EECS 442 Computer Vision fall 2011

Size: px
Start display at page:

Download "EECS 442 Computer Vision fall 2011"

Transcription

1 EECS 442 Computer Vision fall 2011 Instructor Silvio Savarese Office: ECE Building, room: 4435 Office hour: Tues 4:30-5:30pm or under appoint. (after conversation hour) GSIs: Mohit Bagra Murali Telaprolu Class Time & Location Tu Th 3:00PM - 4:30PM -- G906 COOL Conversation hour [it s part of the course!] Wed 3:30PM - 4:30PM EECS

2 EECS 442 Computer Vision fall 2011 Text books: [FP] Computer Vision, A Modern Approach, by D.A. Forsyth and J. Ponce, Prentice Hall, [HZ] Multiple View Geometry in Computer Vision, by R. Hartley and A. Zisserman, Academic Press, 2002 Also: Computer Vision: Algorithms and Applications, R. Szeliski, Springer, 2011 If you plan to audit this class, please signup your name on the mailing list

3 Agenda Administrative Grading policy Project What is computer vision? Syllabus

4 Grading policy Homeworks: 40% 5 homeworks Mid term exam: 10% [end of October] Course project: 45% progress report 5% final report 30% presentation 10% Attendance and class participation: 5% Questions, answers, remarks Late policy home works: If 1 day late, 50% off the grade for that homework Zero credits if more than one day. Late policy project: If 1 day late, 25% off the grade for the project If 2 days late, 50% off the grade for the project Zero credits if more than 2 days Collaboration policy Read the student code book, understand what is collaboration and what is academic infraction. Discussing project assignment with each other is allowed, but coding must be done individually Home works or class project coding policy: using on line code or other students/researchers code is not allowed in general. Exceptions can be made and individual cases will be discussed with the instructor.

5 Course Project Replicate an interesting paper Comparing different methods to a test bed A new approach to an existing problem Original research Write a 8-page paper summarizing your results Release the final code Give a presentation We will introduce projects in two weeks Important dates: look up class schedule

6 Course Project Form your team: 1-3 people the quality is judged regardless of the number of people on the team be nice to your partner: do you plan to drop the course? Evaluation Quality of the project (including writing) Final ~15 minutes project presentation in class students will vote your presentation! For final code and paper due dates please consult webpage

7 Agenda Administrative Grading policy Project What is computer vision? Syllabus

8 There was a table set out under a tree in front of the house, and the March Hare and the Hatter were having tea at it. The table was a large one, but the three were all crowded together at one corner of it From A Mad Tea-Party Alice's Adventures in Wonderland by Lewis Carroll Illustration by Arthur Rackham

9 Computer vision Image/video Object 1 Object N - semantic -semantic

10 Computer vision Image/video Object 1 Object N - semantic -geometry -semantic -geometry

11 Computer vision Image/video Object 1 Object N - semantic -geometry -semantic -geometry spatial & temporal relations

12 Computer vision Image/video Object 1 Object N - semantic -geometry -semantic -geometry spatial & temporal relations Scene -Semantic - geometry

13 Computer vision Computer vision studies the tools and theories that enable the design of machines that can extract useful information from imagery data (images and videos) toward the goal of interpreting the world Scene Objects People Actions Sensing device Computational device Extract information Interpretation Information: visual cues, 3D structure, motion flows, etc Interpretation: recognize objects, scenes, actions, events

14 Semantic Actions, Events Have we reached humans? not yet computer vision is still no match for human perception but catching up, particularly in certain areas Categorization Object Recognition 3D modeling 3D scenes Physical attributes

15 Successful Applications Finger prints recognizer Sources: L. Fei-Fei

16 Medical Imaging Sources: L. Fei-Fei

17 Special effects movies - videogames Sources: L. Fei-Fei

18 Consumer applications

19

20 Auto Stitch

21 Toy & Robots

22 Applications of computer vision Factory inspection Assistive technologies Surveillance Autonomous driving, robot navigation Sources: K. Grauman, L. Fei-Fei, S. Laznebick Driver assistance (collision warning, lane departure warning, rear object detection) Security

23 Automatic control Robotics Robot vision Signal processing Compression Non linear SP Multi-variate SP Neurobiology Biological vision Visual Psychophysics Data mining Image retrivial Computer vision Visual pattern recognition Machine learning Artificial intelligence Statistics Geometry Optimization Applied math Optics Smart cameras Acquisition methods Physics Imaging Computer graphics

24 EECS 442 course overview 1. Geometry 2. Low & Mid-level vision 3. High level vision

25 EECS 442 course overview 1. Geometry 2. Low & Mid-level vision 3. High level vision Geometry: - How to extract 3d information? - Which cues are useful? - What are the mathematical tools?

26 Visual cues: texture shading contours shadows reflections

27 Visual cues: texture shading contours shadows reflections

28 Visual cues: texture shading contours shadows reflections

29 Vision techniques Visual cues: texture shading contours shadows reflections

30 Visual cues: texture shading contours shadows reflections

31 Vision techniques Visual cues: texture shading contours shadows reflections Number of observers: monocular multiple views camera

32 Vision techniques Visual cues: texture shading contours shadows reflections Number of observers: monocular multiple views camera 1 camera 2 camera N

33 Stereo Epipolar geometry Tomasi & Kanade (1993) Structure from motion Image sources: S. Laznebick Projective structure from motion: Here be dragons!

34 Structure from motion Courtesy of Exford Visual Geometry Group

35 Vision techniques Visual cues: texture shading contours shadows reflections Number of observers: monocular multiple views Active lighting: laser stripes structured lighting patterns camera Laser/projector/light

36 3D Scanning Scanning Michelangelo s The David The Digital Michelangelo Project BILLION polygons, accuracy to.29mm Courtesy of Stanford computer graphics lab

37 3D Digital models Architecture Entertainment Medicine

38 The yellow line in superbowls

39 The yellow line in superbowls

40 Course overview 1. Geometry 2. Low & Mid-level vision 3. High level vision Mid-level vision: - Extract useful building blocks - Region segmentation - Motion flows

41 Extract useful building blocks

42 Mid-level vision Extract useful building blocks Alignment Extract planar regions Object segmentation

43 Image enhancement

44 Automatic Panorama Stitching Sources: M. Brown

45 Automatic Panorama Stitching Sources: M. Brown

46 Tracking and 3D modeling Courtesy of Jean-Yves Bouguet Vision Lab, California Institute of Technology

47 Camera tracking and V.R. insertions Courtesy of Exford Visual Geometry Group

48 Course overview 1. Geometry 2. Low & Mid-level vision 3. High level vision High level operations Recognition of objects and people Places Actions & events

49 Object recognition and categorization Building Downtown chicago clock person car Pedestrians crossing street

50 Challenges: viewpoint variation Michelangelo slide credit: Fei-Fei, Fergus & Torralba

51 Challenges: illumination image credit: J. Koenderink

52 Challenges: scale slide credit: Fei-Fei, Fergus & Torralba

53 Challenges: deformation

54 Challenges: occlusion Magritte, 1957 slide credit: Fei-Fei, Fergus & Torralba

55 Challenges: background clutter Kilmeny Niland. 1995

56 Challenges: object intra-class variation slide credit: Fei-Fei, Fergus & Torralba

57

58 Face recognition

59 Recognizing scenes

60 Sorting out millions of images/videos Personal photo albums Movies, news, sports Surveillance and security Medical and scientific images Credit slide: S. Lazebnik

61 Choi & Shahid & Savarese WMC 2010 Choi & Savarese, ECCV 2010 Detecting and tracking people

62 Recognizing human activities Biking Walking Walking Credit slide: Song & Perona

63 There was a table set out under a tree in front of the house, and the March Hare and the Hatter were having tea at it. The table was a large one, but the three were all crowded together at one corner of it From A Mad Tea-Party Alice's Adventures in Wonderland by Lewis Carroll

64 Syllabus See webpage

65 Next lecture - Review of linear algebra for multi-view geometry - Basic image transformations

66 Homework 0.1: Who painted this? Or what is a smart way to search an image on the web?

67

68 Homework 0.1: Who painted this? Or what is a smart way to search an image on the web?

EECS 442 Computer Vision fall 2012

EECS 442 Computer Vision fall 2012 EECS 442 Computer Vision fall 2012 Instructor Silvio Savarese silvio@eecs.umich.edu Office: ECE Building, room: 4435 Office hour: Tues 4:30-5:30pm or under appoint. GSI: Johnny Chao (ywchao125@gmail.com)

More information

EE290T : 3D Reconstruction and Recognition

EE290T : 3D Reconstruction and Recognition EE290T : 3D Reconstruction and Recognition Acknowledgement Courtesy of Prof. Silvio Savarese. Introduction There was a table set out under a tree in front of the house, and the March Hare and the Hatter

More information

12/3/2009. What is Computer Vision? Applications. Application: Assisted driving Pedestrian and car detection. Application: Improving online search

12/3/2009. What is Computer Vision? Applications. Application: Assisted driving Pedestrian and car detection. Application: Improving online search Introduction to Artificial Intelligence V22.0472-001 Fall 2009 Lecture 26: Computer Vision Rob Fergus Dept of Computer Science, Courant Institute, NYU Slides from Andrew Zisserman What is Computer Vision?

More information

Introductions. Today. Computer Vision Jan 19, What is computer vision? 1. Vision for measurement. Computer Vision

Introductions. Today. Computer Vision Jan 19, What is computer vision? 1. Vision for measurement. Computer Vision Introductions Instructor: Prof. Kristen Grauman grauman@cs.utexas.edu Computer Vision Jan 19, 2011 TA: Shalini Sahoo shalini@cs.utexas.edu Today What is computer vision? Course overview Requirements, logistics

More information

Computer Vision. I-Chen Lin, Assistant Professor Dept. of CS, National Chiao Tung University

Computer Vision. I-Chen Lin, Assistant Professor Dept. of CS, National Chiao Tung University Computer Vision I-Chen Lin, Assistant Professor Dept. of CS, National Chiao Tung University About the course Course title: Computer Vision Lectures: EC016, 10:10~12:00(Tues.); 15:30~16:20(Thurs.) Pre-requisites:

More information

CSc I6716 Spring D Computer Vision. Introduction. Instructor: Zhigang Zhu City College of New York

CSc I6716 Spring D Computer Vision. Introduction. Instructor: Zhigang Zhu City College of New York Introduction CSc I6716 Spring 2012 Introduction Instructor: Zhigang Zhu City College of New York zzhu@ccny.cuny.edu Course Information Basic Information: Course participation p Books, notes, etc. Web page

More information

3D Computer Vision. Introduction. Introduction. CSc I6716 Fall Instructor: Zhigang Zhu City College of New York

3D Computer Vision. Introduction. Introduction. CSc I6716 Fall Instructor: Zhigang Zhu City College of New York Introduction CSc I6716 Fall 2010 3D Computer Vision Introduction Instructor: Zhigang Zhu City College of New York zzhu@ccny.cuny.edu Course Information Basic Information: Course participation Books, notes,

More information

Computer Vision. Introduction

Computer Vision. Introduction Computer Vision Introduction Filippo Bergamasco (filippo.bergamasco@unive.it) http://www.dais.unive.it/~bergamasco DAIS, Ca Foscari University of Venice Academic year 2016/2017 About this course Official

More information

CS595:Introduction to Computer Vision

CS595:Introduction to Computer Vision CS595:Introduction to Computer Vision Instructor: Qi Li Instructor Course syllabus E-mail: qi.li@cs.wku.edu Office: TCCW 135 Office hours MW: 9:00-10:00, 15:00-16:00 T: 9:00-12:00, 14:00-16:00 F: 9:00-10:00

More information

Optical flow and tracking

Optical flow and tracking EECS 442 Computer vision Optical flow and tracking Intro Optical flow and feature tracking Lucas-Kanade algorithm Motion segmentation Segments of this lectures are courtesy of Profs S. Lazebnik S. Seitz,

More information

Lecture 10: Multi view geometry

Lecture 10: Multi view geometry Lecture 10: Multi view geometry Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Stereo vision Correspondence problem (Problem Set 2 (Q3)) Active stereo vision systems Structure from

More information

CSCD18: Computer Graphics. Instructor: Leonid Sigal

CSCD18: Computer Graphics. Instructor: Leonid Sigal CSCD18: Computer Graphics Instructor: Leonid Sigal CSCD18: Computer Graphics Instructor: Leonid Sigal (call me Leon) lsigal@utsc.utoronto.ca www.cs.toronto.edu/~ls/ Office: SW626 Office Hour: M, 12-1pm?

More information

Why is computer vision difficult?

Why is computer vision difficult? Why is computer vision difficult? Viewpoint variation Illumination Scale Why is computer vision difficult? Intra-class variation Motion (Source: S. Lazebnik) Background clutter Occlusion Challenges: local

More information

Course Administration

Course Administration Course Administration Project 2 results are online Project 3 is out today The first quiz is a week from today (don t panic!) Covers all material up to the quiz Emphasizes lecture material NOT project topics

More information

Thanks to Chris Bregler. COS 429: Computer Vision

Thanks to Chris Bregler. COS 429: Computer Vision Thanks to Chris Bregler COS 429: Computer Vision COS 429: Computer Vision Instructor: Thomas Funkhouser funk@cs.princeton.edu Preceptors: Ohad Fried, Xinyi Fan {ohad,xinyi}@cs.princeton.edu Web page: http://www.cs.princeton.edu/courses/archive/fall13/cos429/

More information

Introduction to Computer Vision MARCH 2018

Introduction to Computer Vision MARCH 2018 Introduction to Computer Vision RODNEY DOCKTER, PH.D. MARCH 2018 1 Rodney Dockter (me) Ph.D. in Mechanical Engineering from the University of Minnesota Worked in Dr. Tim Kowalewski s lab Medical robotics

More information

3D Computer Vision Introduction

3D Computer Vision Introduction 3D Computer Vision Introduction Tom Henderson CS 6320 S2014 tch@cs.utah.edu Acknowledgements: slides from Guido Gerig (Utah) & Marc Pollefeys, UNC Chapel Hill) Administration Classes: M & W, 1:25-2:45

More information

Computer Vision EE837, CS867, CE803

Computer Vision EE837, CS867, CE803 Computer Vision EE837, CS867, CE803 Introduction Lecture 01 Computer Vision Prerequisites Basic linear Algebra, probability, calculus - Required Basic data structures/programming knowledge - Required Working

More information

What is Computer Vision? Introduction. We all make mistakes. Why is this hard? What was happening. What do you see? Intro Computer Vision

What is Computer Vision? Introduction. We all make mistakes. Why is this hard? What was happening. What do you see? Intro Computer Vision What is Computer Vision? Trucco and Verri (Text): Computing properties of the 3-D world from one or more digital images Introduction Introduction to Computer Vision CSE 152 Lecture 1 Sockman and Shapiro:

More information

CS5670: Intro to Computer Vision

CS5670: Intro to Computer Vision CS5670: Intro to Computer Vision Noah Snavely Introduction to Recognition mountain tree banner building street lamp people vendor Announcements Final exam, in-class, last day of lecture (5/9/2018, 12:30

More information

Image Analysis. Lars Schmidt-Thieme

Image Analysis. Lars Schmidt-Thieme Image Analysis Image Analysis Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) Institute for Business Economics and Information Systems & Institute for Computer Science University

More information

Methods for Representing and Recognizing 3D objects

Methods for Representing and Recognizing 3D objects Methods for Representing and Recognizing 3D objects part 1 Silvio Savarese University of Michigan at Ann Arbor Object: Building, 45º pose, 8-10 meters away Object: Person, back; 1-2 meters away Object:

More information

CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt.

CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt. CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt. Session 18 Object Recognition I Mani Golparvar-Fard Department of Civil and Environmental Engineering 3129D, Newmark Civil Engineering Lab

More information

Object Recognition. Computer Vision. Slides from Lana Lazebnik, Fei-Fei Li, Rob Fergus, Antonio Torralba, and Jean Ponce

Object Recognition. Computer Vision. Slides from Lana Lazebnik, Fei-Fei Li, Rob Fergus, Antonio Torralba, and Jean Ponce Object Recognition Computer Vision Slides from Lana Lazebnik, Fei-Fei Li, Rob Fergus, Antonio Torralba, and Jean Ponce How many visual object categories are there? Biederman 1987 ANIMALS PLANTS OBJECTS

More information

CS535: Interactive Computer Graphics

CS535: Interactive Computer Graphics CS535: Interactive Computer Graphics Instructor: Daniel G. Aliaga (aliaga@cs.purdue.edu, www.cs.purdue.edu/homes/aliaga) Classroom: LWSN B134 Time: MWF @ 1:30-2:20pm Office hours: by appointment (LWSN

More information

Miniature faking. In close-up photo, the depth of field is limited.

Miniature faking. In close-up photo, the depth of field is limited. Miniature faking In close-up photo, the depth of field is limited. http://en.wikipedia.org/wiki/file:jodhpur_tilt_shift.jpg Miniature faking Miniature faking http://en.wikipedia.org/wiki/file:oregon_state_beavers_tilt-shift_miniature_greg_keene.jpg

More information

What do we mean by recognition?

What do we mean by recognition? Announcements Recognition Project 3 due today Project 4 out today (help session + photos end-of-class) The Margaret Thatcher Illusion, by Peter Thompson Readings Szeliski, Chapter 14 1 Recognition What

More information

CSE 527: Intro. to Computer

CSE 527: Intro. to Computer CSE 527: Intro. to Computer Vision CSE 527: Intro. to Computer Vision www.cs.sunysb.edu/~cse527 Instructor: Prof. M. Alex O. Vasilescu Email: maov@cs.sunysb.edu Phone: 631 632-8457 Office: 1421 Prerequisites:

More information

Contexts and 3D Scenes

Contexts and 3D Scenes Contexts and 3D Scenes Computer Vision Jia-Bin Huang, Virginia Tech Many slides from D. Hoiem Administrative stuffs Final project presentation Dec 1 st 3:30 PM 4:45 PM Goodwin Hall Atrium Grading Three

More information

EECS 442 Computer vision. Stereo systems. Stereo vision Rectification Correspondence problem Active stereo vision systems

EECS 442 Computer vision. Stereo systems. Stereo vision Rectification Correspondence problem Active stereo vision systems EECS 442 Computer vision Stereo systems Stereo vision Rectification Correspondence problem Active stereo vision systems Reading: [HZ] Chapter: 11 [FP] Chapter: 11 Stereo vision P p p O 1 O 2 Goal: estimate

More information

Verification: is that a lamp? What do we mean by recognition? Recognition. Recognition

Verification: is that a lamp? What do we mean by recognition? Recognition. Recognition Recognition Recognition The Margaret Thatcher Illusion, by Peter Thompson The Margaret Thatcher Illusion, by Peter Thompson Readings C. Bishop, Neural Networks for Pattern Recognition, Oxford University

More information

Course Name: Computer Vision Course Code: IT444

Course Name: Computer Vision Course Code: IT444 Course Name: Computer Vision Course Code: IT444 I. Basic Course Information Major or minor element of program: Major Department offering the course:information Technology Department Academic level:400

More information

Lecture 10: Multi-view geometry

Lecture 10: Multi-view geometry Lecture 10: Multi-view geometry Professor Stanford Vision Lab 1 What we will learn today? Review for stereo vision Correspondence problem (Problem Set 2 (Q3)) Active stereo vision systems Structure from

More information

CSE 167: Introduction to Computer Graphics. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013

CSE 167: Introduction to Computer Graphics. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013 CSE 167: Introduction to Computer Graphics Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013 Today Course organization Course overview 2 Course Staff Instructor Jürgen Schulze,

More information

3D Computer Vision Introduction

3D Computer Vision Introduction 3D Computer Vision Introduction Guido Gerig CS 6320, Spring 2013 gerig@sci.utah.edu Acknowledgements: some slides from Marc Pollefeys and Prof. Trevor Darrell, trevor@eecs.berkeley.edu Administrivia Classes:

More information

Computer Vision and Virtual Reality. Introduction

Computer Vision and Virtual Reality. Introduction Computer Vision and Virtual Reality Introduction Tomáš Svoboda, svoboda@cmp.felk.cvut.cz Czech Technical University in Prague, Center for Machine Perception http://cmp.felk.cvut.cz Last update: October

More information

Computer Vision Lecture 17

Computer Vision Lecture 17 Computer Vision Lecture 17 Epipolar Geometry & Stereo Basics 13.01.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Seminar in the summer semester

More information

CS380: Computer Graphics Introduction. Sung-Eui Yoon ( 윤성의 ) Course URL:

CS380: Computer Graphics Introduction. Sung-Eui Yoon ( 윤성의 ) Course URL: CS380: Computer Graphics Introduction Sung-Eui Yoon ( 윤성의 ) Course URL: http://sglab.kaist.ac.kr/~sungeui/cg About the Instructor Joined KAIST at 2007 Main Research Focus Handle massive data for various

More information

Lecture 9 & 10: Stereo Vision

Lecture 9 & 10: Stereo Vision Lecture 9 & 10: Stereo Vision Professor Fei- Fei Li Stanford Vision Lab 1 What we will learn today? IntroducEon to stereo vision Epipolar geometry: a gentle intro Parallel images Image receficaeon Solving

More information

CS231M Mobile Computer Vision Spring 2014

CS231M Mobile Computer Vision Spring 2014 CS231M Mobile Computer Vision Spring 2014 Instructors: - Prof Silvio Savarese (Stanford, CVGLab) - Dr Kari Pulli (Nvidia Research) CAs: - Saumitro Dasgupta saumitro@stanford.edu - Francois Chaubard fchaubar@stanford.edu

More information

Computer Vision Lecture 17

Computer Vision Lecture 17 Announcements Computer Vision Lecture 17 Epipolar Geometry & Stereo Basics Seminar in the summer semester Current Topics in Computer Vision and Machine Learning Block seminar, presentations in 1 st week

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2013 TTh 17:30-18:45 FDH 204 Lecture 18 130404 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Object Recognition Intro (Chapter 14) Slides from

More information

Stereo and structured light

Stereo and structured light Stereo and structured light http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 20 Course announcements Homework 5 is still ongoing. - Make sure

More information

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science. Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Introduction to 2 What is? A process that produces from images of the external world a description

More information

Introduction. Prof. Kyoung Mu Lee SoEECS, Seoul National University

Introduction. Prof. Kyoung Mu Lee SoEECS, Seoul National University Introduction 1 Introduction to Computer Vision Introduction Prof. Kyoung Mu Lee SoEECS, Seoul National University Goal and Objectives Introduction 2 To introduce the fundamental problems of computer vision.

More information

Stereo. 11/02/2012 CS129, Brown James Hays. Slides by Kristen Grauman

Stereo. 11/02/2012 CS129, Brown James Hays. Slides by Kristen Grauman Stereo 11/02/2012 CS129, Brown James Hays Slides by Kristen Grauman Multiple views Multi-view geometry, matching, invariant features, stereo vision Lowe Hartley and Zisserman Why multiple views? Structure

More information

Supervised learning. y = f(x) function

Supervised learning. y = f(x) function Supervised learning y = f(x) output prediction function Image feature Training: given a training set of labeled examples {(x 1,y 1 ),, (x N,y N )}, estimate the prediction function f by minimizing the

More information

Computer Vision. CS664 Computer Vision. 1. Introduction. Course Requirements. Preparation. Applications. Applications of Computer Vision

Computer Vision. CS664 Computer Vision. 1. Introduction. Course Requirements. Preparation. Applications. Applications of Computer Vision Computer Vision CS664 Computer Vision. Introduction Dan Huttenlocher Machines that see Broad field, any course will cover a subset of problems and techniques Closely related fields of study Artificial

More information

Digital Images. Kyungim Baek. Department of Information and Computer Sciences. ICS 101 (November 1, 2016) Digital Images 1

Digital Images. Kyungim Baek. Department of Information and Computer Sciences. ICS 101 (November 1, 2016) Digital Images 1 Digital Images Kyungim Baek Department of Information and Computer Sciences ICS 101 (November 1, 2016) Digital Images 1 iclicker Question I know a lot about how digital images are represented, stored,

More information

Introduction to Computer Vision. CSE 152, Spring Introduction to Computer Vision. CSE 152, Spring Introduction to Computer Vision

Introduction to Computer Vision. CSE 152, Spring Introduction to Computer Vision. CSE 152, Spring Introduction to Computer Vision We ll begin with some introductory material Introduction CSE 152 Lecture 1 and end with Syllabus Organizational materials Wait list What is computer vision? What is Computer Vision? Trucco and Verri: Computing

More information

Announcements. Introduction. Why is this hard? What is Computer Vision? We all make mistakes. What do you see? Class Web Page is up:

Announcements. Introduction. Why is this hard? What is Computer Vision? We all make mistakes. What do you see? Class Web Page is up: Announcements Introduction Computer Vision I CSE 252A Lecture 1 Class Web Page is up: http://www.cs.ucsd.edu/classes/wi05/cse252a/ Assignment 0: Getting Started with Matlab is posted to web page, due 1/13/04

More information

Contexts and 3D Scenes

Contexts and 3D Scenes Contexts and 3D Scenes Computer Vision Jia-Bin Huang, Virginia Tech Many slides from D. Hoiem Administrative stuffs Final project presentation Nov 30 th 3:30 PM 4:45 PM Grading Three senior graders (30%)

More information

Think-Pair-Share. What visual or physiological cues help us to perceive 3D shape and depth?

Think-Pair-Share. What visual or physiological cues help us to perceive 3D shape and depth? Think-Pair-Share What visual or physiological cues help us to perceive 3D shape and depth? [Figure from Prados & Faugeras 2006] Shading Focus/defocus Images from same point of view, different camera parameters

More information

EECS 442 Computer vision. Announcements

EECS 442 Computer vision. Announcements EECS 442 Computer vision Announcements Midterm released after class (at 5pm) You ll have 46 hours to solve it. it s take home; you can use your notes and the books no internet must work on it individually

More information

Local Features and Bag of Words Models

Local Features and Bag of Words Models 10/14/11 Local Features and Bag of Words Models Computer Vision CS 143, Brown James Hays Slides from Svetlana Lazebnik, Derek Hoiem, Antonio Torralba, David Lowe, Fei Fei Li and others Computer Engineering

More information

Computer Vision, CS766. Staff. Instructor: Li Zhang TA: Jake Rosin

Computer Vision, CS766. Staff. Instructor: Li Zhang TA: Jake Rosin Computer Vision, CS766 Staff Instructor: Li Zhang lizhang@cs.wisc.edu TA: Jake Rosin rosin@cs.wisc.edu Today Introduction Administrative Stuff Overview of the Course About Me Li Zhang ( 张力 ) Last name

More information

Welcome to CS 4/57101 Computer Graphics

Welcome to CS 4/57101 Computer Graphics Welcome to CS 4/57101 Computer Graphics Goal: The goal of this course is to provide an introduction to the theory and practice of computer graphics. The course will assume a good background in programming

More information

Stereo: Disparity and Matching

Stereo: Disparity and Matching CS 4495 Computer Vision Aaron Bobick School of Interactive Computing Administrivia PS2 is out. But I was late. So we pushed the due date to Wed Sept 24 th, 11:55pm. There is still *no* grace period. To

More information

Lecture 8 Active stereo & Volumetric stereo

Lecture 8 Active stereo & Volumetric stereo Lecture 8 Active stereo & Volumetric stereo Active stereo Structured lighting Depth sensing Volumetric stereo: Space carving Shadow carving Voxel coloring Reading: [Szelisky] Chapter 11 Multi-view stereo

More information

EECS 442 Computer vision. 3D Object Recognition and. Scene Understanding

EECS 442 Computer vision. 3D Object Recognition and. Scene Understanding EECS 442 Computer vision 3D Object Recognition and Scene Understanding Interpreting the visual world Object: Building 8-10 meters away Object: Traffic light Object: Car, ¾ view 2-3 meters away How can

More information

CSE 167: Introduction to Computer Graphics. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016

CSE 167: Introduction to Computer Graphics. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 CSE 167: Introduction to Computer Graphics Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 Today Course organization Course overview 2 Course Staff Instructor Jürgen Schulze,

More information

Comparison between Motion Analysis and Stereo

Comparison between Motion Analysis and Stereo MOTION ESTIMATION The slides are from several sources through James Hays (Brown); Silvio Savarese (U. of Michigan); Octavia Camps (Northeastern); including their own slides. Comparison between Motion Analysis

More information

Computer Vision 2 Lecture 1

Computer Vision 2 Lecture 1 Computer Vision 2 Lecture 1 Introduction (14.04.2016) leibe@vision.rwth-aachen.de, stueckler@vision.rwth-aachen.de RWTH Aachen University, Computer Vision Group http://www.vision.rwth-aachen.de Organization

More information

3D Computer Vision Introduction. Guido Gerig CS 6320, Spring 2012

3D Computer Vision Introduction. Guido Gerig CS 6320, Spring 2012 3D Computer Vision Introduction Guido Gerig CS 6320, Spring 2012 gerig@sci.utah.edu Administrivia Classes: M & W, 1.25-2:45 Room WEB L126 Instructor: Guido Gerig gerig@sci.utah.edu (801) 585 0327 Prerequisites:

More information

There are many cues in monocular vision which suggests that vision in stereo starts very early from two similar 2D images. Lets see a few...

There are many cues in monocular vision which suggests that vision in stereo starts very early from two similar 2D images. Lets see a few... STEREO VISION The slides are from several sources through James Hays (Brown); Srinivasa Narasimhan (CMU); Silvio Savarese (U. of Michigan); Bill Freeman and Antonio Torralba (MIT), including their own

More information

Introduction to Computer Vision

Introduction to Computer Vision Introduction to Computer Vision Dr. Gerhard Roth COMP 4102A Winter 2015 Version 2 General Information Instructor: Adjunct Prof. Dr. Gerhard Roth gerhardroth@rogers.com read hourly gerhardroth@cmail.carleton.ca

More information

Lecture 12 Recognition

Lecture 12 Recognition Institute of Informatics Institute of Neuroinformatics Lecture 12 Recognition Davide Scaramuzza 1 Lab exercise today replaced by Deep Learning Tutorial Room ETH HG E 1.1 from 13:15 to 15:00 Optional lab

More information

Introduction to Computer Vision. Srikumar Ramalingam School of Computing University of Utah

Introduction to Computer Vision. Srikumar Ramalingam School of Computing University of Utah Introduction to Computer Vision Srikumar Ramalingam School of Computing University of Utah srikumar@cs.utah.edu Course Website http://www.eng.utah.edu/~cs6320/ What is computer vision? Light source 3D

More information

Finally: Motion and tracking. Motion 4/20/2011. CS 376 Lecture 24 Motion 1. Video. Uses of motion. Motion parallax. Motion field

Finally: Motion and tracking. Motion 4/20/2011. CS 376 Lecture 24 Motion 1. Video. Uses of motion. Motion parallax. Motion field Finally: Motion and tracking Tracking objects, video analysis, low level motion Motion Wed, April 20 Kristen Grauman UT-Austin Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys, and S. Lazebnik

More information

CS5620 Intro to Computer Graphics

CS5620 Intro to Computer Graphics CS 5620 Fall 2015 www.youtube.com/watch?v=hjhic0mt4ts 3 Computer Graphics Synthesis of static/dynamic 2D images from 3D geometry using computers Teaching Staff Lecturer: Prof. Craig Gotsman Class: Mon

More information

Project 4 Results. Representation. Data. Learning. Zachary, Hung-I, Paul, Emanuel. SIFT and HoG are popular and successful.

Project 4 Results. Representation. Data. Learning. Zachary, Hung-I, Paul, Emanuel. SIFT and HoG are popular and successful. Project 4 Results Representation SIFT and HoG are popular and successful. Data Hugely varying results from hard mining. Learning Non-linear classifier usually better. Zachary, Hung-I, Paul, Emanuel Project

More information

Recap from Previous Lecture

Recap from Previous Lecture Recap from Previous Lecture Tone Mapping Preserve local contrast or detail at the expense of large scale contrast. Changing the brightness within objects or surfaces unequally leads to halos. We are now

More information

Supervised learning. y = f(x) function

Supervised learning. y = f(x) function Supervised learning y = f(x) output prediction function Image feature Training: given a training set of labeled examples {(x 1,y 1 ),, (x N,y N )}, estimate the prediction function f by minimizing the

More information

Recap: Features and filters. Recap: Grouping & fitting. Now: Multiple views 10/29/2008. Epipolar geometry & stereo vision. Why multiple views?

Recap: Features and filters. Recap: Grouping & fitting. Now: Multiple views 10/29/2008. Epipolar geometry & stereo vision. Why multiple views? Recap: Features and filters Epipolar geometry & stereo vision Tuesday, Oct 21 Kristen Grauman UT-Austin Transforming and describing images; textures, colors, edges Recap: Grouping & fitting Now: Multiple

More information

Multi-View Stereo for Community Photo Collections Michael Goesele, et al, ICCV Venus de Milo

Multi-View Stereo for Community Photo Collections Michael Goesele, et al, ICCV Venus de Milo Vision Sensing Multi-View Stereo for Community Photo Collections Michael Goesele, et al, ICCV 2007 Venus de Milo The Digital Michelangelo Project, Stanford How to sense 3D very accurately? How to sense

More information

Making Machines See. Roberto Cipolla Department of Engineering. Research team

Making Machines See. Roberto Cipolla Department of Engineering. Research team Making Machines See Roberto Cipolla Department of Engineering Research team http://www.eng.cam.ac.uk/~cipolla/people.html Cognitive Systems Engineering Cognitive Systems Engineering Introduction Making

More information

Structured light , , Computational Photography Fall 2017, Lecture 27

Structured light , , Computational Photography Fall 2017, Lecture 27 Structured light http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 27 Course announcements Homework 5 has been graded. - Mean: 129. - Median:

More information

Image Registration Lecture 1: Introduction

Image Registration Lecture 1: Introduction Image Registration Lecture 1: Introduction Prof. Charlene Tsai Outline Syllabus Registration problem Applications of registration Components of a solution Thematic questions underlying registration Software

More information

Overview. Introduction to Computer Vision. CSE 152 Lecture 1. Introduction to Computer Vision. CSE 152, Spring 2018

Overview. Introduction to Computer Vision. CSE 152 Lecture 1. Introduction to Computer Vision. CSE 152, Spring 2018 Overview CSE 152 Lecture 1 We ll begin with some introductory material and end with Syllabus Organizational materials Wait list What is computer vision? Done? Computer Vision An interdisciplinary field

More information

TCOM 663/CFRS Intrusion Detection and Forensics Department of Electrical and Computer Engineering George Mason University Fall, 2010

TCOM 663/CFRS Intrusion Detection and Forensics Department of Electrical and Computer Engineering George Mason University Fall, 2010 TCOM 663/CFRS 663 - Intrusion Detection and Forensics Department of Electrical and Computer Engineering George Mason University Fall, 2010 Course Syllabus Revised: June. 16, 2010. Instructor Dr. Kafi Hassan

More information

COMD D Animation & Modeling I

COMD D Animation & Modeling I New York City College of Technology The City University of New York Department of Communication Design Course Description : An introduction to computer 3D modeling, rendering and animation using the Maya

More information

CSCE 441 Computer Graphics Fall 2018

CSCE 441 Computer Graphics Fall 2018 CSCE 441 Computer Graphics Fall 2018 Meetings: Monday, Wednesday, Friday 9:10-10:00 a.m. Location: HRBB 113 Instructor: Dr. John Keyser Office: 527C, H.R. Bright Building Phone: 458-0167 Email: keyser@cse.tamu.edu

More information

Computer Vision. Alexandra Branzan Albu Spring 2009

Computer Vision. Alexandra Branzan Albu Spring 2009 Computer Vision Alexandra Branzan Albu Spring 2009 Staff Instructor: Alexandra Branzan Albu www.ece.uvic.ca/~aalbu email: aalbu@ece.uvic.ca Office hours (EOW 315): by appointment CENG 421/ ELEC 536 : Computer

More information

COMPUTER VISION. Dr. Sukhendu Das Deptt. of Computer Science and Engg., IIT Madras, Chennai

COMPUTER VISION. Dr. Sukhendu Das Deptt. of Computer Science and Engg., IIT Madras, Chennai COMPUTER VISION Dr. Sukhendu Das Deptt. of Computer Science and Engg., IIT Madras, Chennai 600036. Email: sdas@iitm.ac.in URL: //www.cs.iitm.ernet.in/~sdas 1 INTRODUCTION 2 Human Vision System (HVS) Vs.

More information

The Hilbert Problems of Computer Vision. Jitendra Malik UC Berkeley & Google, Inc.

The Hilbert Problems of Computer Vision. Jitendra Malik UC Berkeley & Google, Inc. The Hilbert Problems of Computer Vision Jitendra Malik UC Berkeley & Google, Inc. This talk The computational power of the human brain Research is the art of the soluble Hilbert problems, circa 2004 Hilbert

More information

Block Diagram. Physical World. Image Acquisition. Enhancement and Restoration. Segmentation. Feature Selection/Extraction.

Block Diagram. Physical World. Image Acquisition. Enhancement and Restoration. Segmentation. Feature Selection/Extraction. Block Diagram Physical World Image Acquisition Imaging Image Sampling, Quantization, Compression Image Processing Enhancement and Restoration Segmentation Image Analysis Feature Selection/Extraction Image

More information

CAP 5415 Computer Vision. Fall 2011

CAP 5415 Computer Vision. Fall 2011 CAP 5415 Computer Vision Fall 2011 General Instructor: Dr. Mubarak Shah Email: shah@eecs.ucf.edu Office: 247-F HEC Course Class Time Tuesdays, Thursdays 12 Noon to 1:15PM 383 ENGR Office hours Tuesdays

More information

Image formation - About the course. Grading & Project. Tentative Schedule. Course Content. Students introduction

Image formation - About the course. Grading & Project. Tentative Schedule. Course Content. Students introduction About the course Instructors: Haibin Ling (hbling@temple, Wachman 305) Hours Lecture: Tuesda 5:30-8:00pm, TTLMAN 403B Office hour: Tuesda 3:00-5:00pm, or b appointment Tetbook Computer Vision: Models,

More information

Visual Object Recognition

Visual Object Recognition Visual Object Recognition -67777 Instructor: Daphna Weinshall, daphna@cs.huji.ac.il Office: Ross 211 Office hours: Sunday 12:00-13:00 1 Sources Recognizing and Learning Object Categories ICCV 2005 short

More information

Multi-View Geometry (Ch7 New book. Ch 10/11 old book)

Multi-View Geometry (Ch7 New book. Ch 10/11 old book) Multi-View Geometry (Ch7 New book. Ch 10/11 old book) Guido Gerig CS-GY 6643, Spring 2016 gerig@nyu.edu Credits: M. Shah, UCF CAP5415, lecture 23 http://www.cs.ucf.edu/courses/cap6411/cap5415/, Trevor

More information

Object and Class Recognition I:

Object and Class Recognition I: Object and Class Recognition I: Object Recognition Lectures 10 Sources ICCV 2005 short courses Li Fei-Fei (UIUC), Rob Fergus (Oxford-MIT), Antonio Torralba (MIT) http://people.csail.mit.edu/torralba/iccv2005

More information

EECS 442 Computer vision Databases for object recognition and beyond Segments of this lectures are courtesy of Prof F. Li, R. Fergus and A.

EECS 442 Computer vision Databases for object recognition and beyond Segments of this lectures are courtesy of Prof F. Li, R. Fergus and A. EECS 442 Computer vision Databases for object recognition and beyond Segments of this lectures are courtesy of Prof F. Li, R. Fergus and A. Zisserman Why are we talking about datasets? This is computer

More information

Stereo. Outline. Multiple views 3/29/2017. Thurs Mar 30 Kristen Grauman UT Austin. Multi-view geometry, matching, invariant features, stereo vision

Stereo. Outline. Multiple views 3/29/2017. Thurs Mar 30 Kristen Grauman UT Austin. Multi-view geometry, matching, invariant features, stereo vision Stereo Thurs Mar 30 Kristen Grauman UT Austin Outline Last time: Human stereopsis Epipolar geometry and the epipolar constraint Case example with parallel optical axes General case with calibrated cameras

More information

Computer Vision Introduction

Computer Vision Introduction Computer Vision Introduction Guido Gerig CS-GY 6643, Spring 2016 gerig@nyu.edu Acknowledgements: some slides from Marc Pollefeys and Prof. Trevor Darrell, trevor@eecs.berkeley.edu Classes: Instructor:

More information

Bellevue Community College Summer 2009 Interior Design 194 SPECIAL TOPIC: SKETCHUP

Bellevue Community College Summer 2009 Interior Design 194 SPECIAL TOPIC: SKETCHUP Class Session: TTh 6:00 pm 8:00 pm Credit Hours: Two (2) Location: A262 Door Code: 349499 (through A254) Instructor: Greg Wharton Office: by appointment Hours: by appointment or email email: gwharton@gmail.com

More information

Computer Graphics. Instructor: Oren Kapah. Office Hours: T.B.A.

Computer Graphics. Instructor: Oren Kapah. Office Hours: T.B.A. Computer Graphics Instructor: Oren Kapah (orenkapahbiu@gmail.com) Office Hours: T.B.A. The CG-IDC slides for this course were created by Toky & Hagit Hel-Or 1 CG-IDC 2 Exercise and Homework The exercise

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu ECG782: Multidimensional Digital Signal Processing Lecture 01 Introduction http://www.ee.unlv.edu/~b1morris/ecg782/ 2 Outline Computer Vision

More information

Lecture 12 Recognition. Davide Scaramuzza

Lecture 12 Recognition. Davide Scaramuzza Lecture 12 Recognition Davide Scaramuzza Oral exam dates UZH January 19-20 ETH 30.01 to 9.02 2017 (schedule handled by ETH) Exam location Davide Scaramuzza s office: Andreasstrasse 15, 2.10, 8050 Zurich

More information

Image Analysis. Lars Schmidt-Thieme

Image Analysis. Lars Schmidt-Thieme Image Analysis Image Analysis Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) Institute for Business Economics and Information Systems & Institute for Computer Science University

More information

Instance-level recognition II.

Instance-level recognition II. Reconnaissance d objets et vision artificielle 2010 Instance-level recognition II. Josef Sivic http://www.di.ens.fr/~josef INRIA, WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d Informatique, Ecole Normale

More information