Outline. CS38 Introduction to Algorithms. Fast Fourier Transform (FFT) Fast Fourier Transform (FFT) Fast Fourier Transform (FFT)

Size: px
Start display at page:

Download "Outline. CS38 Introduction to Algorithms. Fast Fourier Transform (FFT) Fast Fourier Transform (FFT) Fast Fourier Transform (FFT)"

Transcription

1 Outline CS8 Introduction to Algorithms Lecture 9 April 9, 0 Divide and Conquer design paradigm matrix multiplication Dynamic programming design paradigm Fibonacci numbers weighted interval scheduling knapsack matrix-chain multiplication longest common subsequence April 9, 0 CS8 Lecture 9 Discrete Fourier Transform (DFT) Given n-th root of unity!, DFT n is a linear map from C n to C n : Fast Fourier Transform (FFT) DFT n has special structure (assume n= k ) reorder columns: first even, then odd consider exponents on! along rows: multiples of: same multiples plus: (i,j) entry is! ij rows repeat twice since! n = April 9, 0 CS8 Lecture 9 April 9, 0 CS8 Lecture 9 Fast Fourier Transform (FFT) so we are actually computing: so to compute DFT n x FFT(n:power of ; x). let! be a n-th root of unity. compute a = FFT(n/, x even ). compute b = FFT(n/, x odd ). y even = a + D b and y odd = a +! n/ D b 5. return vector y! is (n/)-th root of unity D = diagonal matrix diag(! 0,!,!,,! n/- ) April 9, 0 CS8 Lecture 9 5 Fast Fourier Transform (FFT) FFT(n:power of ; x). let! be a n-th root of unity. compute a = FFT(n/, x even ). compute b = FFT(n/, x odd ). y even = a + D b and y odd = a +! n/ D b 5. return vector y Running time? T() = T(n) = T(n/) + O(n) solution: T(n) = O(n log n) April 9, 0 CS8 Lecture 9 6

2 matrix multiplication A X B = C given n x n matrices A, B compute C = AB standard method: O(n ) operations Strassen: O(n log 7) = O(n.8 ) April 9, 0 CS8 Lecture 9 7 a a a a b b b b a b + a b + a b a b a b + a b + a b a b how many product operations? 8 Strassen: it is possible with 7 (!!) 7 products of form: (linear combos of a entries) x (linear combos of b entries) result is linear combos of these 7 products April 9, 0 CS8 Lecture 9 8 a a a a b b b b a b + a b + a b a b a b + a b + a b a b 7 products of form: (linear combos of a entries) x (linear combos of b entries) result is linear combos of these 7 products Key: identity holds when entries above are n/ x n/ matrices rather than scalars April 9, 0 CS8 Lecture 9 9 Strassen-matrix-mult(A, B: n x n matrices). p = A (B B ). p = (A + A ) B. p = (A + A ) B. p = A (B B ) 5. p 5 = (A + A )(B + B ) 6. p 6 = (A A )(B + B ) 7. p 7 = (A A )(B + B ) 8. C = P 5 + P P + P 6 ; C = P + P 9. C = P + P ; C = P 5 + P P P 7 0. return C 7 recursive calls additions/subtractions are entrywise: O(n ) a a a a b b b b c c c c running time recurrence? T(n) = 7T(n/) + O(n ) Solution: T(n) = O(n log 7) = O(n.8 ) a a a a b b b b April 9, 0 CS8 Lecture 9 April 9, 0 CS8 Lecture 9

3 a a a a b b b b c c c c a a a a b b b b c c c c b b b b b b b b a a a a a a a a April 9, 0 CS8 Lecture 9 April 9, 0 CS8 Lecture 9 express these a a a a b b b b c c c c a a a a b b b b as linear combinations of rank- matrices a a a a b b b b e.g.: April 9, 0 CS8 Lecture 9 5 April 9, 0 CS8 Lecture 9 6 Strassen s example Dynamic programming programming = planning dynamic = over time basic idea: identify subproblems express solution to subproblem in terms of other smaller subproblems build solution bottom-up by filling in a table defining subproblem is the hardest part April 9, 0 CS8 Lecture 9 8

4 Dynamic programming Simple example: computing Fibonacci #s f() = f() = f(i) = f(i-) + f(i-) recursive algorithm: Fibonacci(n). if n = or n = return(). else return(fibonacci(n-) + Fibonacci (n-)) running time? Dynamic programming Fibonacci(n). if n = or n = return(). else return(fibonacci(n-) + Fibonacci (n-)) better idea: -dimensional table; entry i contains f(i) build table bottom-up Fibonacci-table(n). T() = T() =. for i = to n do T(i) = T(i-) + T(i-). return(t(n)) April 9, 0 CS8 Lecture 9 9 April 9, 0 CS8 Lecture 9 0 job j starts at s j, finishes at f j, weight v j jobs compatible if they don't overlap a b c d Goal: find maximum weight subset of mutually compatible jobs. recall: greedy by earliest finishing time worked when weights were all counterexample with general weights: weight = 999 b e f weight = a h time g h time April 9, 0 CS8 Lecture 9 label jobs by finishing time f j Definition: p(j) = largest index i < j such that job i is compatible with j. 7 8 e.g. p(8) = 5 time subproblem j: jobs j OPT(j) = value achieved by optimum schedule relate to smaller subproblems case : use job j can t use jobs p(j)+,, j- p(j) = largest index i such that job i is compatible with j. must use optimal schedule for p(j) = OPT(p(j)) case : don t use job j must use optimal schedule for j- = OPT(j-) April 9, 0 CS8 Lecture 9 April 9, 0 CS8 Lecture 9

5 job j starts at s j, finishes at f j, weight v j OPT(j) = max {v j + OPT(p(j)), OPT(j-)} recursive solution? wtd-interval-schedule ((s, f, v ),, (s n, f n, v n )). a = v j + wtd-interval-schedule(first p(n) jobs). b = wtd-interval-schedule(first j- jobs). return(max(a,b)) running time? p(j) = largest index i such that job i is compatible with j. April 9, 0 CS8 Lecture 9 5 job j starts at s j, finishes at f j, weight v j OPT(j) = max {v j + OPT(p(j)), OPT(j-))} Wtd-interval-schedule((s, f, v ),, (s n, f n, v n )). OPT(0) = 0. sort by finish times f_i; compute p(i) for all i. for i = to n. OPT(i) = max {v i + OPT(p(i)), OPT(i-)} 5. return(opt(n)) running time? p(j) = largest index i such that job i is compatible with j. April 9, 0 CS8 Lecture 9 6 Store extra info:. was job i picked?. which table cell has solution to resulting subproblem? Wtd-interval-schedule((s, f, v ),, (s n, f n, v n )). OPT(0) = 0. sort by finish times f_i; compute p(i) for all i. for i = to n. OPT(i) = max {v i + OPT(p(i)), OPT(i-))} 5. return(opt(n)) OPT(n) gives value of optimal schedule how do we actually find schedule? April 9, 0 CS8 Lecture 9 7 Knapsack item i has weight w i and value v i goal: pack knapsack of capacity W with maximum value set of items greedy by weight, value, or ratio of weight/value all fail subproblems: optimum among items i-? April 9, 0 CS8 Lecture 9 8 Knapsack subproblems: optimum among items i-? case : don t use item i OPT(i) = OPT(i-) case : do use item i OPT(i) =? [what is weight used by subproblem?] subproblems, second attempt: optimum among items i-, with total weight w April 9, 0 CS8 Lecture 9 9 Knapsack subproblems: optimum among items i-, with total weight w case : don t use item i OPT(i, w) = OPT(i-, w) case : do use item i OPT(i, w) = OPT(i-, w w i ) OPT(i, w) = OPT(i-, w) if w i > w else: max {v i + OPT(i-, w-w i ), OPT(i-, w))} order to fill in the table? April 9, 0 CS8 Lecture 9 0 5

6 Knapsack Knapsack(v, w,, v n, w n, W). OPT(i, 0) = 0 for all i. for i = to n. for w = to W. if w i > w then OPT(i,w) = OPT(i-, w) 5. else OPT(i,w) = {v i + OPT(i-, w-w i ), OPT(i-, w))} 6. return(opt(n, W)) Running time? O(nW) space: O(nW) can improve to O(W) (how?) how do we actually find items? April 9, 0 CS8 Lecture 9 Sequence of matrices to multiply e.g. 0 A B goal: find best parenthesization e.g.: ((A B) C) D) = = 0 e.g. (A (B (C D)) = = 6 April 9, 0 CS8 Lecture 9 9 C 9 D = Sequence of n matrices to multiply, given by a, a,, a n+ Goal: output fully parenthesized expression with minimum cost fully parenthesized = single matrix: (A) or product of two fully parenthesized: (.)(.) try subproblems for ranges: OPT(,n) = min k OPT(,k) + OPT(k+,n) + a a k+ a n+ Sequence of n matrices to multiply, given by a, a,, a n+ OPT(i,j) = cost to multiply matrices i j optimally OPT(i,j) = 0 if i = j OPT(i,j) = min k OPT(i,k) + OPT(k+,j) + a i a k+ a j+ what order to fill in the table? April 9, 0 CS8 Lecture 9 April 9, 0 CS8 Lecture 9 Matrix-Chain(a, a,, a n+ ). OPT(i, i) = 0 for all i. for r = to n. for i = to n r ; j = i + r. OPT(i,j) = min i k < j OPT(i,k) + OPT(k+,j) + a i a k+ a j+ 5. return(opt(, n)) running time? O(n ) print out the optimal parenthesization? store chosen k in each cell April 9, 0 CS8 Lecture 9 5 6

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 16 Dynamic Programming (plus FFT Recap) Adam Smith 9/24/2008 A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne Discrete Fourier Transform

More information

memoization or iteration over subproblems the direct iterative algorithm a basic outline of dynamic programming

memoization or iteration over subproblems the direct iterative algorithm a basic outline of dynamic programming Dynamic Programming 1 Introduction to Dynamic Programming weighted interval scheduling the design of a recursive solution memoizing the recursion 2 Principles of Dynamic Programming memoization or iteration

More information

CSE 421: Introduction to Algorithms

CSE 421: Introduction to Algorithms CSE 421: Introduction to Algorithms Dynamic Programming Paul Beame 1 Dynamic Programming Dynamic Programming Give a solution of a problem using smaller sub-problems where the parameters of all the possible

More information

Lectures 12 and 13 Dynamic programming: weighted interval scheduling

Lectures 12 and 13 Dynamic programming: weighted interval scheduling Lectures 12 and 13 Dynamic programming: weighted interval scheduling COMP 523: Advanced Algorithmic Techniques Lecturer: Dariusz Kowalski Lectures 12-13: Dynamic Programming 1 Overview Last week: Graph

More information

Dynamic Programming. Outline and Reading. Computing Fibonacci

Dynamic Programming. Outline and Reading. Computing Fibonacci Dynamic Programming Dynamic Programming version 1.2 1 Outline and Reading Matrix Chain-Product ( 5.3.1) The General Technique ( 5.3.2) -1 Knapsac Problem ( 5.3.3) Dynamic Programming version 1.2 2 Computing

More information

CSE 421: Introduction to Algorithms

CSE 421: Introduction to Algorithms Dynamic Programming SE : Introduction to lgorithms Dynamic Programming Paul Beame Dynamic Programming ive a solution of a problem using smaller sub-problems where all the possible sub-problems are determined

More information

Dynamic Programming. Nothing to do with dynamic and nothing to do with programming.

Dynamic Programming. Nothing to do with dynamic and nothing to do with programming. Dynamic Programming Deliverables Dynamic Programming basics Binomial Coefficients Weighted Interval Scheduling Matrix Multiplication /1 Knapsack Longest Common Subsequence 6/12/212 6:56 PM copyright @

More information

Unit-5 Dynamic Programming 2016

Unit-5 Dynamic Programming 2016 5 Dynamic programming Overview, Applications - shortest path in graph, matrix multiplication, travelling salesman problem, Fibonacci Series. 20% 12 Origin: Richard Bellman, 1957 Programming referred to

More information

Lecture 13: Chain Matrix Multiplication

Lecture 13: Chain Matrix Multiplication Lecture 3: Chain Matrix Multiplication CLRS Section 5.2 Revised April 7, 2003 Outline of this Lecture Recalling matrix multiplication. The chain matrix multiplication problem. A dynamic programming algorithm

More information

12 Dynamic Programming (2) Matrix-chain Multiplication Segmented Least Squares

12 Dynamic Programming (2) Matrix-chain Multiplication Segmented Least Squares 12 Dynamic Programming (2) Matrix-chain Multiplication Segmented Least Squares Optimal substructure Dynamic programming is typically applied to optimization problems. An optimal solution to the original

More information

Algorithmic Paradigms

Algorithmic Paradigms Algorithmic Paradigms Greedy. Build up a solution incrementally, myopically optimizing some local criterion. Divide-and-conquer. Break up a problem into two or more sub -problems, solve each sub-problem

More information

Chapter 6. Dynamic Programming. Modified from slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved.

Chapter 6. Dynamic Programming. Modified from slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. Chapter 6 Dynamic Programming Modified from slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. 1 Think recursively (this week)!!! Divide & conquer and Dynamic programming

More information

Dynamic Programming. Applications. Applications. Applications. Algorithm Design 6.1, 6.2, 6.3

Dynamic Programming. Applications. Applications. Applications. Algorithm Design 6.1, 6.2, 6.3 Set of weighted intervals with start and finishing times Goal: find maimum weight subset of non-overlapping intervals Dnamic Programming Algorithm Design.,.,. j j j j8 Given n points in the plane find

More information

Dynamic Programming. Introduction, Weighted Interval Scheduling, Knapsack. Tyler Moore. Lecture 15/16

Dynamic Programming. Introduction, Weighted Interval Scheduling, Knapsack. Tyler Moore. Lecture 15/16 Dynamic Programming Introduction, Weighted Interval Scheduling, Knapsack Tyler Moore CSE, SMU, Dallas, TX Lecture /6 Greedy. Build up a solution incrementally, myopically optimizing some local criterion.

More information

CMSC 451: Lecture 10 Dynamic Programming: Weighted Interval Scheduling Tuesday, Oct 3, 2017

CMSC 451: Lecture 10 Dynamic Programming: Weighted Interval Scheduling Tuesday, Oct 3, 2017 CMSC 45 CMSC 45: Lecture Dynamic Programming: Weighted Interval Scheduling Tuesday, Oct, Reading: Section. in KT. Dynamic Programming: In this lecture we begin our coverage of an important algorithm design

More information

CS 231: Algorithmic Problem Solving

CS 231: Algorithmic Problem Solving CS 231: Algorithmic Problem Solving Naomi Nishimura Module 5 Date of this version: June 14, 2018 WARNING: Drafts of slides are made available prior to lecture for your convenience. After lecture, slides

More information

Dynamic Programming. An Enumeration Approach. Matrix Chain-Products. Matrix Chain-Products (not in book)

Dynamic Programming. An Enumeration Approach. Matrix Chain-Products. Matrix Chain-Products (not in book) Matrix Chain-Products (not in book) is a general algorithm design paradigm. Rather than give the general structure, let us first give a motivating example: Matrix Chain-Products Review: Matrix Multiplication.

More information

Efficient Sequential Algorithms, Comp309. Problems. Part 1: Algorithmic Paradigms

Efficient Sequential Algorithms, Comp309. Problems. Part 1: Algorithmic Paradigms Efficient Sequential Algorithms, Comp309 Part 1: Algorithmic Paradigms University of Liverpool References: T. H. Cormen, C. E. Leiserson, R. L. Rivest Introduction to Algorithms, Second Edition. MIT Press

More information

CS473 - Algorithms I

CS473 - Algorithms I CS473 - Algorithms I Lecture 4 The Divide-and-Conquer Design Paradigm View in slide-show mode 1 Reminder: Merge Sort Input array A sort this half sort this half Divide Conquer merge two sorted halves Combine

More information

Input: n jobs (associated start time s j, finish time f j, and value v j ) for j = 1 to n M[j] = empty M[0] = 0. M-Compute-Opt(n)

Input: n jobs (associated start time s j, finish time f j, and value v j ) for j = 1 to n M[j] = empty M[0] = 0. M-Compute-Opt(n) Objec&ves Dnamic Programming Ø Wrapping up: weighted interval schedule Ø Ø Subset Sums Summar: Proper&es of Problems for DP Polnomial number of subproblems Solu&on to original problem can be easil computed

More information

Dynamic Programming Group Exercises

Dynamic Programming Group Exercises Name: Name: Name: Dynamic Programming Group Exercises Adapted from material by Cole Frederick Please work the following problems in groups of 2 or 3. Use additional paper as needed, and staple the sheets

More information

Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, Dynamic Programming

Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, Dynamic Programming Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 25 Dynamic Programming Terrible Fibonacci Computation Fibonacci sequence: f = f(n) 2

More information

Algorithms: COMP3121/3821/9101/9801

Algorithms: COMP3121/3821/9101/9801 NEW SOUTH WALES Algorithms: COMP3121/3821/9101/9801 Aleks Ignjatović School of Computer Science and Engineering University of New South Wales TOPIC 5: DYNAMIC PROGRAMMING COMP3121/3821/9101/9801 1 / 38

More information

CMSC 451: Dynamic Programming

CMSC 451: Dynamic Programming CMSC 41: Dynamic Programming Slides By: Carl Kingsford Department of Computer Science University of Maryland, College Park Based on Sections 6.1&6.2 of Algorithm Design by Kleinberg & Tardos. Dynamic Programming

More information

Lecture 8. Dynamic Programming

Lecture 8. Dynamic Programming Lecture 8. Dynamic Programming T. H. Cormen, C. E. Leiserson and R. L. Rivest Introduction to Algorithms, 3rd Edition, MIT Press, 2009 Sungkyunkwan University Hyunseung Choo choo@skku.edu Copyright 2000-2018

More information

So far... Finished looking at lower bounds and linear sorts.

So far... Finished looking at lower bounds and linear sorts. So far... Finished looking at lower bounds and linear sorts. Next: Memoization -- Optimization problems - Dynamic programming A scheduling problem Matrix multiplication optimization Longest Common Subsequence

More information

Chain Matrix Multiplication

Chain Matrix Multiplication Chain Matrix Multiplication Version of November 5, 2014 Version of November 5, 2014 Chain Matrix Multiplication 1 / 27 Outline Outline Review of matrix multiplication. The chain matrix multiplication problem.

More information

4.1 Interval Scheduling

4.1 Interval Scheduling 41 Interval Scheduling Interval Scheduling Interval scheduling Job j starts at s j and finishes at f j Two jobs compatible if they don't overlap Goal: find maximum subset of mutually compatible jobs a

More information

Elements of Dynamic Programming. COSC 3101A - Design and Analysis of Algorithms 8. Discovering Optimal Substructure. Optimal Substructure - Examples

Elements of Dynamic Programming. COSC 3101A - Design and Analysis of Algorithms 8. Discovering Optimal Substructure. Optimal Substructure - Examples Elements of Dynamic Programming COSC 3A - Design and Analysis of Algorithms 8 Elements of DP Memoization Longest Common Subsequence Greedy Algorithms Many of these slides are taken from Monica Nicolescu,

More information

Design and Analysis of Algorithms 演算法設計與分析. Lecture 7 April 15, 2015 洪國寶

Design and Analysis of Algorithms 演算法設計與分析. Lecture 7 April 15, 2015 洪國寶 Design and Analysis of Algorithms 演算法設計與分析 Lecture 7 April 15, 2015 洪國寶 1 Course information (5/5) Grading (Tentative) Homework 25% (You may collaborate when solving the homework, however when writing

More information

Chapter 6. Dynamic Programming

Chapter 6. Dynamic Programming Chapter 6 Dynamic Programming We began our study of algorithmic techniques with greedy algorithms, which in some sense form the most natural approach to algorithm design. Faced with a new computational

More information

Algorithm Design Techniques part I

Algorithm Design Techniques part I Algorithm Design Techniques part I Divide-and-Conquer. Dynamic Programming DSA - lecture 8 - T.U.Cluj-Napoca - M. Joldos 1 Some Algorithm Design Techniques Top-Down Algorithms: Divide-and-Conquer Bottom-Up

More information

1 Format. 2 Topics Covered. 2.1 Minimal Spanning Trees. 2.2 Union Find. 2.3 Greedy. CS 124 Quiz 2 Review 3/25/18

1 Format. 2 Topics Covered. 2.1 Minimal Spanning Trees. 2.2 Union Find. 2.3 Greedy. CS 124 Quiz 2 Review 3/25/18 CS 124 Quiz 2 Review 3/25/18 1 Format You will have 83 minutes to complete the exam. The exam may have true/false questions, multiple choice, example/counterexample problems, run-this-algorithm problems,

More information

Introduction to Algorithms

Introduction to Algorithms Introduction to Algorithms Dynamic Programming Well known algorithm design techniques: Brute-Force (iterative) ti algorithms Divide-and-conquer algorithms Another strategy for designing algorithms is dynamic

More information

CS 473: Fundamental Algorithms, Spring Dynamic Programming. Sariel (UIUC) CS473 1 Spring / 42. Part I. Longest Increasing Subsequence

CS 473: Fundamental Algorithms, Spring Dynamic Programming. Sariel (UIUC) CS473 1 Spring / 42. Part I. Longest Increasing Subsequence CS 473: Fundamental Algorithms, Spring 2011 Dynamic Programming Lecture 8 February 15, 2011 Sariel (UIUC) CS473 1 Spring 2011 1 / 42 Part I Longest Increasing Subsequence Sariel (UIUC) CS473 2 Spring 2011

More information

CS473-Algorithms I. Lecture 10. Dynamic Programming. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 10. Dynamic Programming. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorithms I Lecture 1 Dynamic Programming 1 Introduction An algorithm design paradigm like divide-and-conquer Programming : A tabular method (not writing computer code) Divide-and-Conquer (DAC):

More information

Problem Strategies. 320 Greedy Strategies 6

Problem Strategies. 320 Greedy Strategies 6 Problem Strategies Weighted interval scheduling: 2 subproblems (include the interval or don t) Have to check out all the possibilities in either case, so lots of subproblem overlap dynamic programming:

More information

Dynamic Programming Algorithms Greedy Algorithms. Lecture 29 COMP 250 Winter 2018 (Slides from M. Blanchette)

Dynamic Programming Algorithms Greedy Algorithms. Lecture 29 COMP 250 Winter 2018 (Slides from M. Blanchette) Dynamic Programming Algorithms Greedy Algorithms Lecture 29 COMP 250 Winter 2018 (Slides from M. Blanchette) Return to Recursive algorithms: Divide-and-Conquer Divide-and-Conquer Divide big problem into

More information

CS 380 ALGORITHM DESIGN AND ANALYSIS

CS 380 ALGORITHM DESIGN AND ANALYSIS CS 380 ALGORITHM DESIGN AND ANALYSIS Lecture 14: Dynamic Programming Text Reference: Chapter 15 Dynamic Programming We know that we can use the divide-and-conquer technique to obtain efficient algorithms

More information

Lecture 22: Dynamic Programming

Lecture 22: Dynamic Programming Lecture 22: Dynamic Programming COSC242: Algorithms and Data Structures Brendan McCane Department of Computer Science, University of Otago Dynamic programming The iterative and memoised algorithms for

More information

Homework3: Dynamic Programming - Answers

Homework3: Dynamic Programming - Answers Most Exercises are from your textbook: Homework3: Dynamic Programming - Answers 1. For the Rod Cutting problem (covered in lecture) modify the given top-down memoized algorithm (includes two procedures)

More information

5.1 The String reconstruction problem

5.1 The String reconstruction problem CS125 Lecture 5 Fall 2014 5.1 The String reconstruction problem The greedy approach doesn t always work, as we have seen. It lacks flexibility; if at some point, it makes a wrong choice, it becomes stuck.

More information

Algorithmic Paradigms. Chapter 6 Dynamic Programming. Steps in Dynamic Programming. Dynamic Programming. Dynamic Programming Applications

Algorithmic Paradigms. Chapter 6 Dynamic Programming. Steps in Dynamic Programming. Dynamic Programming. Dynamic Programming Applications lgorithmic Paradigms reed. Build up a solution incrementally, only optimizing some local criterion. hapter Dynamic Programming Divide-and-conquer. Break up a problem into two sub-problems, solve each sub-problem

More information

LECTURE NOTES OF ALGORITHMS: DESIGN TECHNIQUES AND ANALYSIS

LECTURE NOTES OF ALGORITHMS: DESIGN TECHNIQUES AND ANALYSIS Department of Computer Science University of Babylon LECTURE NOTES OF ALGORITHMS: DESIGN TECHNIQUES AND ANALYSIS By Faculty of Science for Women( SCIW), University of Babylon, Iraq Samaher@uobabylon.edu.iq

More information

Chapter 6. Dynamic Programming

Chapter 6. Dynamic Programming Chapter 6 Dynamic Programming CS 573: Algorithms, Fall 203 September 2, 203 6. Maximum Weighted Independent Set in Trees 6..0. Maximum Weight Independent Set Problem Input Graph G = (V, E) and weights

More information

F(0)=0 F(1)=1 F(n)=F(n-1)+F(n-2)

F(0)=0 F(1)=1 F(n)=F(n-1)+F(n-2) Algorithms Dana Shapira Lesson #4: Dynamic programming Fibonacci Series F()= F()= F(n)=F(n-)+F(n-) Write a Divide and Conquer Algorithm! What is its running time? Binomial Coefficients n! n = ( )! n! Recursive

More information

CS 170 DISCUSSION 8 DYNAMIC PROGRAMMING. Raymond Chan raychan3.github.io/cs170/fa17.html UC Berkeley Fall 17

CS 170 DISCUSSION 8 DYNAMIC PROGRAMMING. Raymond Chan raychan3.github.io/cs170/fa17.html UC Berkeley Fall 17 CS 170 DISCUSSION 8 DYNAMIC PROGRAMMING Raymond Chan raychan3.github.io/cs170/fa17.html UC Berkeley Fall 17 DYNAMIC PROGRAMMING Recursive problems uses the subproblem(s) solve the current one. Dynamic

More information

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Dynamic Programming I Date: 10/6/16

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Dynamic Programming I Date: 10/6/16 600.463 Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Dynamic Programming I Date: 10/6/16 11.1 Introduction Dynamic programming can be very confusing until you ve used it a

More information

Dynamic Programming part 2

Dynamic Programming part 2 Dynamic Programming part 2 Week 7 Objectives More dynamic programming examples - Matrix Multiplication Parenthesis - Longest Common Subsequence Subproblem Optimal structure Defining the dynamic recurrence

More information

CSED233: Data Structures (2017F) Lecture12: Strings and Dynamic Programming

CSED233: Data Structures (2017F) Lecture12: Strings and Dynamic Programming (2017F) Lecture12: Strings and Dynamic Programming Daijin Kim CSE, POSTECH dkim@postech.ac.kr Strings A string is a sequence of characters Examples of strings: Python program HTML document DNA sequence

More information

1 Non greedy algorithms (which we should have covered

1 Non greedy algorithms (which we should have covered 1 Non greedy algorithms (which we should have covered earlier) 1.1 Floyd Warshall algorithm This algorithm solves the all-pairs shortest paths problem, which is a problem where we want to find the shortest

More information

Dynamic Programming. Lecture Overview Introduction

Dynamic Programming. Lecture Overview Introduction Lecture 12 Dynamic Programming 12.1 Overview Dynamic Programming is a powerful technique that allows one to solve many different types of problems in time O(n 2 ) or O(n 3 ) for which a naive approach

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Design and Analysis of Algorithms CSE 5311 Lecture 16 Greedy algorithms Junzhou Huang, Ph.D. Department of Computer Science and Engineering CSE5311 Design and Analysis of Algorithms 1 Overview A greedy

More information

Dynamic Programmming: Activity Selection

Dynamic Programmming: Activity Selection Dynamic Programmming: Activity Selection Select the maximum number of non-overlapping activities from a set of n activities A = {a 1,, a n } (sorted by finish times). Identify easier subproblems to solve.

More information

Partha Sarathi Manal

Partha Sarathi Manal MA 515: Introduction to Algorithms & MA353 : Design and Analysis of Algorithms [3-0-0-6] Lecture 29 http://www.iitg.ernet.in/psm/indexing_ma353/y09/index.html Partha Sarathi Manal psm@iitg.ernet.in Dept.

More information

Dynamic Programming Part One

Dynamic Programming Part One Dynamic Programming Part One Announcements Problem Set Four due right now if you're using a late period. Solutions will be released at end of lecture. Problem Set Five due Monday, August 5. Feel free to

More information

Dynamic Programming (Part #2)

Dynamic Programming (Part #2) Dynamic Programming (Part #) Introduction to Algorithms MIT Press (Chapter 5) Matrix-Chain Multiplication Problem: given a sequence A, A,, A n, compute the product: A A A n Matrix compatibility: C = A

More information

Computer Sciences Department 1

Computer Sciences Department 1 1 Advanced Design and Analysis Techniques (15.1, 15.2, 15.3, 15.4 and 15.5) 3 Objectives Problem Formulation Examples The Basic Problem Principle of optimality Important techniques: dynamic programming

More information

Data Structures and Algorithms Week 8

Data Structures and Algorithms Week 8 Data Structures and Algorithms Week 8 Dynamic programming Fibonacci numbers Optimization problems Matrix multiplication optimization Principles of dynamic programming Longest Common Subsequence Algorithm

More information

Design and Analysis of Algorithms 演算法設計與分析. Lecture 7 April 6, 2016 洪國寶

Design and Analysis of Algorithms 演算法設計與分析. Lecture 7 April 6, 2016 洪國寶 Design and Analysis of Algorithms 演算法設計與分析 Lecture 7 April 6, 2016 洪國寶 1 Course information (5/5) Grading (Tentative) Homework 25% (You may collaborate when solving the homework, however when writing up

More information

Sankalchand Patel College of Engineering - Visnagar Department of Computer Engineering and Information Technology. Assignment

Sankalchand Patel College of Engineering - Visnagar Department of Computer Engineering and Information Technology. Assignment Class: V - CE Sankalchand Patel College of Engineering - Visnagar Department of Computer Engineering and Information Technology Sub: Design and Analysis of Algorithms Analysis of Algorithm: Assignment

More information

CSE 202: Design and Analysis of Algorithms Lecture 5

CSE 202: Design and Analysis of Algorithms Lecture 5 CSE 202: Design and Analysis of Algorithms Lecture 5 Instructor: Kamalika Chaudhuri Announcements Kamalika s Office hours today moved to tomorrow, 12:15-1:15pm Homework 1 due now Midterm on Feb 14 Algorithm

More information

Divide and Conquer Strategy. (Page#27)

Divide and Conquer Strategy. (Page#27) MUHAMMAD FAISAL MIT 4 th Semester Al-Barq Campus (VGJW01) Gujranwala faisalgrw123@gmail.com Reference Short Questions for MID TERM EXAMS CS502 Design and Analysis of Algorithms Divide and Conquer Strategy

More information

Lecture 57 Dynamic Programming. (Refer Slide Time: 00:31)

Lecture 57 Dynamic Programming. (Refer Slide Time: 00:31) Programming, Data Structures and Algorithms Prof. N.S. Narayanaswamy Department of Computer Science and Engineering Indian Institution Technology, Madras Lecture 57 Dynamic Programming (Refer Slide Time:

More information

14 Dynamic. Matrix-chain multiplication. P.D. Dr. Alexander Souza. Winter term 11/12

14 Dynamic. Matrix-chain multiplication. P.D. Dr. Alexander Souza. Winter term 11/12 Algorithms Theory 14 Dynamic Programming (2) Matrix-chain multiplication P.D. Dr. Alexander Souza Optimal substructure Dynamic programming is typically applied to optimization problems. An optimal solution

More information

Parallel Algorithms for (PRAM) Computers & Some Parallel Algorithms. Reference : Horowitz, Sahni and Rajasekaran, Computer Algorithms

Parallel Algorithms for (PRAM) Computers & Some Parallel Algorithms. Reference : Horowitz, Sahni and Rajasekaran, Computer Algorithms Parallel Algorithms for (PRAM) Computers & Some Parallel Algorithms Reference : Horowitz, Sahni and Rajasekaran, Computer Algorithms Part 2 1 3 Maximum Selection Problem : Given n numbers, x 1, x 2,, x

More information

Solving NP-hard Problems on Special Instances

Solving NP-hard Problems on Special Instances Solving NP-hard Problems on Special Instances Solve it in poly- time I can t You can assume the input is xxxxx No Problem, here is a poly-time algorithm 1 Solving NP-hard Problems on Special Instances

More information

15-451/651: Design & Analysis of Algorithms January 26, 2015 Dynamic Programming I last changed: January 28, 2015

15-451/651: Design & Analysis of Algorithms January 26, 2015 Dynamic Programming I last changed: January 28, 2015 15-451/651: Design & Analysis of Algorithms January 26, 2015 Dynamic Programming I last changed: January 28, 2015 Dynamic Programming is a powerful technique that allows one to solve many different types

More information

Dynamic Programming. Design and Analysis of Algorithms. Entwurf und Analyse von Algorithmen. Irene Parada. Design and Analysis of Algorithms

Dynamic Programming. Design and Analysis of Algorithms. Entwurf und Analyse von Algorithmen. Irene Parada. Design and Analysis of Algorithms Entwurf und Analyse von Algorithmen Dynamic Programming Overview Introduction Example 1 When and how to apply this method Example 2 Final remarks Introduction: when recursion is inefficient Example: Calculation

More information

CSE 421 Applications of DFS(?) Topological sort

CSE 421 Applications of DFS(?) Topological sort CSE 421 Applications of DFS(?) Topological sort Yin Tat Lee 1 Precedence Constraints In a directed graph, an edge (i, j) means task i must occur before task j. Applications Course prerequisite: course

More information

We augment RBTs to support operations on dynamic sets of intervals A closed interval is an ordered pair of real

We augment RBTs to support operations on dynamic sets of intervals A closed interval is an ordered pair of real 14.3 Interval trees We augment RBTs to support operations on dynamic sets of intervals A closed interval is an ordered pair of real numbers ], with Interval ]represents the set Open and half-open intervals

More information

Last week: Breadth-First Search

Last week: Breadth-First Search 1 Last week: Breadth-First Search Set L i = [] for i=1,,n L 0 = {w}, where w is the start node For i = 0,, n-1: For u in L i : For each v which is a neighbor of u: If v isn t yet visited: - mark v as visited,

More information

Midterm solutions. n f 3 (n) = 3

Midterm solutions. n f 3 (n) = 3 Introduction to Computer Science 1, SE361 DGIST April 20, 2016 Professors Min-Soo Kim and Taesup Moon Midterm solutions Midterm solutions The midterm is a 1.5 hour exam (4:30pm 6:00pm). This is a closed

More information

Greedy algorithms is another useful way for solving optimization problems.

Greedy algorithms is another useful way for solving optimization problems. Greedy Algorithms Greedy algorithms is another useful way for solving optimization problems. Optimization Problems For the given input, we are seeking solutions that must satisfy certain conditions. These

More information

CSC 373 Lecture # 3 Instructor: Milad Eftekhar

CSC 373 Lecture # 3 Instructor: Milad Eftekhar Huffman encoding: Assume a context is available (a document, a signal, etc.). These contexts are formed by some symbols (words in a document, discrete samples from a signal, etc). Each symbols s i is occurred

More information

String Patterns and Algorithms on Strings

String Patterns and Algorithms on Strings String Patterns and Algorithms on Strings Lecture delivered by: Venkatanatha Sarma Y Assistant Professor MSRSAS-Bangalore 11 Objectives To introduce the pattern matching problem and the important of algorithms

More information

Greedy Algorithms. Alexandra Stefan

Greedy Algorithms. Alexandra Stefan Greedy Algorithms Alexandra Stefan 1 Greedy Method for Optimization Problems Greedy: take the action that is best now (out of the current options) it may cause you to miss the optimal solution You build

More information

CMSC351 - Fall 2014, Homework #4

CMSC351 - Fall 2014, Homework #4 CMSC351 - Fall 2014, Homework #4 Due: November 14th at the start of class PRINT Name: Grades depend on neatness and clarity. Write your answers with enough detail about your approach and concepts used,

More information

CSE 202: Design and Analysis of Algorithms Lecture 4

CSE 202: Design and Analysis of Algorithms Lecture 4 CSE 202: Design and Analysis of Algorithms Lecture 4 Instructor: Kamalika Chaudhuri Greedy Algorithms Direct argument - MST Exchange argument - Caching Greedy approximation algorithms Greedy Approximation

More information

Computer Algorithms CISC4080 CIS, Fordham Univ. Instructor: X. Zhang Lecture 1

Computer Algorithms CISC4080 CIS, Fordham Univ. Instructor: X. Zhang Lecture 1 Computer Algorithms CISC4080 CIS, Fordham Univ. Instructor: X. Zhang Lecture 1 Acknowledgement The set of slides have use materials from the following resources Slides for textbook by Dr. Y. Chen from

More information

Computer Algorithms CISC4080 CIS, Fordham Univ. Acknowledgement. Outline. Instructor: X. Zhang Lecture 1

Computer Algorithms CISC4080 CIS, Fordham Univ. Acknowledgement. Outline. Instructor: X. Zhang Lecture 1 Computer Algorithms CISC4080 CIS, Fordham Univ. Instructor: X. Zhang Lecture 1 Acknowledgement The set of slides have use materials from the following resources Slides for textbook by Dr. Y. Chen from

More information

Recursive-Fib(n) if n=1 or n=2 then return 1 else return Recursive-Fib(n-1)+Recursive-Fib(n-2)

Recursive-Fib(n) if n=1 or n=2 then return 1 else return Recursive-Fib(n-1)+Recursive-Fib(n-2) Dynamic Programming Any recursive formula can be directly translated into recursive algorithms. However, sometimes the compiler will not implement the recursive algorithm very efficiently. When this is

More information

Special Topics on Algorithms Fall 2017 Dynamic Programming. Vangelis Markakis, Ioannis Milis and George Zois

Special Topics on Algorithms Fall 2017 Dynamic Programming. Vangelis Markakis, Ioannis Milis and George Zois Special Topics on Algorithms Fall 2017 Dynamic Programming Vangelis Markakis, Ioannis Milis and George Zois Basic Algorithmic Techniques Content Dynamic Programming Introduc

More information

CSE 373 Analysis of Algorithms, Fall Homework #3 Solutions Due Monday, October 18, 2003

CSE 373 Analysis of Algorithms, Fall Homework #3 Solutions Due Monday, October 18, 2003 Piyush Kumar CSE 373 Analysis of Algorithms, Fall 2003 Homework #3 Solutions Due Monday, October 18, 2003 Problem 1 Find an optimal parenthesization of a matrix chain product whose sequence of dimensions

More information

A BRIEF INTRODUCTION TO DYNAMIC PROGRAMMING (DP) by Amarnath Kasibhatla Nanocad Lab University of California, Los Angeles 04/21/2010

A BRIEF INTRODUCTION TO DYNAMIC PROGRAMMING (DP) by Amarnath Kasibhatla Nanocad Lab University of California, Los Angeles 04/21/2010 A BRIEF INTRODUCTION TO DYNAMIC PROGRAMMING (DP) by Amarnath Kasibhatla Nanocad Lab University of California, Los Angeles 04/21/2010 Overview What is DP? Characteristics of DP Formulation Examples Disadvantages

More information

Greedy Algorithms. CLRS Chapters Introduction to greedy algorithms. Design of data-compression (Huffman) codes

Greedy Algorithms. CLRS Chapters Introduction to greedy algorithms. Design of data-compression (Huffman) codes Greedy Algorithms CLRS Chapters 16.1 16.3 Introduction to greedy algorithms Activity-selection problem Design of data-compression (Huffman) codes (Minimum spanning tree problem) (Shortest-path problem)

More information

CS141: Intermediate Data Structures and Algorithms Dynamic Programming

CS141: Intermediate Data Structures and Algorithms Dynamic Programming CS141: Intermediate Data Structures and Algorithms Dynamic Programming Amr Magdy Programming? In this context, programming is a tabular method Other examples: Linear programing Integer programming 2 Rod

More information

6. Algorithm Design Techniques

6. Algorithm Design Techniques 6. Algorithm Design Techniques 6. Algorithm Design Techniques 6.1 Greedy algorithms 6.2 Divide and conquer 6.3 Dynamic Programming 6.4 Randomized Algorithms 6.5 Backtracking Algorithms Malek Mouhoub, CS340

More information

Dynamic Programming II

Dynamic Programming II June 9, 214 DP: Longest common subsequence biologists often need to find out how similar are 2 DNA sequences DNA sequences are strings of bases: A, C, T and G how to define similarity? DP: Longest common

More information

Data Structures and Algorithms CSE 465

Data Structures and Algorithms CSE 465 Data Structures and Algorithms CSE 465 LECTURE 4 More Divide and Conquer Binary Search Exponentiation Multiplication Sofya Raskhodnikova and Adam Smith Review questions How long does Merge Sort take on

More information

We ve done. Now. Next

We ve done. Now. Next We ve done Matroid Theory Task scheduling problem (another matroid example) Dijkstra s algorithm (another greedy example) Dynamic Programming Now Matrix Chain Multiplication Longest Common Subsequence

More information

Lecture 17: Array Algorithms

Lecture 17: Array Algorithms Lecture 17: Array Algorithms CS178: Programming Parallel and Distributed Systems April 4, 2001 Steven P. Reiss I. Overview A. We talking about constructing parallel programs 1. Last time we discussed sorting

More information

Analysis of Algorithms - Greedy algorithms -

Analysis of Algorithms - Greedy algorithms - Analysis of Algorithms - Greedy algorithms - Andreas Ermedahl MRTC (Mälardalens Real-Time Reseach Center) andreas.ermedahl@mdh.se Autumn 2003 Greedy Algorithms Another paradigm for designing algorithms

More information

Module 27: Chained Matrix Multiplication and Bellman-Ford Shortest Path Algorithm

Module 27: Chained Matrix Multiplication and Bellman-Ford Shortest Path Algorithm Module 27: Chained Matrix Multiplication and Bellman-Ford Shortest Path Algorithm This module 27 focuses on introducing dynamic programming design strategy and applying it to problems like chained matrix

More information

CS Algorithms and Complexity

CS Algorithms and Complexity CS 350 - Algorithms and Complexity Dynamic Programming Sean Anderson 2/20/18 Portland State University Table of contents 1. Homework 3 Solutions 2. Dynamic Programming 3. Problem of the Day 4. Application

More information

ALGORITHM DESIGN DYNAMIC PROGRAMMING. University of Waterloo

ALGORITHM DESIGN DYNAMIC PROGRAMMING. University of Waterloo ALGORITHM DESIGN DYNAMIC PROGRAMMING University of Waterloo LIST OF SLIDES 1-1 List of Slides 1 2 Dynamic Programming Approach 3 Fibonacci Sequence (cont.) 4 Fibonacci Sequence (cont.) 5 Bottom-Up vs.

More information

Computer Science 385 Analysis of Algorithms Siena College Spring Topic Notes: Divide and Conquer

Computer Science 385 Analysis of Algorithms Siena College Spring Topic Notes: Divide and Conquer Computer Science 385 Analysis of Algorithms Siena College Spring 2011 Topic Notes: Divide and Conquer Divide and-conquer is a very common and very powerful algorithm design technique. The general idea:

More information

1. (a) O(log n) algorithm for finding the logical AND of n bits with n processors

1. (a) O(log n) algorithm for finding the logical AND of n bits with n processors 1. (a) O(log n) algorithm for finding the logical AND of n bits with n processors on an EREW PRAM: See solution for the next problem. Omit the step where each processor sequentially computes the AND of

More information

Memoization/Dynamic Programming. The String reconstruction problem. CS124 Lecture 11 Spring 2018

Memoization/Dynamic Programming. The String reconstruction problem. CS124 Lecture 11 Spring 2018 CS124 Lecture 11 Spring 2018 Memoization/Dynamic Programming Today s lecture discusses memoization, which is a method for speeding up algorithms based on recursion, by using additional memory to remember

More information

Algorithms IV. Dynamic Programming. Guoqiang Li. School of Software, Shanghai Jiao Tong University

Algorithms IV. Dynamic Programming. Guoqiang Li. School of Software, Shanghai Jiao Tong University Algorithms IV Dynamic Programming Guoqiang Li School of Software, Shanghai Jiao Tong University Dynamic Programming Shortest Paths in Dags, Revisited Shortest Paths in Dags, Revisited The special distinguishing

More information