PAPER 2 THEORY QUESTIONS

Size: px
Start display at page:

Download "PAPER 2 THEORY QUESTIONS"

Transcription

1 PAPER 2 THEORY QUESTIONS 1 (a) Fig. 1.1 shows a ray of light incident on a mirror at X. The incident ray makes an angle of 50 with the surface of the mirror. (i) Complete Fig. 1.1 to show the normal and the reflected ray at X. [1] (ii) State the values of Fig the angle of incidence, the angle of reflection.... [1] (b) Describe with the help of a diagram how you would find the position of the image produced by a plane mirror.... [3] MS / Sh.M / FT12 / Gr 10 / physics / Theory questions / light & electromagnetic spectrum 1

2 2 Fig. 2.1 shows a very large plane mirror, inclined at 45 to the horizontal, beneath a pattern on the high ceiling of a hall. Fig. 2.1 The mirror is set on a stand at head-height immediately below the centre C of the pattern. R and S are two rays of light from C that strike the mirror. (a) (i) On Fig. 2.1, continue the rays R and S after they strike the mirror. [1] (ii) On Fig. 2.1, show how these rays are used to locate the image of C and mark and label the position of this image with the letter I. [2] (iii) State two characteristics of this image.... [2] (iv) Suggest how the mirror helps visitors to the hall to see the pattern on the ceiling.... [1] (b) Violet light from C has a wavelength of m. (i) Calculate the frequency of this light, clearly stating the value of any constant used in the calculation. frequency =... [3] MS / Sh.M / FT12 / Gr 10 / physics / Theory questions / light & electromagnetic spectrum 2

3 (ii) State two different components of the electromagnetic spectrum that have wavelengths smaller than the wavelength of violet light.... [2] (iii) 1. Discuss a medical application of one of these components of the electromagnetic spectrum.... [3] 2. State a health risk associated with this component of the electromagnetic spectrum.... [1] 3 Fig. 3.1 shows an old coin displayed in a museum. Fig. 3.1 The coin is vertical and is supported by a transparent stand. A vertical mirror 0.17 m behind the coin ensures that the back of the coin can be seen by a visitor looking from the line P. M is a point on the back of the coin. (a) On Fig. 3.1, (i) draw two rays of light from M to show how its image is produced, [2] (ii) label the image I. [1] (b) State the distance from point M on the coin to its image. distance =... [1] MS / Sh.M / FT12 / Gr 10 / physics / Theory questions / light & electromagnetic spectrum 3

4 4 Fig. 4.1 shows a man looking at his reflection in a rectangular plane mirror. Fig. 4.1 The vertical side of the mirror has length h. (a) (i) On Fig. 5.1, draw a ray of light from point X that is reflected by the mirror to the man s eye. [1] (ii) On Fig. 5.1, mark the angle of incidence of your ray at the mirror. Label this angle i. [1] (iii) Define the angle of incidence..... [1] (b) On Fig. 5.1, draw a ray of light from the top of the man s hat that is reflected by the mirror to his eye. Use your rays to determine the smallest value of h that allows the man to see all of the image in the mirror, from the top of his hat to his toes. On the diagram, 1 cm represents 0.5 m. h = [2] MS / Sh.M / FT12 / Gr 10 / physics / Theory questions / light & electromagnetic spectrum 4

5 5 A student performs an experiment to demonstrate the refraction of light by a regular glass block. Fig. 5.1 shows, to scale, the outline of the glass block and the paths of incident, refracted and emergent rays that the student draws on a piece of paper. Fig. 5.1 (a) Describe the apparatus needed and also a method by which the paths of incident, refracted and emergent ray may be drawn on a piece of paper. (b) (i) Describe what happens to the direction of the ray of light as it enters and leaves the block. (ii) State what happens to the speed, frequency and wavelength of the light as it enters the block. MS / Sh.M / FT12 / Gr 10 / physics / Theory questions / light & electromagnetic spectrum 5

6 (c) Take measurements from Fig.5.1 and calculate the refractive index of the glass block. refractive index =.. 6 Fig. 6.1 shows an air bubble in water. The rays of light are incident on the air bubble. Fig. 6.1 The angle of incidence of ray 1 on the air bubble is greater than the critical angle. The angle of incidence of ray 2 on the air bubble is less than the critical angle. Ray 3 is perpendicular to the surface of the bubble. The angle of incidence of ray 2 on the air bubble is 27 and the angle of refraction of ray 2inside the air bubble is 37. (a) On Fig. 5.1, at the point where ray 1 meets the air bubble, mark (i) the normal to the surface, (ii) the angle of incidence. (b) Complete Fig. 5.1 to show how all three rays continue after they meet the air bubble. (c) (i) Define what is meant by the refractive index of water... (ii) Calculate the refractive index of water. refractive index =.. MS / Sh.M / FT12 / Gr 10 / physics / Theory questions / light & electromagnetic spectrum 6

7 7 Fig. 7.1 and Fig. 7.2 show rays of light passing through the same semi-circular block of plastic. Fig. 7.1 Fig. 7.2 Q is the centre of the straight side of the block. (a) State the value of the critical angle in the plastic. critical angle =... [1] (b) Explain what is meant by the critical angle.... [2] (c) Calculate the refractive index of the plastic. State the formula that you use. refractive index =... [3] (d) Some light reflects back into the plastic at Q. On Fig. 7.1, draw the reflected ray at Q. [1] 8 Fig. 8.1 shows a ray of light entering a semi-circular glass block and striking the glass surface at M, the mid-point of the straight face. Fig. 8.1 (a) The ray of light strikes the glass surface at M with an angle of incidence C equal to the critical angle of light in glass. (i) State what is meant by critical angle..... [1] (ii) On Fig. 8.1, mark and label the angle C. [1] (iii) On Fig. 8.1, continue the ray of light after it strikes the glass surface at M. [1] MS / Sh.M / FT12 / Gr 10 / physics / Theory questions / light & electromagnetic spectrum 7

8 (b) Fig. 8.2 shows a second ray of light striking M. Fig. 8.2 This ray has an angle of incidence at M smaller than the critical angle. On Fig. 7.2, continue this ray of light after it strikes the glass surface at M. [1] (c) The refractive index of this glass is 1.5. A third ray of light enters the block from air with an angle of incidence of 50. Calculate the angle of refraction. 9 Describe an experiment to measure the critical angle for light in glass or perspex. Your answer should include a labelled diagram. angle=... [2].. [5] MS / Sh.M / FT12 / Gr 10 / physics / Theory questions / light & electromagnetic spectrum 8

9 10 Fig shows a ray of light PQR passing along a simple optical fibre to its end at R. Fig (a) (i) Explain why the ray PQ does not leave the optical fibre at Q... (ii) Explain why the ray QR changes direction at R..... [3] (b) The refractive index of glass is 1.5. The ray QR makes an angle of 15 with the normal to the glass surface at R. Calculate the angle x, shown on Fig angle x =... [2] (c) State one advantage of optical fibres rather than copper wires for carrying telephone communications.... [1] 11 Fig shows part of an optical fibre. Fig The ray PQ undergoes total internal reflection in the optical fibre. (a) On Fig. 11.1, continue the path of ray PQ until it reaches end R. [1] (b) Explain what is meant by total internal reflection.... [1] MS / Sh.M / FT12 / Gr 10 / physics / Theory questions / light & electromagnetic spectrum 9

10 (c) Optical fibres are cheaper and lighter than copper wires. State one other advantage of using optical fibres rather than copper wires for telephone communications... [1] (d) The light in the optical fibre is travelling at a speed of m / s and has a wavelength of m. Calculate the frequency of the light. frequency =... [2] 11 Diagram shows light rays incident on both converging and diverging lens. Complete the rays of light in both the diagrams. 12 Fig shows words seen through a lens. Fig shows the same words without the lens. Fig Fig (a) State two properties of the image formed by the lens.... [2] (b) On Fig. 12.3, sketch a ray diagram to show how the image in Fig was formed by the lens. Mark clearly the focal length of the lens and the image formed. MS / Sh.M / FT12 / Gr 10 / physics / Theory questions / light & electromagnetic spectrum 10

11 Fig Fig.13.1 shows the lens of a simple camera being used to photograph an object. Fig The lens forms a focused image of the object on the film. (a) On Fig.13.1, draw two rays from the top of the object to show how the lens forms the image. (b) (i) On Fig. 13.2, draw ray diagram to show how image is formed in camera. Fig (ii) Describe the characteristic of images formed by the lens in camera.. MS / Sh.M / FT12 / Gr 10 / physics / Theory questions / light & electromagnetic spectrum 11

12 (c) The object moves closer to the camera. State how the lens is adjusted to keep the image in focus. 14 Sketch a ray diagram to show how the image formed by the projector lens. Mark clearly the focal length of the lens and the image formed. Describe the characteristics of images formed by the lens in projector. 15 Fig.15.1 is drawn full scale. The focal length of the lens is 3.0 cm. Fig (a) (i) On Fig.14.1, draw two rays from the top of the object O that meet at the image. (ii) Define the term linear magnification. (iii) Determine the magnification produced by the lens in the diagram. magnification =... MS / Sh.M / FT12 / Gr 10 / physics / Theory questions / light & electromagnetic spectrum 12

13 16 Fig shows a ray of light passing through the edge of a converging lens. Fig (a) Calculate the refractive index of the glass used in the lens. refractive index of the glass = (b) An object of height 20 cm is placed 50 cm to the right of a converging (convex) lens of focal length 30 cm. (i) Explain what is meant by the focal length of a lens. (ii) Draw a ray diagram to scale to show the formation of the image. (iii) State two properties of the image. (iv) Determine the linear magnification of the image. magnification =... MS / Sh.M / FT12 / Gr 10 / physics / Theory questions / light & electromagnetic spectrum 13

14 17 An object is placed in front of a diverging lens as shown on the scale diagram. The principal focus F is marked on each side of the lens. (a) At which position will the image be formed? (b) Describe the characteristics of image formed by the lens. 18 Fig.18.1 shows a normal eye viewing an object close to it. (a) Fig.18.2 shows long-sighted eye. Fig Fig (i) On Fig.18.2, complete diagram to show the rays travelling through the eye. (ii) State what type of lens is used to correct this defect. (iii) On Fig. 18.3, show how this type of lens is used to focus rays from the far object. Fig (b) Fig shows a short-sighted eye. Fig Fig (i) On Fig.18.4, complete diagram to show the rays travelling through the eye. (ii) State what type of lens is used to correct this defect. (iii) On Fig. 18.5, show how this type of lens is used to focus rays from the far object. MS / Sh.M / FT12 / Gr 10 / physics / Theory questions / light & electromagnetic spectrum 14

15 19 Fig shows a ray of white light from a ray-box passing into a glass prism. When the light enters to the prism light disperse and spectrum is formed between P and Q on the screen. Fig (a) Define dispersion of light in glass prism. (b) Complete Fig. 1.1 to show the ray of white light passing through and emerging from the prism. (c) State the colour of the light at end P and Q of the spectrum. (d) State whether the value of each of these properties for blue light is greater than, equal to or less than the value for red light. (i) speed in a vacuum... (ii) wavelength... (iii) frequency... (e) Fig shows the ray passing through a red filter before it reaches the prism. Fig Complete Fig.1.2 to show the ray of red light passing through and emerging from the prism. MS / Sh.M / FT12 / Gr 10 / physics / Theory questions / light & electromagnetic spectrum 15

16 2 Fig shows an incorrect electromagnetic spectrum drawn by a student. The parts of the spectrum and the wavelengths are in the wrong order. The values of the wavelengths do not match the correct parts of the spectrum. Fig (a) On Fig.2.2, complete the table of the electromagnetic spectrum. Radio waves and their correct wavelength have been inserted for you. Fig (b) State three properties that are common to all types of radiation in the electromagnetic spectrum. (c) State the uses of (i) infra-red radiation. (ii) gamma rays (iii) ultra violet rays. (iv) microwaves (v) radio waves (vi) visible light (vii) X - ray MS / Sh.M / FT12 / Gr 10 / physics / Theory questions / light & electromagnetic spectrum 16

17 5 (a) Each object in the table below emits one main type of electromagnetic wave. Complete the table by writing in the name of the type of wave. One line has been written for you. [2] (b) X-rays are used in hospitals to produce images of bones and to show whether bones are broken. (i) State what is used to detect X-rays..... [1] (ii) Explain the properties of X-rays that enable an image of a bone to be produced [2] (c) Describe how microwaves are used in the transmission of television signals by satellite..[3] MS / Sh.M / FT12 / Gr 10 / physics / Theory questions / light & electromagnetic spectrum 17

Which row could be correct for the colours seen at X, at Y and at Z?

Which row could be correct for the colours seen at X, at Y and at Z? 1 The ray diagram shows the image of an formed by a converging lens. converging lens image 50 cm What is the focal length of the lens? 40 cm 72 cm 40 cm 50 cm 72 cm 90 cm 2 The diagram shows the dispersion

More information

Draw a diagram showing the fibre and the path of the ray of light. Describe one use of optical fibres in medicine. You may draw a diagram.

Draw a diagram showing the fibre and the path of the ray of light. Describe one use of optical fibres in medicine. You may draw a diagram. 1 (a) (i) A ray of light passes through a length of curved optical fibre. Draw a diagram showing the fibre and the path of the ray of light. [1] Describe one use of optical fibres in medicine. You may

More information

On Fig. 7.1, draw a ray diagram to show the formation of this image.

On Fig. 7.1, draw a ray diagram to show the formation of this image. 1- A small object is placed 30 cm from the centre of a convex lens of focal length 60 cm An enlarged image is observed from the other side of the lens (a) On Fig 71, draw a ray diagram to show the formation

More information

Light and refractive index

Light and refractive index 17 Fig. 7.1 shows a ray of light incident on a rectangular glass block at point X. W P X air glass Q R S Fig. 7.1 The ray of light is refracted at X. On Fig. 7.1, (a) draw the normal at X, [1] (b) draw

More information

NAME:... REFRACTION. Page 1

NAME:... REFRACTION.   Page 1 NAME:... REFRACTION 1. A ray of red light enters a semi-circular glass block normal to the curved surface. Which diagram correctly shows the partial reflection and refraction of the ray? www.kcpe-kcse.com

More information

Option G 1: Refraction

Option G 1: Refraction Name: Date: Option G 1: Refraction 1. The table below relates to the electromagnetic spectrum. Complete the table by stating the name of the region of the spectrum and the name of a possible source of

More information

UNIQUE SCIENCE ACADEMY

UNIQUE SCIENCE ACADEMY UNIQUE SIENE EMY Test (Unit 4) Refraction only Name :... Paper: Physics ate :... lass: II Time llowed: 35Minutes Maximum Marks: 25 Theory Section: [Total 6 Marks] Fig.. and Fig..2 show rays of light passing

More information

4. Refraction. glass, air, Perspex and water.

4. Refraction. glass, air, Perspex and water. Mr. C. Grima 11 1. Rays and Beams A ray of light is a narrow beam of parallel light, which can be represented by a line with an arrow on it, in diagrams. A group of rays makes up a beam of light. In laboratory

More information

Save My Exams! The Home of Revision For more awesome GCSE and A level resources, visit us at Light.

Save My Exams! The Home of Revision For more awesome GCSE and A level resources, visit us at Light. For more awesome GSE and level resources, visit us at www.savemyexams.co.uk/ 3.2 Light Question Paper Level IGSE Subject Physics (0625) Exam oard Topic Sub Topic ooklet ambridge International Examinations(IE)

More information

AP* Optics Free Response Questions

AP* Optics Free Response Questions AP* Optics Free Response Questions 1978 Q5 MIRRORS An object 6 centimeters high is placed 30 centimeters from a concave mirror of focal length 10 centimeters as shown above. (a) On the diagram above, locate

More information

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc.

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc. Chapter 32 Light: Reflection and Refraction Units of Chapter 32 The Ray Model of Light Reflection; Image Formation by a Plane Mirror Formation of Images by Spherical Mirrors Index of Refraction Refraction:

More information

In order to get the G.C.S.E. grade you are capable of, you must make your own revision notes using your Physics notebook.

In order to get the G.C.S.E. grade you are capable of, you must make your own revision notes using your Physics notebook. In order to get the G.C.S.E. grade you are capable of, you must make your own revision notes using your Physics notebook. When summarising notes, use different colours and draw diagrams/pictures. If you

More information

index of refraction-light speed

index of refraction-light speed AP Physics Study Guide Chapters 22, 23, 24 Reflection, Refraction and Interference Name Write each of the equations specified below, include units for all quantities. Law of Reflection Lens-Mirror Equation

More information

GEOMETRIC OPTICS. LENSES refract light, so we need to know how light bends when entering and exiting a lens and how that interaction forms an image.

GEOMETRIC OPTICS. LENSES refract light, so we need to know how light bends when entering and exiting a lens and how that interaction forms an image. I. What is GEOMTERIC OPTICS GEOMETRIC OPTICS In geometric optics, LIGHT is treated as imaginary rays. How these rays interact with at the interface of different media, including lenses and mirrors, is

More information

Unit 11 Light and Optics Holt Chapter 14 Student Outline Light and Refraction

Unit 11 Light and Optics Holt Chapter 14 Student Outline Light and Refraction Holt Chapter 14 Student Outline Light and Refraction Variables introduced or used in chapter: Quantity Symbol Units Speed of light frequency wavelength angle Object Distance Image Distance Radius of Curvature

More information

KULLEGG MARIA REGINA BOYS SECONDARY MOSTA HALF-YEARLY EXAMINATIONS 2012/2013. SUBJECT: PHYSICS Form 4 TIME: 1 HR 30 MIN NAME :

KULLEGG MARIA REGINA BOYS SECONDARY MOSTA HALF-YEARLY EXAMINATIONS 2012/2013. SUBJECT: PHYSICS Form 4 TIME: 1 HR 30 MIN NAME : KULLEGG MARIA REGINA BOYS SECONDARY MOSTA HALF-YEARLY EXAMINATIONS 2012/2013 SUBJECT: PHYSICS Form 4 TIME: 1 HR 30 MIN NAME : CLASS : INDEX NO : Track 2 Answer ALL questions in the spaces provided on the

More information

SNC 2PI Optics Unit Review /95 Name:

SNC 2PI Optics Unit Review /95 Name: SNC 2PI Optics Unit Review /95 Name: Part 1: True or False Indicate in the space provided if the statement is true (T) or false(f) [15] 1. Light is a form of energy 2. Shadows are proof that light travels

More information

3. For an incoming ray of light vacuum wavelength 589 nm, fill in the unknown values in the following table.

3. For an incoming ray of light vacuum wavelength 589 nm, fill in the unknown values in the following table. Homework Set 15A: Mirrors and Lenses 1. Find the angle of refraction for a ray of light that enters a bucket of water from air at an angle of 25 degrees to the normal. 2. A ray of light of vacuum wavelength

More information

Multiple Choice Identify the choice that best completes the statement or answers the question.

Multiple Choice Identify the choice that best completes the statement or answers the question. Practice Test Light Equations Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which colour of light has the shortest wavelength? a. red c. green b. blue

More information

ONE MARK QUESTIONS GEOMETRICAL OPTICS QUESTION BANK

ONE MARK QUESTIONS GEOMETRICAL OPTICS QUESTION BANK ONE MARK QUESTIONS 1. What is lateral shift? 2. What should be the angle of incidence to have maximum lateral shift? 3. For what angle, lateral shift is minimum? 4. What is Normal shift? 5. What is total

More information

Name: Chapter 14 Light. Class: Date: 143 minutes. Time: 143 marks. Marks: Comments: Page 1 of 53

Name: Chapter 14 Light. Class: Date: 143 minutes. Time: 143 marks. Marks: Comments: Page 1 of 53 Chapter 4 Light Name: Class: Date: Time: 43 minutes Marks: 43 marks Comments: Page of 53 A person can see an image of himself in a tall plane mirror. The diagram shows how the person can see his hat. (a)

More information

Light travels in straight lines, this is referred to as... this means that light does not bend...

Light travels in straight lines, this is referred to as... this means that light does not bend... SNC 2DI - 10.2 Properties of Light and Reflection Light travels in straight lines, this is referred to as... this means that light does not bend... Reflection : Light travels in a straight line as long

More information

Reflection and Refraction of Light

Reflection and Refraction of Light PC1222 Fundamentals of Physics II Reflection and Refraction of Light 1 Objectives Investigate for reflection of rays from a plane surface, the dependence of the angle of reflection on the angle of incidence.

More information

Light & Optical Systems Reflection & Refraction. Notes

Light & Optical Systems Reflection & Refraction. Notes Light & Optical Systems Reflection & Refraction Notes What is light? Light is electromagnetic radiation Ultra-violet + visible + infra-red Behavior of Light Light behaves in 2 ways particles (photons)

More information

Name Section Date. Experiment Reflection and Refraction

Name Section Date. Experiment Reflection and Refraction Name Section Date Introduction: Experiment Reflection and Refraction The travel of light is often represented in geometric optics by a light ray, a line that is drawn to represent the straight-line movement

More information

Unit 3: Optics Chapter 4

Unit 3: Optics Chapter 4 Unit 3: Optics Chapter 4 History of Light https://www.youtube.com/watch?v=j1yiapztlos History of Light Early philosophers (Pythagoras) believed light was made up of tiny particles Later scientist found

More information

Recap: Refraction. Amount of bending depends on: - angle of incidence - refractive index of medium. (n 2 > n 1 ) n 2

Recap: Refraction. Amount of bending depends on: - angle of incidence - refractive index of medium. (n 2 > n 1 ) n 2 Amount of bending depends on: - angle of incidence - refractive index of medium Recap: Refraction λ 1 (n 2 > n 1 ) Snell s Law: When light passes from one transparent medium to another, the rays will be

More information

REFRACTION OF LIGHT INDEX NUMBER. Explain this observation (3 marks) 1 Pyramid Assignments / All subjects, All topics available

REFRACTION OF LIGHT INDEX NUMBER. Explain this observation (3 marks) 1 Pyramid Assignments / All subjects, All topics available NAME SCHOOL INDEX NUMBER DATE REFRACTION OF LIGHT 1. 1995 Q18 P1 Light travels through glass of refractive index 1.5 with a speed v. Calculate the value of v (speed of light in air = 3.0 x 10 8 m/s) (3

More information

Self-assessment practice test questions Block 3

Self-assessment practice test questions Block 3 elf-assessment practice test questions Block 3 1 A student is trying to measure the speed of sound in air. he stands at a distance of 50 m from a high wall. he bangs a hammer on a metal block. he hears

More information

All forms of EM waves travel at the speed of light in a vacuum = 3.00 x 10 8 m/s This speed is constant in air as well

All forms of EM waves travel at the speed of light in a vacuum = 3.00 x 10 8 m/s This speed is constant in air as well Pre AP Physics Light & Optics Chapters 14-16 Light is an electromagnetic wave Electromagnetic waves: Oscillating electric and magnetic fields that are perpendicular to the direction the wave moves Difference

More information

Physics 11. Unit 8 Geometric Optics Part 1

Physics 11. Unit 8 Geometric Optics Part 1 Physics 11 Unit 8 Geometric Optics Part 1 1.Review of waves In the previous section, we have investigated the nature and behaviors of waves in general. We know that all waves possess the following characteristics:

More information

Winmeen Tnpsc Group 1 & 2 Self Preparation Course Physics UNIT 9. Ray Optics. surface at the point of incidence, all lie in the same plane.

Winmeen Tnpsc Group 1 & 2 Self Preparation Course Physics UNIT 9. Ray Optics. surface at the point of incidence, all lie in the same plane. Laws of reflection Physics UNIT 9 Ray Optics The incident ray, the reflected ray and the normal drawn to the reflecting surface at the point of incidence, all lie in the same plane. The angle of incidence

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but

More information

Conceptual Physics 11 th Edition

Conceptual Physics 11 th Edition Conceptual Physics 11 th Edition Chapter 28: REFLECTION & REFRACTION This lecture will help you understand: Reflection Principle of Least Time Law of Reflection Refraction Cause of Refraction Dispersion

More information

Phys102 Lecture 21/22 Light: Reflection and Refraction

Phys102 Lecture 21/22 Light: Reflection and Refraction Phys102 Lecture 21/22 Light: Reflection and Refraction Key Points The Ray Model of Light Reflection and Mirrors Refraction, Snell s Law Total internal Reflection References 23-1,2,3,4,5,6. The Ray Model

More information

LIGHT Measuring Angles

LIGHT Measuring Angles 1. Using a protractor LIGHT Measuring Angles This angle is 33 Put vertex (corner) of angle where lines cross One arm of angle goes through middle of 0 This angle is 45 Measure these angles: 66 Light an

More information

S2 Science EM Spectrum Revision Notes --------------------------------------------------------------------------------------------------------------------------------- What is light? Light is a form of

More information

Chapter 18 Ray Optics

Chapter 18 Ray Optics Chapter 18 Ray Optics Chapter Goal: To understand and apply the ray model of light. Slide 18-1 Chapter 18 Preview Looking Ahead Text p. 565 Slide 18-2 Wavefronts and Rays When visible light or other electromagnetic

More information

Unit 3: Optics Chapter 4

Unit 3: Optics Chapter 4 Unit 3: Optics Chapter 4 History of Light https://www.youtube.com/watch?v=j1yiapztlos History of Light Early philosophers (Pythagoras) believed light was made up of tiny particles Later scientist found

More information

HALF YEARLY EXAMINATIONS 2016/2017. Answer ALL questions showing your working Where necessary give your answers correct to 2 decimal places.

HALF YEARLY EXAMINATIONS 2016/2017. Answer ALL questions showing your working Where necessary give your answers correct to 2 decimal places. Track 2 GIRLS SECON DARY, MRIEHEL HALF YEARLY EXAMINATIONS 2016/2017 FORM: 4 PHYSICS Time: 1½ hrs Name: Class: Answer ALL questions showing your working Where necessary give your answers correct to 2 decimal

More information

What is it? How does it work? How do we use it?

What is it? How does it work? How do we use it? What is it? How does it work? How do we use it? Dual Nature http://www.youtube.com/watch?v=dfpeprq7ogc o Electromagnetic Waves display wave behavior o Created by oscillating electric and magnetic fields

More information

LIGHT. Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses

LIGHT. Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses LIGHT Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses Light = Electromagnetic Wave Requires No Medium to Travel Oscillating Electric and Magnetic Field Travel at the speed of light

More information

12:40-2:40 3:00-4:00 PM

12:40-2:40 3:00-4:00 PM Physics 294H l Professor: Joey Huston l email:huston@msu.edu l office: BPS3230 l Homework will be with Mastering Physics (and an average of 1 hand-written problem per week) Help-room hours: 12:40-2:40

More information

Exam Review: Geometric Optics 1. Know the meaning of the following terms and be able to apply or recognize them:

Exam Review: Geometric Optics 1. Know the meaning of the following terms and be able to apply or recognize them: Exam Review: Geometric Optics 1. Know the meaning of the following terms and be able to apply or recognize them: physics transparent convex mirror real image optics translucent refraction virtual image

More information

KULLEGG MARIA REGINA BOYS SECONDARY MOSTA HALF-YEARLY EXAMINATIONS 2012/2013. SUBJECT: PHYSICS Form 4 TIME: 1 HR 30 MIN

KULLEGG MARIA REGINA BOYS SECONDARY MOSTA HALF-YEARLY EXAMINATIONS 2012/2013. SUBJECT: PHYSICS Form 4 TIME: 1 HR 30 MIN KULLEGG MARIA REGINA BOYS SECONDARY MOSTA HALF-YEARLY EXAMINATIONS 2012/2013 SUBJECT: PHYSICS Form 4 TIME: 1 HR 30 MIN NAME : CLASS : INDEX NO : Track 3 Answer ALL questions in the spaces provided on the

More information

Red Orange the reflected ray. Yellow Green and the normal. Blue Indigo line. Colours of visible reflection

Red Orange the reflected ray. Yellow Green and the normal. Blue Indigo line. Colours of visible reflection distance the carrying the moves away from rest position Brightness Loudness The angle between the incident ray and the normal line Amplitude Amplitude of a light Amplitude of a sound incidence Angle between

More information

Physics 11 - Waves Extra Practice Questions

Physics 11 - Waves Extra Practice Questions Physics - Waves xtra Practice Questions. Wave motion in a medium transfers ) energy, only ) mass, only. both mass and energy. neither mass nor energy. single vibratory disturbance that moves from point

More information

EM Spectrum, Reflection & Refraction Test

EM Spectrum, Reflection & Refraction Test EM Spectrum, Reflection & Refraction Test Name: 1. For each of the diagrams below, an object is shown in position before a concave mirror. The shiny side is on the left, facing the object. For each case,

More information

Reflection & Refraction

Reflection & Refraction Reflection & Refraction Reflection Occurs when light hits a medium and bounces back towards the direction it came from Reflection is what allows us to see objects: Lights reflects off an object and travels

More information

Figure 1 - Refraction

Figure 1 - Refraction Geometrical optics Introduction Refraction When light crosses the interface between two media having different refractive indices (e.g. between water and air) a light ray will appear to change its direction

More information

Dispersion (23.5) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 17

Dispersion (23.5) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 17 Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 1 / 17 Dispersion (23.5) The speed of light in a material depends on its wavelength White light is a mixture of wavelengths

More information

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light.

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light. Chapter 7: Geometrical Optics The branch of physics which studies the properties of light using the ray model of light. Overview Geometrical Optics Spherical Mirror Refraction Thin Lens f u v r and f 2

More information

Figure 1 shows a right-angled glass prism in contact with a transparent substance on one of the faces. One of the other angles of the prism is θ.

Figure 1 shows a right-angled glass prism in contact with a transparent substance on one of the faces. One of the other angles of the prism is θ. Q1.(a) Tick ( ) the appropriate boxes in the table to indicate how the wavelength, frequency and speed of light are affected when a ray of light travels from air into glass. Wavelength Frequency Speed

More information

OPTICS: Solutions to higher level questions

OPTICS: Solutions to higher level questions OPTICS: Solutions to higher level questions 2015 Question 12 (b) (i) Complete the path of the light ray through the section of the lens. See diagram: (ii) Draw a ray diagram to show the formation of a

More information

Outline The Refraction of Light Forming Images with a Plane Mirror 26-3 Spherical Mirror 26-4 Ray Tracing and the Mirror Equation

Outline The Refraction of Light Forming Images with a Plane Mirror 26-3 Spherical Mirror 26-4 Ray Tracing and the Mirror Equation Chapter 6 Geometrical Optics Outline 6-1 The Reflection of Light 6- Forming Images with a Plane Mirror 6-3 Spherical Mirror 6-4 Ray Tracing and the Mirror Equation 6-5 The Refraction of Light 6-6 Ray Tracing

More information

SESSION 5: INVESTIGATING LIGHT. Key Concepts. X-planation. Physical Sciences Grade In this session we:

SESSION 5: INVESTIGATING LIGHT. Key Concepts. X-planation. Physical Sciences Grade In this session we: SESSION 5: INVESTIGATING LIGHT Key Concepts In this session we: Explain what light is, where light comes from and why it is important Identify what happens when light strikes the surface of different objects

More information

Optics Test Science What are some devices that you use in everyday life that require optics?

Optics Test Science What are some devices that you use in everyday life that require optics? Optics Test Science 8 Introduction to Optics 1. What are some devices that you use in everyday life that require optics? Light Energy and Its Sources 308-8 identify and describe properties of visible light

More information

HALF YEARLY EXAMINATIONS 2016/2017. Answer ALL questions showing your working Where necessary give your answers correct to 2 decimal places.

HALF YEARLY EXAMINATIONS 2016/2017. Answer ALL questions showing your working Where necessary give your answers correct to 2 decimal places. Track 3 GIRLS SECON DARY, MRIEHEL HALF YEARLY EXAMINATIONS 2016/2017 FORM: 4 PHYSICS Time: 1½ hrs Name: Class: Answer ALL questions showing your working Where necessary give your answers correct to 2 decimal

More information

When light strikes an object there are different ways it can be affected. Light can be

When light strikes an object there are different ways it can be affected. Light can be When light strikes an object there are different ways it can be affected. Light can be transmitted, reflected, refracted, and absorbed, It depends on the type of matter that it strikes. For example light

More information

The branch of physics which studies light

The branch of physics which studies light Mr.V The branch of physics which studies light Geometric model XVI century by W Snell Wave Model XIX century by JC Maxwell Photon Model XX century by Planck, Einstein Models of Light Basic Concept Laws

More information

Properties of Light I

Properties of Light I Properties of Light I Light definition Light Spectrum Wavelength in nm (1nm = 10-7 cm) Visible/White Light Cosmic Gamma X-Rays Ultra Violet Infra Red Micro Waves Radio Waves 1 Theory of Light Two complimentary

More information

Algebra Based Physics

Algebra Based Physics Slide 1 / 66 Slide 2 / 66 Algebra Based Physics Geometric Optics 2015-12-01 www.njctl.org Table of ontents Slide 3 / 66 lick on the topic to go to that section Reflection Spherical Mirror Refraction and

More information

Chapter 8 Light in Physics

Chapter 8 Light in Physics Chapter 8 Light in Physics MCQ 1: Our eyes detect light in A. RGB form, Red Blue Green form B. ROYGBIV, rainbow color form C. The simple form of a particular color D. none of these ways MCQ 2: The symbol

More information

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #7: Reflection & Refraction

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #7: Reflection & Refraction NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT Physics 211 E&M and Quantum Physics Spring 2018 Lab #7: Reflection & Refraction Lab Writeup Due: Mon/Wed/Thu/Fri, March 26/28/29/30, 2018 Background Light

More information

Light and the Properties of Reflection & Refraction

Light and the Properties of Reflection & Refraction Light and the Properties of Reflection & Refraction OBJECTIVE To study the imaging properties of a plane mirror. To prove the law of reflection from the previous imaging study. To study the refraction

More information

Wave Properties. Page 1 of 13

Wave Properties. Page 1 of 13 Wave Properties Transverse and longitudinal waves Be able to describe the difference between longitudinal and transverse waves including examples of each (e.g. ripples / light for transverse & sound (compression

More information

Optics and Kinematics

Optics and Kinematics Optics and Kinematics PHS-5061-2 Scored Activity 3 Date submitted:... Identification Name:... Address:...... Tel.:... Email:... Mark:... /100 PHS-5061-2 OPTICS AND KINEMATICS This scored activity is produced

More information

PHYS 219 General Physics: Electricity, Light and Modern Physics

PHYS 219 General Physics: Electricity, Light and Modern Physics PHYS 219 General Physics: Electricity, Light and Modern Physics Exam 2 is scheduled on Tuesday, March 26 @ 8 10 PM In Physics 114 It will cover four Chapters 21, 22, 23, and 24. Start reviewing lecture

More information

Optics INTRODUCTION DISCUSSION OF PRINCIPLES. Reflection by a Plane Mirror

Optics INTRODUCTION DISCUSSION OF PRINCIPLES. Reflection by a Plane Mirror Optics INTRODUCTION Geometric optics is one of the oldest branches of physics, dealing with the laws of reflection and refraction. Reflection takes place on the surface of an object, and refraction occurs

More information

HALF YEARLY EXAMINATIONS 2015/2016. Answer ALL questions showing your working Where necessary give your answers correct to 2 decimal places.

HALF YEARLY EXAMINATIONS 2015/2016. Answer ALL questions showing your working Where necessary give your answers correct to 2 decimal places. Track 3 GIRLS SECONDARY, MRIEHEL HALF YEARLY EXAMINATIONS 2015/2016 FORM: 4 PHYSICS Time: 1½ hrs Name: Class: Answer ALL questions showing your working Where necessary give your answers correct to 2 decimal

More information

Refraction of Light. This bending of the ray is called refraction

Refraction of Light. This bending of the ray is called refraction Refraction & Lenses Refraction of Light When a ray of light traveling through a transparent medium encounters a boundary leading into another transparent medium, part of the ray is reflected and part of

More information

Light. Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see

Light. Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see Light Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see Facts About Light The speed of light, c, is constant in a vacuum. Light can be: REFLECTED ABSORBED REFRACTED

More information

PHYSICS 213 PRACTICE EXAM 3*

PHYSICS 213 PRACTICE EXAM 3* PHYSICS 213 PRACTICE EXAM 3* *The actual exam will contain EIGHT multiple choice quiz-type questions covering concepts from lecture (16 points), ONE essay-type question covering an important fundamental

More information

A concave mirror is a converging mirror because parallel rays will. A convex mirror is a diverging mirror because parallel rays will

A concave mirror is a converging mirror because parallel rays will. A convex mirror is a diverging mirror because parallel rays will Ray Diagrams Convex Mirror A concave mirror is a converging mirror because parallel rays will. A convex mirror is a diverging mirror because parallel rays will. Quick Activity obtain a ray box and a curved

More information

Willis High School Physics Workbook Unit 7 Waves and Optics

Willis High School Physics Workbook Unit 7 Waves and Optics Willis High School Physics Workbook Unit 7 Waves and Optics This workbook belongs to Period Waves and Optics Pacing Guide DAY DATE TEXTBOOK PREREADING CLASSWORK HOMEWORK ASSESSMENT M 2/25 T 2/26 W 2/27

More information

EM Waves Practice Problems

EM Waves Practice Problems PSI AP Physics 2 Name 1. Sir Isaac Newton was one of the first physicists to study light. What properties of light did he explain by using the particle model? 2. Who was the first person who was credited

More information

PHYSICS. Light FORM 4. Chapter 5. Compiled by Cikgu Desikan

PHYSICS. Light FORM 4. Chapter 5. Compiled by Cikgu Desikan PHYSICS RM 4 Chapter 5 Light Compiled by Cikgu Desikan PRE SPM PHYSICS 2016 Chapter 5 Light Dear students, The two basic processes of education are knowing and valuing. Learning bjectives : 1. Understanding

More information

Wavefronts and Rays. When light or other electromagnetic waves interact with systems much larger than the wavelength, it s a good approximation to

Wavefronts and Rays. When light or other electromagnetic waves interact with systems much larger than the wavelength, it s a good approximation to Chapter 33: Optics Wavefronts and Rays When light or other electromagnetic waves interact with systems much larger than the wavelength, it s a good approximation to Neglect the wave nature of light. Consider

More information

What is Light? What is Electromagnetic Radiation?

What is Light? What is Electromagnetic Radiation? What is Light? Light is a form of electromagnetic radiation that can be seen by the eye. What is Electromagnetic Radiation? Electromagnetic radiation is a term used to describe waves that are created by

More information

ENGR142 PHYS 115 Geometrical Optics and Lenses

ENGR142 PHYS 115 Geometrical Optics and Lenses ENGR142 PHYS 115 Geometrical Optics and Lenses Part A: Rays of Light Part B: Lenses: Objects, Images, Aberration References Pre-lab reading Serway and Jewett, Chapters 35 and 36. Introduction Optics play

More information

4. A bulb has a luminous flux of 2400 lm. What is the luminous intensity of the bulb?

4. A bulb has a luminous flux of 2400 lm. What is the luminous intensity of the bulb? 1. Match the physical quantities (first column) with the units (second column). 4. A bulb has a luminous flux of 2400 lm. What is the luminous intensity of the bulb? (π=3.) Luminous flux A. candela Radiant

More information

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Conceptual Physics Fundamentals Chapter 14: PROPERTIES OF LIGHT This lecture will help you understand: Reflection Refraction Dispersion Total Internal Reflection Lenses Polarization Properties of Light

More information

HW Chapter 20 Q 2,3,4,5,6,10,13 P 1,2,3. Chapter 20. Classic and Modern Optics. Dr. Armen Kocharian

HW Chapter 20 Q 2,3,4,5,6,10,13 P 1,2,3. Chapter 20. Classic and Modern Optics. Dr. Armen Kocharian HW Chapter 20 Q 2,3,4,5,6,10,13 P 1,2,3 Chapter 20 Classic and Modern Optics Dr. Armen Kocharian Electromagnetic waves and matter: A Brief History of Light 1000 AD It was proposed that light consisted

More information

Stevens High School AP Physics II Work for Not-school

Stevens High School AP Physics II Work for Not-school 1. Gravitational waves are ripples in the fabric of space-time (more on this in the next unit) that travel at the speed of light (c = 3.00 x 10 8 m/s). In 2016, the LIGO (Laser Interferometry Gravitational

More information

Home Lab 7 Refraction, Ray Tracing, and Snell s Law

Home Lab 7 Refraction, Ray Tracing, and Snell s Law Home Lab Week 7 Refraction, Ray Tracing, and Snell s Law Home Lab 7 Refraction, Ray Tracing, and Snell s Law Activity 7-1: Snell s Law Objective: Verify Snell s law Materials Included: Laser pointer Cylindrical

More information

Chapter 7: Geometrical Optics

Chapter 7: Geometrical Optics Chapter 7: Geometrical Optics 7. Reflection at a Spherical Surface L.O 7.. State laws of reflection Laws of reflection state: L.O The incident ray, the reflected ray and the normal all lie in the same

More information

The Ray model of Light. Reflection. Class 18

The Ray model of Light. Reflection. Class 18 The Ray model of Light Over distances of a terrestrial scale light travels in a straight line. The path of a laser is now the best way we have of defining a straight line. The model of light which assumes

More information

Ray Optics. Ray model Reflection Refraction, total internal reflection Color dispersion Lenses Image formation Magnification Spherical mirrors

Ray Optics. Ray model Reflection Refraction, total internal reflection Color dispersion Lenses Image formation Magnification Spherical mirrors Ray Optics Ray model Reflection Refraction, total internal reflection Color dispersion Lenses Image formation Magnification Spherical mirrors 1 Ray optics Optical imaging and color in medicine Integral

More information

Light. Electromagnetic wave with wave-like nature Refraction Interference Diffraction

Light. Electromagnetic wave with wave-like nature Refraction Interference Diffraction Light Electromagnetic wave with wave-like nature Refraction Interference Diffraction Light Electromagnetic wave with wave-like nature Refraction Interference Diffraction Photons with particle-like nature

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics The Reflection of Light: Mirrors: Mirrors produce images because the light that strikes them is reflected, rather than absorbed. Reflected light does much more than produce

More information

Refraction Section 1. Preview. Section 1 Refraction. Section 2 Thin Lenses. Section 3 Optical Phenomena. Houghton Mifflin Harcourt Publishing Company

Refraction Section 1. Preview. Section 1 Refraction. Section 2 Thin Lenses. Section 3 Optical Phenomena. Houghton Mifflin Harcourt Publishing Company Refraction Section 1 Preview Section 1 Refraction Section 2 Thin Lenses Section 3 Optical Phenomena Refraction Section 1 TEKS The student is expected to: 7D investigate behaviors of waves, including reflection,

More information

Chapter 5 Mirror and Lenses

Chapter 5 Mirror and Lenses Chapter 5 Mirror and Lenses Name: 5.1 Ray Model of Light Another model for light is that it is made up of tiny particles called. Photons travel in perfect, lines from a light source This model helps us

More information

PHYS2002 Spring 2012 Practice Exam 3 (Chs. 25, 26, 27) Constants

PHYS2002 Spring 2012 Practice Exam 3 (Chs. 25, 26, 27) Constants PHYS00 Spring 01 Practice Exam 3 (Chs. 5, 6, 7) Constants m m q q p e ε = 8.85 o o p e = 1.67 = 9.11 7 9 7 31 = + 1.60 = 1.60 μ = 4π k = 8.99 g = 9.8 m/s 1 kg 19 19 C kg T m/a N m C / N m C / C 1. A convex

More information

PHY 112: Light, Color and Vision. Lecture 11. Prof. Clark McGrew Physics D 134. Review for Exam. Lecture 11 PHY 112 Lecture 1

PHY 112: Light, Color and Vision. Lecture 11. Prof. Clark McGrew Physics D 134. Review for Exam. Lecture 11 PHY 112 Lecture 1 PHY 112: Light, Color and Vision Lecture 11 Prof. Clark McGrew Physics D 134 Review for Exam Lecture 11 PHY 112 Lecture 1 From Last Time Lenses Ray tracing a Convex Lens Announcements The midterm is Thursday

More information

AP Physics Problems -- Waves and Light

AP Physics Problems -- Waves and Light AP Physics Problems -- Waves and Light 1. 1975-4 (Physical Optics) a. Light of a single wavelength is incident on a single slit of width w. (w is a few wavelengths.) Sketch a graph of the intensity as

More information

Inaugural University of Michigan Science Olympiad Invitational Tournament. Optics

Inaugural University of Michigan Science Olympiad Invitational Tournament. Optics Inaugural University of Michigan Science Olympiad Invitational Tournament Test length: 50 Minutes Optics Team number: Team name: Student names: Instructions: Do not open this test until told to do so.

More information

Light Refraction. 7. For the three situations below, draw a normal line and measure and record the angles of incidence and the angles of refraction.

Light Refraction. 7. For the three situations below, draw a normal line and measure and record the angles of incidence and the angles of refraction. Name: Light Refraction Read from Lesson 1 of the Refraction and Lenses chapter at The Physics Classroom: http://www.physicsclassroom.com/class/refrn/u14l1a.html http://www.physicsclassroom.com/class/refrn/u14l1b.html

More information

Optics Homework. Assignment #2. Assignment #1. Textbook: Read Section 23-1 and 23-2

Optics Homework. Assignment #2. Assignment #1. Textbook: Read Section 23-1 and 23-2 Optics Homework Assignment #1 Textbook: Read Section 22-3 (Honors only) Textbook: Read Section 23-1 Online: Reflection Lesson 1a: * problems are for all students ** problems are for honors physics 1. *

More information

Key Terms write the definitions of the boldface terms on your own paper, definitions are available at theteterszone.net

Key Terms write the definitions of the boldface terms on your own paper, definitions are available at theteterszone.net On-level Physics Optics This unit will allow each student to: a. gain a better understanding of the behavior and characteristics of light as it is reflected and refracted by s and lenses b. continue making

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Lecture XIII Refraction of light Snell s law Dispersion and rainbow Mirrors and lens Plane mirrors Concave and convex mirrors Thin lenses http://www.physics.wayne.edu/~apetrov/phy2130/

More information