiTH OpenGL where it fits what it contains how you work with it 11(40) OpenGL The cross-platform graphics library Open = Open specification Runs everywhere

More information

Announcement. Homework 1 has been posted in dropbox and course website. Due: 1:15 pm, Monday, September 12

Announcement. Homework 1 has been posted in dropbox and course website. Due: 1:15 pm, Monday, September 12 Announcement Homework 1 has been posted in dropbox and course website Due: 1:15 pm, Monday, September 12 Today s Agenda Primitives Programming with OpenGL OpenGL Primitives Polylines GL_POINTS GL_LINES

More information

Lecture 5b. Transformation

Lecture 5b. Transformation Lecture 5b Transformation Refresher Transformation matrices [4 x 4]: the fourth coordinate is homogenous coordinate. Rotation Transformation: Axis of rotation must through origin (0,0,0). If not, translation

More information

Computer graphics MN1

Computer graphics MN1 Computer graphics MN1 http://www.opengl.org Todays lecture What is OpenGL? How do I use it? Rendering pipeline Points, vertices, lines,, polygons Matrices and transformations Lighting and shading Code

More information

COMPUTER GRAPHICS LAB # 3

COMPUTER GRAPHICS LAB # 3 COMPUTER GRAPHICS LAB # 3 Chapter 2: COMPUTER GRAPHICS by F.S HILLs. Initial steps in drawing figures (polygon, rectangle etc) Objective: Basic understanding of simple code in OpenGL and initial steps

More information