CHAPTER 3 FUZZY INFERENCE SYSTEM

Size: px
Start display at page:

Download "CHAPTER 3 FUZZY INFERENCE SYSTEM"

Transcription

1 CHAPTER 3 FUZZY INFERENCE SYSTEM Fuzzy inference is the process of formulating the mapping from a given input to an output using fuzzy logic. There are three types of fuzzy inference system that can be implemented in fuzzy logic tool box: Mamdani-type, Sugeno-type and The Standard Additive Model (SAM). We applied Mamdani model to solve the temperature control problem. [3.1]. THE MAMDANI MODEL. Mamdani model is one of the most useful models which consist of the following rules that describe a mapping from U 1 x U 2 xu 3. U n to W. is and is and is Then is (3.1) Where ( J=1,2,..n) are the input variables, y is the output variable and and are fuzzy sets for and y respectively. Given inputs of the form:, where. are fuzzy subsets of U 1, U 2,U 3. U n, the contribution of rule R i to a mamdani model s output is a fuzzy set whose membership function is computed by (3.2) Where α i is known as matching degree of rule R i and is the matching degree between x J and R i S condition respect to x J. ( ) (3.3) 73

2 the operator ^ denotes the min operator. The final output of the model is the aggregation of outputs from all rules using the max operator: (3.4) The output results are fuzzy outputs that could be defuzzified into crisp output by using defuzzification methods.[49],[50] [3.2]. THE TSK MODEL. The Takagi-Sugeno-Kang (TSK) model was introduced by T.Takagi and M.Sugeno.This model reduce the number of rules required by Mamdani model, specially for complex and high dimensional problems. To achieve this goal, the TSK model replaces the fuzzy sets in the consequent part (then-part) of the Mamdani rule with a linear equation of the input variables, For example Two input and one output TSK model consist of rules in the form of IF x is and y is THEN z = ax+by+c (3.5) Where a,b,c are numerical constants. In general, rules in a TSK model have the form IF is and y is THEN y = (,,.. ) = (3.6) Where is the linear model and are real valued parameters. The inference performed by the TSK model is an interpolation of all the relevant linear models. The degree of relevance of a linear model is determined by the degree the input data belongs to the fuzzy subspace associated with the linear model. These degree of relevance become the weight in the interpolation process. 74

3 The total output of the model is given by the equation below where αi is the matching degree of rule Ri, which is analogous to the matching degree of the Mamdani model (3.7) The inputs to a TSK model are crisp (non fuzzy) numbers. Therefore, the degree the input x 1 = a 1, x 2 =a 2, x r = a r, matches i th rule is typically computed using the min operator: (3.8) However the product operator can be used : = x (3.9) Let us consider a TSK model consisting of the following three rules : IF x is Small THEN y = L 1 (x), IF x is Medium THEN y= L 2 (x), (3.10) IF x is Large THEN y= L 3 (x), The output of such a model is (3.11) The TSK model provides a powerful tool for modeling complex systems. It can express highly nonlinear function using a small number of rules. The potential applicaton of TSK models, hence is very broad. The great advantage of the TSK model is its representative power; it can describe a highly nonlinear system using a small number of rules. 75

4 Moreover, due to the explicit functional representation form, it is convenient to identify its parameters using some learning algorithms.[51] [3.3].THE STANDARD ADDITIVE MODEL (SAM) The structure of fuzzy rules in SAM is identical to that of the Mamdani model. It was introduced by B.Kosko [52].There are four differences between the inference scheme of these two models: (1) SAM assumes the inputs are crisp, while while Mamdani model handles both crisp and fuzzy inputs. (2) SAM uses the scaling inference method while Mamdani uses the clipping method. (3) SAM uses addition to combine the conclusion of fuzzy rules, while the mamdani model uses max. (4) SAM includes the centroid defuzzification technique, while the Mamdani model does not insist on a specific defuzzification method. Let us consider a standard Additive model consisting of rules of the form of IF x is AND y is THEN z is. (3.12) Given crisp inputs x= x 0, y = y 0, the output of the model is x x (3.13) Where centroid is the function that performs the centroid defuzzification. This is formerly stated in the theorms below Theorem: Suppose a SAM model that describes a mapping from U x W to W contains rules in the form of IF x is and y is THEN z is. Then the model s output from the inputs x=x 0 ; y = y 0 is 76

5 (3.14) Where A i is the are under the i th rules.conclusion C i and g i is the centroid of C i (center of gravity) : (3.15) If z is a continuous variable. [3.4]. DESIGNING ANTECEDENT MEMBERSHIP FUNCTION. The membership functions of an input variable s fuzzy sets should usually be designed in such a way that the following two conditions are satisfied: (1) Each membership function overlaps only with the closest neighboring membership functions; (2) for any possible input data, its membership value in all relevant fuzzy sets should sum to 1 or (nearly so) Let us use Ai to denote fuzzy sets of an input variable x. the two guidelines above may be expressed formally as the two equations below: 1: A i A j =ф (3.16) 2: µ Ai (x) 1 Two examples of membership functions that do not follow these design principles are shown in figs 3.1 and 3.2. Fig 3.1 obviously violets the second principle because the membership value 10 in three fuzzy sets do not sum to 1. i.e.,[50] (3.17) 77

6 Figure 3.1 that violets the second principle Figure 3.2 violets both design principles beccause A1 A3 ф Two example of membership function that follows these two guide lines are shown in figure 3.3 and 3.4. The former uses five symmetric membership functions, whereas the latter uses five asymmetric membership functions. 78

7 Fig 3.3 A Symmetric Membership Function Design Following the guidelines Fig 3.4 An Asymmetric membership function design following the guidelines [3.4]. BINARY FUZZY RELATIONS Composition of binary fuzzy relations can be performed conveniently in terms of membership matrices of the relations. Let [ ], [ ] 79

8 and [ ] be membership matrices of binary relations such that R = P0Q. We can then write, using this matrix notation, (i) (ii) Fig 3.5 Example of two convenient representation of a fuzzy binary relation: (i) sagital diagram (ii) membership matrix [ ] [ ] [ ] Where (3.18) 80

9 observe that the same elements of P and Q are used in the calculation of R as would be used in the regular multiplication of matrices, but the product and sum operations are here replaced with the min and max operations, respectively.[53] The following matrix equation illustrates the use of Eq to perform the standard composition of two binary fuzzy relations represented by their membership functions: For example,.8(= ) = max[min(.3,.9), min(.5,.3), min(.8,1)] = max[min(, ),min(, ), min (, )],.4(= ) = max[min(.4,.5), min(.6,.2), min(.5,0)] = max[min(,, min(, ), min (, )] A similar operation on two binary relations, which differs from the composition in that it yield triples instead of pairs, is known as the relation join. For fuzzy relations P(X,Y) and Q(Y,Z), the relational join, P*Q, corresponding to the standard max-min composition is a ternary relation R(X,Y,Z) defined by R(x, y, z) = [P*Q](x,y,z) = min[p(x,y), Q(y,z)] (3.19) For each xєx, yєy, and zєz. 81

10 The fact that the relational join produces a ternary relation from two binary relations is a major differences from the composition, which results in another binary relation. In fact, the max-min composition is obtained by aggregating appropriate elements of the corresponding (i) (ii) 82

11 (iii) Figure 3.6 composition and join of binary relation. Join by the max operator. Formally, [PoQ](x,z) = max[p*q](x,y,z) (3.20) For each xєx, and zєz. [3.5].TEMPERATURE CONTROL PROBLEM. We want to control the room temperature by air flow mixing. The amount of hot air flow and cold air flow is controlled by adjusting the voltage to the pump in the mixing stage. The lowest and highest voltage settings are denoted by V1 and V2. If the voltage is set at V1, maximal cold air flow will be allowed. If the voltage is set at V2, maximal hot air flow will be generated. A voltage between V1 and V2 mixes the hot flow and cold flow proportionally. Rules for the problem are R1: If K is Low Then V=V 1 R2: If K is High Then V=V 2 (3.21) 83

12 Fig 3.7 Temperature control system Rule viewer for the problem is as follows Fig 3.8 MATLAB generated rule viewer for The algorithm of fuzzy rule-based inference consists of four basic steps 1.Fuzzy Matching: Calculate the degree to which the input data match the condition of the fuzzy rules. 2.Inference: Calculate the rule s conclusion based on its matching degree. 84

13 3.Combination: Combine the conclusion inferred by all fuzzy rules in to a final conclusion. 4.Defuzzification: It is a process to convert a fuzzy conclusion into a crisp one. Fuzzy Matching: Let us consider fuzzy matching for the flow mixing control rules. The degree to which the input target temperature satisfies the condition of rule R1 target temperature is Low is the same as the degree to which the input target temperature K belongs to the fuzzy set Low. For the convenience we denote the degree of matching between input data and rule R as Matching Degree(I,R).Thus We can conclude Matching Degree( K,R1)= µlow(k) Matching Degree(K,R2)= µhigh(k) Let the input target temperature is 37 0 C i.e. K=37 0 C Fig 3.9 Showing the matching degree 85

14 When a rule has multiple conditions combined using AND (conjuction), we simply use a fuzzy conjunction operator to combine the matching degree of each condition. In general, the degree to which a rule in the form of Matches the input data Is computed by the following formula: (3.22) Inference: After the fuzzy matching step, a fuzzy inference step is invoked for each of the relevant rules to produce a conclusion based on their matching degree. There are two methods to produce the conclusion: (1) Clipping method and (2) scaling method. Both methods generate an inferred conclusion by suppressing the membership function of the consequent. The extent to which they suppress the membership function depends on the degree to which the rule is matched. Fig 3.10 Showing the working of clipping method 86

15 The clipping method cuts off the top of the membership function whose value is higher then the matching degree. In the case of a crisp consequent, the two methods degenerate into an identical one. We recall the rules for the problem R1: If K is Low Then V=V 1 R2: If K is High Then V=V 2 To apply fuzzy inference to these rules with crisp consequents, we need to first convert them into an equivalent fuzzy set representation. For instance, the crisp value V 1 is equivalent to a membership function that assigns value 1 to V 1, and 0 to all other values as shown in figure. Similarly, we can construct the membership function of the crisp value V 2 as shown in figure Fig 3.11 Membership function for crisp values of v1 and v2 It is then straightforward to show that the conclusion V=V 3 inferred by rule R 1 and the conclusion V=V 4 inferred by R 2 have the following membership function for clipping method: (3.23) 87

16 Figure illustrates this for R 3 and a target temperature that is 0.7 degree in the fuzzy set Low. Hence the conclusion inferred by R 3 in this case is Fig 3.12 Fuzzy inference Combining fuzzy Conclusions: A fuzzy rule-based system consists of a set of fuzzy rules with partially overlapping conditions, a particular input to the system often triggers multiple fuzzy rules. Therefore, a third step is needed to combine the inference results of these rules. This is done by superimposing all fuzzy conclusions about a variable. Combining Fuzzy conclusions through superimposition is based on applying the max fuzzy disjunction operator to multiple possibilitybdistributions of the output variable 88

17 Fig 3.13 Output voltage with respect to input temperature Fig 3.14 Showing the control of temperature by voltage supply 89

18 Defuzzification: This is the process to convert fuzzy input into a crisp one. We apply the Center of Area (COA) or Centroid method to get crisp output. This method calculates the weighted average of a fuzzy set (John Yen,Reza Langari et al. 2007).The result of applying COA defuzzification to a fuzzy conclusion Y is A can be expressed by the formula (3.24) If y is discrete and by the formula (3.25) If y is continous Fig 3.15 Fig showing the defuzzified value Putting All Four Steps Together: The result of combining all four steps together is shown in figure. 90

19 Fig 3.16 Showing the overall working of fuzzy system (3.26) The defuzzified output for the flow mixing controller can be expressed as a function of the input target temperature using the above formula. 91

Fuzzy if-then rules fuzzy database modeling

Fuzzy if-then rules fuzzy database modeling Fuzzy if-then rules Associates a condition described using linguistic variables and fuzzy sets to a conclusion A scheme for capturing knowledge that involves imprecision 23.11.2010 1 fuzzy database modeling

More information

Fuzzy If-Then Rules. Fuzzy If-Then Rules. Adnan Yazıcı

Fuzzy If-Then Rules. Fuzzy If-Then Rules. Adnan Yazıcı Fuzzy If-Then Rules Adnan Yazıcı Dept. of Computer Engineering, Middle East Technical University Ankara/Turkey Fuzzy If-Then Rules There are two different kinds of fuzzy rules: Fuzzy mapping rules and

More information

Introduction 3 Fuzzy Inference. Aleksandar Rakić Contents

Introduction 3 Fuzzy Inference. Aleksandar Rakić Contents Beograd ETF Fuzzy logic Introduction 3 Fuzzy Inference Aleksandar Rakić rakic@etf.rs Contents Mamdani Fuzzy Inference Fuzzification of the input variables Rule evaluation Aggregation of rules output Defuzzification

More information

Lecture notes. Com Page 1

Lecture notes. Com Page 1 Lecture notes Com Page 1 Contents Lectures 1. Introduction to Computational Intelligence 2. Traditional computation 2.1. Sorting algorithms 2.2. Graph search algorithms 3. Supervised neural computation

More information

MODELING FOR RESIDUAL STRESS, SURFACE ROUGHNESS AND TOOL WEAR USING AN ADAPTIVE NEURO FUZZY INFERENCE SYSTEM

MODELING FOR RESIDUAL STRESS, SURFACE ROUGHNESS AND TOOL WEAR USING AN ADAPTIVE NEURO FUZZY INFERENCE SYSTEM CHAPTER-7 MODELING FOR RESIDUAL STRESS, SURFACE ROUGHNESS AND TOOL WEAR USING AN ADAPTIVE NEURO FUZZY INFERENCE SYSTEM 7.1 Introduction To improve the overall efficiency of turning, it is necessary to

More information

Fuzzy Logic Controller

Fuzzy Logic Controller Fuzzy Logic Controller Debasis Samanta IIT Kharagpur dsamanta@iitkgp.ac.in 23.01.2016 Debasis Samanta (IIT Kharagpur) Soft Computing Applications 23.01.2016 1 / 34 Applications of Fuzzy Logic Debasis Samanta

More information

Lecture 5 Fuzzy expert systems: Fuzzy inference Mamdani fuzzy inference Sugeno fuzzy inference Case study Summary

Lecture 5 Fuzzy expert systems: Fuzzy inference Mamdani fuzzy inference Sugeno fuzzy inference Case study Summary Lecture 5 Fuzzy expert systems: Fuzzy inference Mamdani fuzzy inference Sugeno fuzzy inference Case study Summary Negnevitsky, Pearson Education, 25 Fuzzy inference The most commonly used fuzzy inference

More information

Why Fuzzy Fuzzy Logic and Sets Fuzzy Reasoning. DKS - Module 7. Why fuzzy thinking?

Why Fuzzy Fuzzy Logic and Sets Fuzzy Reasoning. DKS - Module 7. Why fuzzy thinking? Fuzzy Systems Overview: Literature: Why Fuzzy Fuzzy Logic and Sets Fuzzy Reasoning chapter 4 DKS - Module 7 1 Why fuzzy thinking? Experts rely on common sense to solve problems Representation of vague,

More information

FUZZY INFERENCE SYSTEMS

FUZZY INFERENCE SYSTEMS CHAPTER-IV FUZZY INFERENCE SYSTEMS Fuzzy inference is the process of formulating the mapping from a given input to an output using fuzzy logic. The mapping then provides a basis from which decisions can

More information

FUZZY INFERENCE. Siti Zaiton Mohd Hashim, PhD

FUZZY INFERENCE. Siti Zaiton Mohd Hashim, PhD FUZZY INFERENCE Siti Zaiton Mohd Hashim, PhD Fuzzy Inference Introduction Mamdani-style inference Sugeno-style inference Building a fuzzy expert system 9/29/20 2 Introduction Fuzzy inference is the process

More information

CHAPTER 4 FREQUENCY STABILIZATION USING FUZZY LOGIC CONTROLLER

CHAPTER 4 FREQUENCY STABILIZATION USING FUZZY LOGIC CONTROLLER 60 CHAPTER 4 FREQUENCY STABILIZATION USING FUZZY LOGIC CONTROLLER 4.1 INTRODUCTION Problems in the real world quite often turn out to be complex owing to an element of uncertainty either in the parameters

More information

Chapter 7 Fuzzy Logic Controller

Chapter 7 Fuzzy Logic Controller Chapter 7 Fuzzy Logic Controller 7.1 Objective The objective of this section is to present the output of the system considered with a fuzzy logic controller to tune the firing angle of the SCRs present

More information

Speed regulation in fan rotation using fuzzy inference system

Speed regulation in fan rotation using fuzzy inference system 58 Scientific Journal of Maritime Research 29 (2015) 58-63 Faculty of Maritime Studies Rijeka, 2015 Multidisciplinary SCIENTIFIC JOURNAL OF MARITIME RESEARCH Multidisciplinarni znanstveni časopis POMORSTVO

More information

Fuzzy Expert Systems Lecture 8 (Fuzzy Systems)

Fuzzy Expert Systems Lecture 8 (Fuzzy Systems) Fuzzy Expert Systems Lecture 8 (Fuzzy Systems) Soft Computing is an emerging approach to computing which parallels the remarkable ability of the human mind to reason and learn in an environment of uncertainty

More information

CHAPTER 5 FUZZY LOGIC CONTROL

CHAPTER 5 FUZZY LOGIC CONTROL 64 CHAPTER 5 FUZZY LOGIC CONTROL 5.1 Introduction Fuzzy logic is a soft computing tool for embedding structured human knowledge into workable algorithms. The idea of fuzzy logic was introduced by Dr. Lofti

More information

CHAPTER 4 FUZZY LOGIC, K-MEANS, FUZZY C-MEANS AND BAYESIAN METHODS

CHAPTER 4 FUZZY LOGIC, K-MEANS, FUZZY C-MEANS AND BAYESIAN METHODS CHAPTER 4 FUZZY LOGIC, K-MEANS, FUZZY C-MEANS AND BAYESIAN METHODS 4.1. INTRODUCTION This chapter includes implementation and testing of the student s academic performance evaluation to achieve the objective(s)

More information

ARTIFICIAL INTELLIGENCE. Uncertainty: fuzzy systems

ARTIFICIAL INTELLIGENCE. Uncertainty: fuzzy systems INFOB2KI 2017-2018 Utrecht University The Netherlands ARTIFICIAL INTELLIGENCE Uncertainty: fuzzy systems Lecturer: Silja Renooij These slides are part of the INFOB2KI Course Notes available from www.cs.uu.nl/docs/vakken/b2ki/schema.html

More information

Fuzzy rule-based decision making model for classification of aquaculture farms

Fuzzy rule-based decision making model for classification of aquaculture farms Chapter 6 Fuzzy rule-based decision making model for classification of aquaculture farms This chapter presents the fundamentals of fuzzy logic, and development, implementation and validation of a fuzzy

More information

FUZZY LOGIC TECHNIQUES. on random processes. In such situations, fuzzy logic exhibits immense potential for

FUZZY LOGIC TECHNIQUES. on random processes. In such situations, fuzzy logic exhibits immense potential for FUZZY LOGIC TECHNIQUES 4.1: BASIC CONCEPT Problems in the real world are quite often very complex due to the element of uncertainty. Although probability theory has been an age old and effective tool to

More information

Dinner for Two, Reprise

Dinner for Two, Reprise Fuzzy Logic Toolbox Dinner for Two, Reprise In this section we provide the same two-input, one-output, three-rule tipping problem that you saw in the introduction, only in more detail. The basic structure

More information

CHAPTER 3 ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM

CHAPTER 3 ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM 33 CHAPTER 3 ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM The objective of an ANFIS (Jang 1993) is to integrate the best features of Fuzzy Systems and Neural Networks. ANFIS is one of the best tradeoffs between

More information

SOLUTION: 1. First define the temperature range, e.g. [0 0,40 0 ].

SOLUTION: 1. First define the temperature range, e.g. [0 0,40 0 ]. 2. 2. USING MATLAB Fuzzy Toolbox GUI PROBLEM 2.1. Let the room temperature T be a fuzzy variable. Characterize it with three different (fuzzy) temperatures: cold,warm, hot. SOLUTION: 1. First define the

More information

A Brief Idea on Fuzzy and Crisp Sets

A Brief Idea on Fuzzy and Crisp Sets International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) A Brief Idea on Fuzzy and Crisp Sets Rednam SS Jyothi 1, Eswar Patnala 2, K.Asish Vardhan 3 (Asst.Prof(c),Information Technology,

More information

Fuzzy logic controllers

Fuzzy logic controllers Fuzzy logic controllers Digital fuzzy logic controllers Doru Todinca Department of Computers and Information Technology UPT Outline Hardware implementation of fuzzy inference The general scheme of the

More information

Fuzzy Set, Fuzzy Logic, and its Applications

Fuzzy Set, Fuzzy Logic, and its Applications Sistem Cerdas (TE 4485) Fuzzy Set, Fuzzy Logic, and its pplications Instructor: Thiang Room: I.201 Phone: 031-2983115 Email: thiang@petra.ac.id Sistem Cerdas: Fuzzy Set and Fuzzy Logic - 1 Introduction

More information

CHAPTER 6 SOLUTION TO NETWORK TRAFFIC PROBLEM IN MIGRATING PARALLEL CRAWLERS USING FUZZY LOGIC

CHAPTER 6 SOLUTION TO NETWORK TRAFFIC PROBLEM IN MIGRATING PARALLEL CRAWLERS USING FUZZY LOGIC CHAPTER 6 SOLUTION TO NETWORK TRAFFIC PROBLEM IN MIGRATING PARALLEL CRAWLERS USING FUZZY LOGIC 6.1 Introduction The properties of the Internet that make web crawling challenging are its large amount of

More information

Development of a Generic and Configurable Fuzzy Logic Systems Library for Real-Time Control Applications using an Object-oriented Approach

Development of a Generic and Configurable Fuzzy Logic Systems Library for Real-Time Control Applications using an Object-oriented Approach 2018 Second IEEE International Conference on Robotic Computing Development of a Generic and Configurable Fuzzy Logic Systems Library for Real-Time Control Applications using an Object-oriented Approach

More information

7. Decision Making

7. Decision Making 7. Decision Making 1 7.1. Fuzzy Inference System (FIS) Fuzzy inference is the process of formulating the mapping from a given input to an output using fuzzy logic. Fuzzy inference systems have been successfully

More information

Machine Learning & Statistical Models

Machine Learning & Statistical Models Astroinformatics Machine Learning & Statistical Models Neural Networks Feed Forward Hybrid Decision Analysis Decision Trees Random Decision Forests Evolving Trees Minimum Spanning Trees Perceptron Multi

More information

Fuzzy Systems (1/2) Francesco Masulli

Fuzzy Systems (1/2) Francesco Masulli (1/2) Francesco Masulli DIBRIS - University of Genova, ITALY & S.H.R.O. - Sbarro Institute for Cancer Research and Molecular Medicine Temple University, Philadelphia, PA, USA email: francesco.masulli@unige.it

More information

fuzzylite a fuzzy logic control library in C++

fuzzylite a fuzzy logic control library in C++ fuzzylite a fuzzy logic control library in C++ Juan Rada-Vilela jcrada@fuzzylite.com Abstract Fuzzy Logic Controllers (FLCs) are software components found nowadays within well-known home appliances such

More information

What is all the Fuzz about?

What is all the Fuzz about? What is all the Fuzz about? Fuzzy Systems CPSC 433 Christian Jacob Dept. of Computer Science Dept. of Biochemistry & Molecular Biology University of Calgary Fuzzy Systems in Knowledge Engineering Fuzzy

More information

CHAPTER 3 FUZZY RELATION and COMPOSITION

CHAPTER 3 FUZZY RELATION and COMPOSITION CHAPTER 3 FUZZY RELATION and COMPOSITION The concept of fuzzy set as a generalization of crisp set has been introduced in the previous chapter. Relations between elements of crisp sets can be extended

More information

Fuzzy Networks for Complex Systems. Alexander Gegov University of Portsmouth, UK

Fuzzy Networks for Complex Systems. Alexander Gegov University of Portsmouth, UK Fuzzy Networks for Complex Systems Alexander Gegov University of Portsmouth, UK alexander.gegov@port.ac.uk Presentation Outline Introduction Types of Fuzzy Systems Formal Models for Fuzzy Networks Basic

More information

CHAPTER 8 ANFIS MODELING OF FLANK WEAR 8.1 AISI M2 HSS TOOLS

CHAPTER 8 ANFIS MODELING OF FLANK WEAR 8.1 AISI M2 HSS TOOLS CHAPTER 8 ANFIS MODELING OF FLANK WEAR 8.1 AISI M2 HSS TOOLS Control surface as shown in Figs. 8.1 8.3 gives the interdependency of input, and output parameters guided by the various rules in the given

More information

INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET)

INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET) INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET) ISSN 0976 6367(Print) ISSN 0976 6375(Online) Volume 3, Issue 2, July- September (2012), pp. 157-166 IAEME: www.iaeme.com/ijcet.html Journal

More information

Exercise Solution: A Fuzzy Controller for the Pole Balancing Problem

Exercise Solution: A Fuzzy Controller for the Pole Balancing Problem Exercise Solution: A Fuzzy Controller for the Pole Balancing Problem Advanced Control lecture at Ecole Centrale Paris Anne Auger and Dimo Brockhoff firstname.lastname@inria.fr Jan 8, 23 Abstract After

More information

In the Name of God. Lecture 17: ANFIS Adaptive Network-Based Fuzzy Inference System

In the Name of God. Lecture 17: ANFIS Adaptive Network-Based Fuzzy Inference System In the Name of God Lecture 17: ANFIS Adaptive Network-Based Fuzzy Inference System Outline ANFIS Architecture Hybrid Learning Algorithm Learning Methods that Cross-Fertilize ANFIS and RBFN ANFIS as a universal

More information

VHDL framework for modeling fuzzy automata

VHDL framework for modeling fuzzy automata Doru Todinca Daniel Butoianu Department of Computers Politehnica University of Timisoara SYNASC 2012 Outline Motivation 1 Motivation Why fuzzy automata? Why a framework for modeling FA? Why VHDL? 2 Fuzzy

More information

Chapter 4 Fuzzy Logic

Chapter 4 Fuzzy Logic 4.1 Introduction Chapter 4 Fuzzy Logic The human brain interprets the sensory information provided by organs. Fuzzy set theory focus on processing the information. Numerical computation can be performed

More information

FUZZY SYSTEMS: Basics using MATLAB Fuzzy Toolbox. Heikki N. Koivo

FUZZY SYSTEMS: Basics using MATLAB Fuzzy Toolbox. Heikki N. Koivo FUZZY SYSTEMS: Basics using MATLAB Fuzzy Toolbox By Heikki N. Koivo 200 2.. Fuzzy sets Membership functions Fuzzy set Universal discourse U set of elements, {u}. Fuzzy set F in universal discourse U: Membership

More information

Aircraft Landing Control Using Fuzzy Logic and Neural Networks

Aircraft Landing Control Using Fuzzy Logic and Neural Networks Aircraft Landing Control Using Fuzzy Logic and Neural Networks Elvira Lakovic Intelligent Embedded Systems elc10001@student.mdh.se Damir Lotinac Intelligent Embedded Systems dlc10001@student.mdh.se ABSTRACT

More information

A New Fuzzy Neural System with Applications

A New Fuzzy Neural System with Applications A New Fuzzy Neural System with Applications Yuanyuan Chai 1, Jun Chen 1 and Wei Luo 1 1-China Defense Science and Technology Information Center -Network Center Fucheng Road 26#, Haidian district, Beijing

More information

Lotfi Zadeh (professor at UC Berkeley) wrote his original paper on fuzzy set theory. In various occasions, this is what he said

Lotfi Zadeh (professor at UC Berkeley) wrote his original paper on fuzzy set theory. In various occasions, this is what he said FUZZY LOGIC Fuzzy Logic Lotfi Zadeh (professor at UC Berkeley) wrote his original paper on fuzzy set theory. In various occasions, this is what he said Fuzzy logic is a means of presenting problems to

More information

A Software Tool: Type-2 Fuzzy Logic Toolbox

A Software Tool: Type-2 Fuzzy Logic Toolbox A Software Tool: Type-2 Fuzzy Logic Toolbox MUZEYYEN BULUT OZEK, ZUHTU HAKAN AKPOLAT Firat University, Technical Education Faculty, Department of Electronics and Computer Science, 23119 Elazig, Turkey

More information

ANFIS: ADAPTIVE-NETWORK-BASED FUZZY INFERENCE SYSTEMS (J.S.R. Jang 1993,1995) bell x; a, b, c = 1 a

ANFIS: ADAPTIVE-NETWORK-BASED FUZZY INFERENCE SYSTEMS (J.S.R. Jang 1993,1995) bell x; a, b, c = 1 a ANFIS: ADAPTIVE-NETWORK-ASED FUZZ INFERENCE SSTEMS (J.S.R. Jang 993,995) Membership Functions triangular triangle( ; a, a b, c c) ma min = b a, c b, 0, trapezoidal trapezoid( ; a, b, a c, d d) ma min =

More information

Figure 2-1: Membership Functions for the Set of All Numbers (N = Negative, P = Positive, L = Large, M = Medium, S = Small)

Figure 2-1: Membership Functions for the Set of All Numbers (N = Negative, P = Positive, L = Large, M = Medium, S = Small) Fuzzy Sets and Pattern Recognition Copyright 1998 R. Benjamin Knapp Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that

More information

CHAPTER 3 A FAST K-MODES CLUSTERING ALGORITHM TO WAREHOUSE VERY LARGE HETEROGENEOUS MEDICAL DATABASES

CHAPTER 3 A FAST K-MODES CLUSTERING ALGORITHM TO WAREHOUSE VERY LARGE HETEROGENEOUS MEDICAL DATABASES 70 CHAPTER 3 A FAST K-MODES CLUSTERING ALGORITHM TO WAREHOUSE VERY LARGE HETEROGENEOUS MEDICAL DATABASES 3.1 INTRODUCTION In medical science, effective tools are essential to categorize and systematically

More information

Fuzzy Reasoning. Outline

Fuzzy Reasoning. Outline Fuzzy Reasoning Outline Introduction Bivalent & Multivalent Logics Fundamental fuzzy concepts Fuzzification Defuzzification Fuzzy Expert System Neuro-fuzzy System Introduction Fuzzy concept first introduced

More information

Neural Networks Lesson 9 - Fuzzy Logic

Neural Networks Lesson 9 - Fuzzy Logic Neural Networks Lesson 9 - Prof. Michele Scarpiniti INFOCOM Dpt. - Sapienza University of Rome http://ispac.ing.uniroma1.it/scarpiniti/index.htm michele.scarpiniti@uniroma1.it Rome, 26 November 2009 M.

More information

EVALUATION FUZZY NUMBERS BASED ON RMS

EVALUATION FUZZY NUMBERS BASED ON RMS EVALUATION FUZZY NUMBERS BASED ON RMS *Adel Asgari Safdar Young Researchers and Elite Club, Baft Branch, Islamic Azad University, Baft, Iran *Author for Correspondence ABSTRACT We suggest a new approach

More information

Unit 7. Fuzzy Control with Examples. Module FUZ; Ulrich Bodenhofer 186

Unit 7. Fuzzy Control with Examples. Module FUZ; Ulrich Bodenhofer 186 Unit 7 Fuzzy Control with Examples Module FUZ; Ulrich Bodenhofer 186 What is Fuzzy Control? Control is the continuous adaptation of parameters that influence a dynamic system with the aim to achieve a

More information

Identification of Vehicle Class and Speed for Mixed Sensor Technology using Fuzzy- Neural & Genetic Algorithm : A Design Approach

Identification of Vehicle Class and Speed for Mixed Sensor Technology using Fuzzy- Neural & Genetic Algorithm : A Design Approach Identification of Vehicle Class and Speed for Mixed Sensor Technology using Fuzzy- Neural & Genetic Algorithm : A Design Approach Prashant Sharma, Research Scholar, GHRCE, Nagpur, India, Dr. Preeti Bajaj,

More information

CHAPTER - 3 FUZZY SET THEORY AND MULTI CRITERIA DECISION MAKING

CHAPTER - 3 FUZZY SET THEORY AND MULTI CRITERIA DECISION MAKING CHAPTER - 3 FUZZY SET THEORY AND MULTI CRITERIA DECISION MAKING 3.1 Introduction Construction industry consists of broad range of equipment and these are required at different points of the execution period.

More information

E-Companion: On Styles in Product Design: An Analysis of US. Design Patents

E-Companion: On Styles in Product Design: An Analysis of US. Design Patents E-Companion: On Styles in Product Design: An Analysis of US Design Patents 1 PART A: FORMALIZING THE DEFINITION OF STYLES A.1 Styles as categories of designs of similar form Our task involves categorizing

More information

On the use of Fuzzy Logic Controllers to Comply with Virtualized Application Demands in the Cloud

On the use of Fuzzy Logic Controllers to Comply with Virtualized Application Demands in the Cloud On the use of Fuzzy Logic Controllers to Comply with Virtualized Application Demands in the Cloud Kyriakos M. Deliparaschos Cyprus University of Technology k.deliparaschos@cut.ac.cy Themistoklis Charalambous

More information

Chapter 2: FUZZY SETS

Chapter 2: FUZZY SETS Ch.2: Fuzzy sets 1 Chapter 2: FUZZY SETS Introduction (2.1) Basic Definitions &Terminology (2.2) Set-theoretic Operations (2.3) Membership Function (MF) Formulation & Parameterization (2.4) Complement

More information

4 Integer Linear Programming (ILP)

4 Integer Linear Programming (ILP) TDA6/DIT37 DISCRETE OPTIMIZATION 17 PERIOD 3 WEEK III 4 Integer Linear Programg (ILP) 14 An integer linear program, ILP for short, has the same form as a linear program (LP). The only difference is that

More information

Fuzzy Sets and Fuzzy Logic

Fuzzy Sets and Fuzzy Logic Fuzzy Sets and Fuzzy Logic KR Chowdhary, Professor, Department of Computer Science & Engineering, MBM Engineering College, JNV University, Jodhpur, Email: Outline traditional logic : {true,false} Crisp

More information

Introduction 2 Fuzzy Sets & Fuzzy Rules. Aleksandar Rakić Contents

Introduction 2 Fuzzy Sets & Fuzzy Rules. Aleksandar Rakić Contents Beograd ETF Fuzzy logic Introduction 2 Fuzzy Sets & Fuzzy Rules Aleksandar Rakić rakic@etf.rs Contents Characteristics of Fuzzy Sets Operations Properties Fuzzy Rules Examples 2 1 Characteristics of Fuzzy

More information

Discrete Optimization. Lecture Notes 2

Discrete Optimization. Lecture Notes 2 Discrete Optimization. Lecture Notes 2 Disjunctive Constraints Defining variables and formulating linear constraints can be straightforward or more sophisticated, depending on the problem structure. The

More information

Notes on Fuzzy Set Ordination

Notes on Fuzzy Set Ordination Notes on Fuzzy Set Ordination Umer Zeeshan Ijaz School of Engineering, University of Glasgow, UK Umer.Ijaz@glasgow.ac.uk http://userweb.eng.gla.ac.uk/umer.ijaz May 3, 014 1 Introduction The membership

More information

AN APPROXIMATION APPROACH FOR RANKING FUZZY NUMBERS BASED ON WEIGHTED INTERVAL - VALUE 1.INTRODUCTION

AN APPROXIMATION APPROACH FOR RANKING FUZZY NUMBERS BASED ON WEIGHTED INTERVAL - VALUE 1.INTRODUCTION Mathematical and Computational Applications, Vol. 16, No. 3, pp. 588-597, 2011. Association for Scientific Research AN APPROXIMATION APPROACH FOR RANKING FUZZY NUMBERS BASED ON WEIGHTED INTERVAL - VALUE

More information

CHAPTER 3 FUZZY RULE BASED MODEL FOR FAULT DIAGNOSIS

CHAPTER 3 FUZZY RULE BASED MODEL FOR FAULT DIAGNOSIS 39 CHAPTER 3 FUZZY RULE BASED MODEL FOR FAULT DIAGNOSIS 3.1 INTRODUCTION Development of mathematical models is essential for many disciplines of engineering and science. Mathematical models are used for

More information

Fuzzy Segmentation. Chapter Introduction. 4.2 Unsupervised Clustering.

Fuzzy Segmentation. Chapter Introduction. 4.2 Unsupervised Clustering. Chapter 4 Fuzzy Segmentation 4. Introduction. The segmentation of objects whose color-composition is not common represents a difficult task, due to the illumination and the appropriate threshold selection

More information

Subspace Clustering with Global Dimension Minimization And Application to Motion Segmentation

Subspace Clustering with Global Dimension Minimization And Application to Motion Segmentation Subspace Clustering with Global Dimension Minimization And Application to Motion Segmentation Bryan Poling University of Minnesota Joint work with Gilad Lerman University of Minnesota The Problem of Subspace

More information

Defect Depth Estimation Using Neuro-Fuzzy System in TNDE by Akbar Darabi and Xavier Maldague

Defect Depth Estimation Using Neuro-Fuzzy System in TNDE by Akbar Darabi and Xavier Maldague Defect Depth Estimation Using Neuro-Fuzzy System in TNDE by Akbar Darabi and Xavier Maldague Electrical Engineering Dept., Université Laval, Quebec City (Quebec) Canada G1K 7P4, E-mail: darab@gel.ulaval.ca

More information

Matrix Inference in Fuzzy Decision Trees

Matrix Inference in Fuzzy Decision Trees Matrix Inference in Fuzzy Decision Trees Santiago Aja-Fernández LPI, ETSIT Telecomunicación University of Valladolid, Spain sanaja@tel.uva.es Carlos Alberola-López LPI, ETSIT Telecomunicación University

More information

Fuzzy logic-based image fusion for multi-view through-the-wall radar

Fuzzy logic-based image fusion for multi-view through-the-wall radar University of Wollongong Research Online Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information Sciences 1 Fuzzy logic-based image fusion for multi-view through-the-wall radar

More information

Simple Linear Interpolation Explains All Usual Choices in Fuzzy Techniques: Membership Functions, t-norms, t-conorms, and Defuzzification

Simple Linear Interpolation Explains All Usual Choices in Fuzzy Techniques: Membership Functions, t-norms, t-conorms, and Defuzzification Simple Linear Interpolation Explains All Usual Choices in Fuzzy Techniques: Membership Functions, t-norms, t-conorms, and Defuzzification Vladik Kreinovich, Jonathan Quijas, Esthela Gallardo, Caio De Sa

More information

Dra. Ma. del Pilar Gómez Gil Primavera 2014

Dra. Ma. del Pilar Gómez Gil Primavera 2014 C291-78 Tópicos Avanzados: Inteligencia Computacional I Introducción a la Lógica Difusa Dra. Ma. del Pilar Gómez Gil Primavera 2014 pgomez@inaoep.mx Ver: 08-Mar-2016 1 Este material ha sido tomado de varias

More information

by conservation of flow, hence the cancelation. Similarly, we have

by conservation of flow, hence the cancelation. Similarly, we have Chapter 13: Network Flows and Applications Network: directed graph with source S and target T. Non-negative edge weights represent capacities. Assume no edges into S or out of T. (If necessary, we can

More information

Computational Intelligence Lecture 12:Linguistic Variables and Fuzzy Rules

Computational Intelligence Lecture 12:Linguistic Variables and Fuzzy Rules Computational Intelligence Lecture 12:Linguistic Variables and Fuzzy Rules Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Fall 2011 Farzaneh Abdollahi Computational

More information

TOOL WEAR CONDITION MONITORING IN TAPPING PROCESS BY FUZZY LOGIC

TOOL WEAR CONDITION MONITORING IN TAPPING PROCESS BY FUZZY LOGIC TOOL WEAR CONDITION MONITORING IN TAPPING PROCESS BY FUZZY LOGIC Ratchapon Masakasin, Department of Industrial Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900 E-mail: masakasin.r@gmail.com

More information

399 P a g e. Key words: Fuzzy sets, fuzzy assignment problem, Triangular fuzzy number, Trapezoidal fuzzy number ranking function.

399 P a g e. Key words: Fuzzy sets, fuzzy assignment problem, Triangular fuzzy number, Trapezoidal fuzzy number ranking function. Method For Solving Hungarian Assignment Problems Using Triangular And Trapezoidal Fuzzy Number Kadhirvel.K, Balamurugan.K Assistant Professor in Mathematics, T.K.Govt. Arts ollege, Vriddhachalam 606 001.

More information

A Proposition for using Mathematical Models Based on a Fuzzy System with Application

A Proposition for using Mathematical Models Based on a Fuzzy System with Application From the SelectedWorks of R. W. Hndoosh Winter October 1 2013 A Proposition for using Mathematical Models Based on a Fuzzy System with Application R. W. Hndoosh Available at: https://works.bepress.com/rw_hndoosh/1/

More information

Starting with FisPro

Starting with FisPro Starting with FisPro contact@fispro.org March 15, 2018 FisPro (Fuzzy Inference System Professional) allows to create fuzzy inference systems and to use them for reasoning purposes, especially for simulating

More information

FUZZY BOOLEAN ALGEBRAS AND LUKASIEWICZ LOGIC. Angel Garrido

FUZZY BOOLEAN ALGEBRAS AND LUKASIEWICZ LOGIC. Angel Garrido Acta Universitatis Apulensis ISSN: 1582-5329 No. 22/2010 pp. 101-111 FUZZY BOOLEAN ALGEBRAS AND LUKASIEWICZ LOGIC Angel Garrido Abstract. In this paper, we analyze the more adequate tools to solve many

More information

Fuzzy Reasoning. Linguistic Variables

Fuzzy Reasoning. Linguistic Variables Fuzzy Reasoning Linguistic Variables Linguistic variable is an important concept in fuzzy logic and plays a key role in its applications, especially in the fuzzy expert system Linguistic variable is a

More information

3 No-Wait Job Shops with Variable Processing Times

3 No-Wait Job Shops with Variable Processing Times 3 No-Wait Job Shops with Variable Processing Times In this chapter we assume that, on top of the classical no-wait job shop setting, we are given a set of processing times for each operation. We may select

More information

A control-based algorithm for rate adaption in MPEG-DASH

A control-based algorithm for rate adaption in MPEG-DASH A control-based algorithm for rate adaption in MPEG-DASH Dimitrios J. Vergados, Angelos Michalas, Aggeliki Sgora,2, and Dimitrios D. Vergados 2 Department of Informatics Engineering, Technological Educational

More information

Learning Fuzzy Rules Using Ant Colony Optimization Algorithms 1

Learning Fuzzy Rules Using Ant Colony Optimization Algorithms 1 Learning Fuzzy Rules Using Ant Colony Optimization Algorithms 1 Jorge Casillas, Oscar Cordón, Francisco Herrera Department of Computer Science and Artificial Intelligence, University of Granada, E-18071

More information

Fuzzy logic. 1. Introduction. 2. Fuzzy sets. Radosªaw Warzocha. Wrocªaw, February 4, Denition Set operations

Fuzzy logic. 1. Introduction. 2. Fuzzy sets. Radosªaw Warzocha. Wrocªaw, February 4, Denition Set operations Fuzzy logic Radosªaw Warzocha Wrocªaw, February 4, 2014 1. Introduction A fuzzy concept appearing in works of many philosophers, eg. Hegel, Nietzche, Marx and Engels, is a concept the value of which can

More information

Introduction to Fuzzy Logic and Fuzzy Systems Adel Nadjaran Toosi

Introduction to Fuzzy Logic and Fuzzy Systems Adel Nadjaran Toosi Introduction to Fuzzy Logic and Fuzzy Systems Adel Nadjaran Toosi Fuzzy Slide 1 Objectives What Is Fuzzy Logic? Fuzzy sets Membership function Differences between Fuzzy and Probability? Fuzzy Inference.

More information

A Comparative Study of Prediction of Inverse Kinematics Solution of 2-DOF, 3-DOF and 5-DOF Redundant Manipulators by ANFIS

A Comparative Study of Prediction of Inverse Kinematics Solution of 2-DOF, 3-DOF and 5-DOF Redundant Manipulators by ANFIS IJCS International Journal of Computer Science and etwork, Volume 3, Issue 5, October 2014 ISS (Online) : 2277-5420 www.ijcs.org 304 A Comparative Study of Prediction of Inverse Kinematics Solution of

More information

Unit V. Neural Fuzzy System

Unit V. Neural Fuzzy System Unit V Neural Fuzzy System 1 Fuzzy Set In the classical set, its characteristic function assigns a value of either 1 or 0 to each individual in the universal set, There by discriminating between members

More information

12 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 6, NO. 1, FEBRUARY An On-Line Self-Constructing Neural Fuzzy Inference Network and Its Applications

12 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 6, NO. 1, FEBRUARY An On-Line Self-Constructing Neural Fuzzy Inference Network and Its Applications 12 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 6, NO. 1, FEBRUARY 1998 An On-Line Self-Constructing Neural Fuzzy Inference Network Its Applications Chia-Feng Juang Chin-Teng Lin Abstract A self-constructing

More information

New Constructions of Non-Adaptive and Error-Tolerance Pooling Designs

New Constructions of Non-Adaptive and Error-Tolerance Pooling Designs New Constructions of Non-Adaptive and Error-Tolerance Pooling Designs Hung Q Ngo Ding-Zhu Du Abstract We propose two new classes of non-adaptive pooling designs The first one is guaranteed to be -error-detecting

More information

Cluster Analysis. Angela Montanari and Laura Anderlucci

Cluster Analysis. Angela Montanari and Laura Anderlucci Cluster Analysis Angela Montanari and Laura Anderlucci 1 Introduction Clustering a set of n objects into k groups is usually moved by the aim of identifying internally homogenous groups according to a

More information

What is all the Fuzz about?

What is all the Fuzz about? What is all the Fuzz about? Fuzzy Systems: Introduction CPSC 533 Christian Jacob Dept. of Computer Science Dept. of Biochemistry & Molecular Biology University of Calgary Fuzzy Systems in Knowledge Engineering

More information

Fuzzy Sets and Fuzzy Logic. KR Chowdhary, Professor, Department of Computer Science & Engineering, MBM Engineering College, JNV University, Jodhpur,

Fuzzy Sets and Fuzzy Logic. KR Chowdhary, Professor, Department of Computer Science & Engineering, MBM Engineering College, JNV University, Jodhpur, Fuzzy Sets and Fuzzy Logic KR Chowdhary, Professor, Department of Computer Science & Engineering, MBM Engineering College, JNV University, Jodhpur, Outline traditional logic : {true,false} Crisp Logic

More information

Fuzzy Sets and Systems. Lecture 2 (Fuzzy Sets) Bu- Ali Sina University Computer Engineering Dep. Spring 2010

Fuzzy Sets and Systems. Lecture 2 (Fuzzy Sets) Bu- Ali Sina University Computer Engineering Dep. Spring 2010 Fuzzy Sets and Systems Lecture 2 (Fuzzy Sets) Bu- Ali Sina University Computer Engineering Dep. Spring 2010 Fuzzy Sets Formal definition: A fuzzy set A in X (universal set) is expressed as a set of ordered

More information

Advanced Inference in Fuzzy Systems by Rule Base Compression

Advanced Inference in Fuzzy Systems by Rule Base Compression Mathware & Soft Computing 14 (2007), 201-216 Advanced Inference in Fuzzy Systems by Rule Base Compression A. Gegov 1 and N. Gobalakrishnan 2 1,2 University of Portsmouth, School of Computing, Buckingham

More information

Application of fuzzy set theory in image analysis. Nataša Sladoje Centre for Image Analysis

Application of fuzzy set theory in image analysis. Nataša Sladoje Centre for Image Analysis Application of fuzzy set theory in image analysis Nataša Sladoje Centre for Image Analysis Our topics for today Crisp vs fuzzy Fuzzy sets and fuzzy membership functions Fuzzy set operators Approximate

More information

ROUGH MEMBERSHIP FUNCTIONS: A TOOL FOR REASONING WITH UNCERTAINTY

ROUGH MEMBERSHIP FUNCTIONS: A TOOL FOR REASONING WITH UNCERTAINTY ALGEBRAIC METHODS IN LOGIC AND IN COMPUTER SCIENCE BANACH CENTER PUBLICATIONS, VOLUME 28 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 1993 ROUGH MEMBERSHIP FUNCTIONS: A TOOL FOR REASONING

More information

γ 2 γ 3 γ 1 R 2 (b) a bounded Yin set (a) an unbounded Yin set

γ 2 γ 3 γ 1 R 2 (b) a bounded Yin set (a) an unbounded Yin set γ 1 γ 3 γ γ 3 γ γ 1 R (a) an unbounded Yin set (b) a bounded Yin set Fig..1: Jordan curve representation of a connected Yin set M R. A shaded region represents M and the dashed curves its boundary M that

More information

FUZZY LOGIC CONTROL. Helsinki University of Technology Control Engineering Laboratory

FUZZY LOGIC CONTROL. Helsinki University of Technology Control Engineering Laboratory FUZZY LOGIC CONTROL FUZZY LOGIC CONTROL (FLC) Control applications most common FL applications Control actions based on rules Rules in linguistic form Reasoning with fuzzy logic FLC is (on the surface)

More information

Disjunctive and Conjunctive Normal Forms in Fuzzy Logic

Disjunctive and Conjunctive Normal Forms in Fuzzy Logic Disjunctive and Conjunctive Normal Forms in Fuzzy Logic K. Maes, B. De Baets and J. Fodor 2 Department of Applied Mathematics, Biometrics and Process Control Ghent University, Coupure links 653, B-9 Gent,

More information

Optimization with linguistic variables

Optimization with linguistic variables Optimization with linguistic variables Christer Carlsson christer.carlsson@abo.fi Robert Fullér rfuller@abo.fi Abstract We consider fuzzy mathematical programming problems (FMP) in which the functional

More information

Solutions to Midterm 2 - Monday, July 11th, 2009

Solutions to Midterm 2 - Monday, July 11th, 2009 Solutions to Midterm - Monday, July 11th, 009 CPSC30, Summer009. Instructor: Dr. Lior Malka. (liorma@cs.ubc.ca) 1. Dynamic programming. Let A be a set of n integers A 1,..., A n such that 1 A i n for each

More information