Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform. Xintao Wang Ke Yu Chao Dong Chen Change Loy

Size: px
Start display at page:

Download "Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform. Xintao Wang Ke Yu Chao Dong Chen Change Loy"

Transcription

1 Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform Xintao Wang Ke Yu Chao Dong Chen Change Loy

2 Problem enlarge 4 times Low-resolution image High-resolution image

3 Previous work Contemporary SR algorithms are mostly CNN-based methods [1]. Most of CNN-based methods use pixel-wise loss function. (MSE-based model) good at recovering edges and smooth areas not good at texture recovery Adversarial loss is introduced in SRGAN [2] and EnhanceNet [3]. (GAN-based model) encourage the network to favor solutions that look more like natural images visual quality of reconstruction is significantly improved SRCNN SRGAN Ground-truth [1] C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep convolutional network for image super-resolution. In ECCV, [2] C. Ledig, L. Theis, F. Husz ar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, et al. Photo-realistic single image super-resolution using a generative adversarial network. In CVPR, [3] M. S. Sajjadi, B. Sch olkopf, and M. Hirsch. EnhanceNet: Single image super-resolution through automated texture synthesis. In ICCV, 2017.

4 Motivation building x4 plant x4 building plant swap s

5 Semantic categorical building water animal sky grass plant mountain

6 Issues 1. How to represent the semantic categorical? Our approach: explore semantic segmentation probability maps as the categorical up to pixel level. 2. How categorical can be incorporated into the reconstruction process effectively? Our approach: propose a novel Spatial Feature Transform that is capable of altering the network behavior conditioned on other information.

7 Represent categorical Contemporary CNN segmentation network [1] fine-tuned on LR images K categories ResNet 101 argmax probability maps semantic categorical [1] Z. Liu, X. Li, P. Luo, C.-C. Loy, and X. Tang. Semantic image segmentation via deep parsing network. In ICCV, 2015.

8 Examples on segmentation Input LR images Ground-truth Segments on HR images Segments on LR images sky grass building mountain plant water animal background

9 Incorporate conditions Categorical Ψ = (P 1, P 2,, P K ) Ψ probability maps P 1, P 2,, P K? y = G θ (x Ψ) CNN for SR y = G θ (x) input LR image x net G parametrized by θ restored image y

10 Spatial Feature Transform By learning a mapping function M, the Ψ is modeled by a pair of affine transformation parameters (γ, β). M: Ψ (γ, β) The modulation is then carried out by an affine transformation on feature maps F. SFT F γ, β = γ F+ β y = G θ (x Ψ) M: Ψ (γ, β) SFT F γ, β = γ F+ β y = G θ (x γ, β)

11 Conv Conv Conv Conv Conv Conv Conv Conv Conv SFT layer Conv SFT layer Conv Residual block Residual block SFT layer Conv Upsampling Conv Conv Conv Spatial Feature Transform Residual block SFT layer Segmentation probability maps Condition Network conditions Shared SFT conditions features + γ i β i

12 loss function Generator Adversarial loss [1] encourage the network to generate images that reside on the manifold of natural images min θ max η Ε y~phr logd η y + Ε x~plr log(1 D η G θ (x) ) Compete Discriminator Perceptual loss [2] use a pre-trained 19-layer VGG network (features before conv54) optimize a super-resolution model in a feature space φ VGG y φ VGG y 2 2 [1] Goodfellow, Ian, et al. Generative adversarial nets. In NIPS [2] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style transfer and super-resolution. In ECCV, 2016.

13 Spatial condition The modulation parameters (γ, β) have a close relationship with probability maps P and contain spatial information. Input P building map P grass map γ map of C 6 β map of C 7 LR patch Restored

14 Delicate modulation LR patch P plant map γ map of C 51 β map of C 1 Restored P grass map γ map of C 14 β map of C 5

15 Results SRCNN SRGAN EnhanceNet SFT-Net (ours) GT PSNR: 24.83dB PSNR: 23.36dB PSNR: 22.71dB PSNR: 22.90dB

16 Results Bicubic SRCNN VDSR LapSRN DRRN MemNet EnhanceNet SRGAN SFT-Net (ours) GT MSE-based method GAN-based method

17 User study part I Ours EnhanceNet Ours SRGAN sky building grass animal plant water mountain

18 User study part II GT Ours MemNet SRCNN % 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Rank-1 Rank-2 Rank-3 Rank-4

19 animal plant water mountain grass sky building Impact of different s bicubic building sky grass mountain water plant animal building sky grass mountain water plant animal building

20 animal plant water mountain grass sky building Impact of different s bicubic building sky grass mountain water plant animal mountain bicubic building sky grass mountain water plant animal

21 Other conditioning methods Input concatenation Compositional mapping [1] FiLM [2] [1] S. Zhu, S. Fidler, R. Urtasun, D. Lin, and C. C. Loy. Be your own prada: Fashion synthesis with structural coherence. In ICCV, [2] E. Perez, F. Strub, H. de Vries, V. Dumoulin, and A. Courville. FiLM: Visual reasoning with a general conditioning layer. arxiv preprint arxiv: , 2017.

22 Comparison with other conditioning methods SFT-Net (ours) Input concatenation Compositional mapping FiLM

23 Robustness to out-of-category SRGAN Ours SRGAN Ours

24 Conclusion Explore semantic segmentation maps as categorical for realistic texture recovery. Propose a novel Spatial Feature Transform layer to efficiently incorporate the categorical conditions into a CNN-based SR network. Extensive comparisons and a user study demonstrate the capability of SFT-Net in generating realistic and visually pleasing textures.

25 Crafting a Toolchain for Image Restoration by Deep Reinforcement Learning Ke Yu Chao Dong Liang Lin Chen Change Loy

26 Image Restoration There are many individual tasks Denoising Deblurring JPEG Deblocking Super-Resolution Towards more complicated distortions Address multiple levels of degradation in one task Address multiple individual tasks [3] [1, 2]

27 Image Restoration A New Setting Consider multiple distortions simultaneously Real-world: Image capture and storage Synthetic: Gaussian blur, Gaussian noise and JPEG compression Real-world Scenario Gaussian Blur Gaussian Noise JPEG Compression Synthetic Setting Our New Task

28 Motivation Can we use a single CNN to address multiple distortions? Inefficient: Require a huge network to handle all the possibilities Inflexible: All kinds of distorted images are processed with the same structure Find a more efficient and flexible approach! Process different distortion in a different way

29 Method Decision Making Progressively restore the image quality Treat image restoration as a decision making process Artifacts! Blurry! Noisy! Try a Good enough :) deblocking deblurring denoising tool

30 Method Overview Our framework requires a toolbox and an agent Agent Toolbox Agent Toolbox

31 Method Toolbox We design 12 tools, each of which addresses a simple task 3-layer CNN [4] 8-layer CNN

32 Method Agent Use reinforcement learning to address tool selection current distorted image action at last step 12 tools stopping State Action Reward: PSNR gain at each step Structure : I 1 Input Image v 1 S 1 Feature Extractor One-hot Encoder Agent LSTM v 1

33 Method Joint Training Challenge of Middle State Intermediate results after several steps of processing None of the tools has seen these intermediate results Joint Training forward backward toolchain 1 forward toolchain 2 backward MSE loss MSE loss

34 Experimental Results Dataset: DIV2K [5] Comparison with generic models for image restoration VDSR [1] DnCNN [3]

35 Experimental Results Quantitative results on DIV2K Competitive performance Better generality Runtime Analyses More efficient

36 Experimental Results Qualitative results on DIV2K Mild (unseen) Moderate Severe (unseen) Input 1 st step 2 nd step 3 rd step VDSR-s VDSR [1]

37 Experimental Results Qualitative results on real-world images Input 1 st step 2 nd step 3 rd step VDSR [1]

38 Experimental Results Ablation Study Joint training Stopping action

39 Conclusion Contributions Address image restoration in a reinforcement learning framework Propose joint learning to cope with middle processing state Dynamically formed toolchain performs competitively against human-designed networks with less computational complexity Future work Incorporate more tools (trained with GAN loss) Handle spatial-variant distortions

40 Thanks! Q & A

41 Reference [1] J. Kim, J. Kwon Lee, and K. Mu Lee. Accurate image super-resolution using very deep convolutional networks. In CVPR, [2] Y. Tai, J. Yang, X. Liu, and C. Xu. Memnet: A persistent memory network for image restoration. In ICCV, [3] K. Zhang,W. Zuo, Y. Chen, D. Meng, and L. Zhang. Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. TIP, [4] C. Dong, C. C. Loy, K. He, and X. Tang. Image super-resolution using deep convolutional networks. TPAMI, 38(2): , [5] E. Agustsson and R. Timofte. Ntire 2017 challenge on single image super-resolution: Dataset and study. In CVPR Workshop, 2017.

Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform Supplementary Material

Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform Supplementary Material Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform Supplementary Material Xintao Wang 1 Ke Yu 1 Chao Dong 2 Chen Change Loy 1 1 CUHK - SenseTime Joint Lab, The Chinese

More information

Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform

Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform Xintao Wang 1 Ke Yu 1 Chao Dong 2 Chen Change Loy 1 1 CUHK - SenseTime Joint Lab, The Chinese University of Hong

More information

CNN for Low Level Image Processing. Huanjing Yue

CNN for Low Level Image Processing. Huanjing Yue CNN for Low Level Image Processing Huanjing Yue 2017.11 1 Deep Learning for Image Restoration General formulation: min Θ L( x, x) s. t. x = F(y; Θ) Loss function Parameters to be learned Key issues The

More information

Efficient Module Based Single Image Super Resolution for Multiple Problems

Efficient Module Based Single Image Super Resolution for Multiple Problems Efficient Module Based Single Image Super Resolution for Multiple Problems Dongwon Park Kwanyoung Kim Se Young Chun School of ECE, Ulsan National Institute of Science and Technology, 44919, Ulsan, South

More information

DCGANs for image super-resolution, denoising and debluring

DCGANs for image super-resolution, denoising and debluring DCGANs for image super-resolution, denoising and debluring Qiaojing Yan Stanford University Electrical Engineering qiaojing@stanford.edu Wei Wang Stanford University Electrical Engineering wwang23@stanford.edu

More information

Image Super-Resolution Using Dense Skip Connections

Image Super-Resolution Using Dense Skip Connections Image Super-Resolution Using Dense Skip Connections Tong Tong, Gen Li, Xiejie Liu, Qinquan Gao Imperial Vision Technology Fuzhou, China {ttraveltong,ligen,liu.xiejie,gqinquan}@imperial-vision.com Abstract

More information

Deep Back-Projection Networks For Super-Resolution Supplementary Material

Deep Back-Projection Networks For Super-Resolution Supplementary Material Deep Back-Projection Networks For Super-Resolution Supplementary Material Muhammad Haris 1, Greg Shakhnarovich 2, and Norimichi Ukita 1, 1 Toyota Technological Institute, Japan 2 Toyota Technological Institute

More information

Fast and Accurate Image Super-Resolution Using A Combined Loss

Fast and Accurate Image Super-Resolution Using A Combined Loss Fast and Accurate Image Super-Resolution Using A Combined Loss Jinchang Xu 1, Yu Zhao 1, Yuan Dong 1, Hongliang Bai 2 1 Beijing University of Posts and Telecommunications, 2 Beijing Faceall Technology

More information

arxiv: v1 [cs.cv] 10 Apr 2018

arxiv: v1 [cs.cv] 10 Apr 2018 arxiv:1804.03360v1 [cs.cv] 10 Apr 2018 Reference-Conditioned Super-Resolution by Neural Texture Transfer Zhifei Zhang 1, Zhaowen Wang 2, Zhe Lin 2, and Hairong Qi 1 1 Department of Electrical Engineering

More information

arxiv: v1 [cs.cv] 18 Dec 2018 Abstract

arxiv: v1 [cs.cv] 18 Dec 2018 Abstract SREdgeNet: Edge Enhanced Single Image Super Resolution using Dense Edge Detection Network and Feature Merge Network Kwanyoung Kim, Se Young Chun Ulsan National Institute of Science and Technology (UNIST),

More information

EnhanceNet: Single Image Super-Resolution Through Automated Texture Synthesis Supplementary

EnhanceNet: Single Image Super-Resolution Through Automated Texture Synthesis Supplementary EnhanceNet: Single Image Super-Resolution Through Automated Texture Synthesis Supplementary Mehdi S. M. Sajjadi Bernhard Schölkopf Michael Hirsch Max Planck Institute for Intelligent Systems Spemanstr.

More information

Supplementary Material: Unsupervised Domain Adaptation for Face Recognition in Unlabeled Videos

Supplementary Material: Unsupervised Domain Adaptation for Face Recognition in Unlabeled Videos Supplementary Material: Unsupervised Domain Adaptation for Face Recognition in Unlabeled Videos Kihyuk Sohn 1 Sifei Liu 2 Guangyu Zhong 3 Xiang Yu 1 Ming-Hsuan Yang 2 Manmohan Chandraker 1,4 1 NEC Labs

More information

Densely Connected High Order Residual Network for Single Frame Image Super Resolution

Densely Connected High Order Residual Network for Single Frame Image Super Resolution Densely Connected High Order Residual Network for Single Frame Image Super Resolution Yiwen Huang Department of Computer Science Wenhua College, Wuhan, China nickgray0@gmail.com Ming Qin Department of

More information

arxiv: v1 [cs.cv] 5 Jul 2017

arxiv: v1 [cs.cv] 5 Jul 2017 AlignGAN: Learning to Align Cross- Images with Conditional Generative Adversarial Networks Xudong Mao Department of Computer Science City University of Hong Kong xudonmao@gmail.com Qing Li Department of

More information

Balanced Two-Stage Residual Networks for Image Super-Resolution

Balanced Two-Stage Residual Networks for Image Super-Resolution Balanced Two-Stage Residual Networks for Image Super-Resolution Yuchen Fan *, Honghui Shi, Jiahui Yu, Ding Liu, Wei Han, Haichao Yu, Zhangyang Wang, Xinchao Wang, and Thomas S. Huang Beckman Institute,

More information

arxiv: v2 [cs.cv] 4 Nov 2018

arxiv: v2 [cs.cv] 4 Nov 2018 arxiv:1811.00344v2 [cs.cv] 4 Nov 2018 Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network Subeesh Vasu 1, Nimisha Thekke Madam 2, and Rajagopalan A.N. 3 Indian Institute

More information

Learning a Single Convolutional Super-Resolution Network for Multiple Degradations

Learning a Single Convolutional Super-Resolution Network for Multiple Degradations Learning a Single Convolutional Super-Resolution Network for Multiple Degradations Kai Zhang,2, Wangmeng Zuo, Lei Zhang 2 School of Computer Science and Technology, Harbin Institute of Technology, Harbin,

More information

arxiv: v2 [cs.cv] 17 Sep 2018

arxiv: v2 [cs.cv] 17 Sep 2018 arxiv:1809.00219v2 [cs.cv] 17 Sep 2018 ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks Xintao Wang 1, Ke Yu 1, Shixiang Wu 2, Jinjin Gu 3, Yihao Liu 4, Chao Dong 2, Chen Change Loy 5,

More information

arxiv: v2 [cs.cv] 16 Apr 2018

arxiv: v2 [cs.cv] 16 Apr 2018 arxiv:1804.04829v2 [cs.cv] 16 Apr 2018 Learning Warped Guidance for Blind Face Restoration Xiaoming Li 1, Ming Liu 1, Yuting Ye 1, Wangmeng Zuo 1( ), Liang Lin 2, and Ruigang Yang 3 1 School of Computer

More information

arxiv: v1 [cs.cv] 13 Sep 2018

arxiv: v1 [cs.cv] 13 Sep 2018 arxiv:1809.04789v1 [cs.cv] 13 Sep 2018 Deep Learning-based Image Super-Resolution Considering Quantitative and Perceptual Quality Jun-Ho Choi, Jun-Hyuk Kim, Manri Cheon, and Jong-Seok Lee School of Integrated

More information

Single Image Super Resolution of Textures via CNNs. Andrew Palmer

Single Image Super Resolution of Textures via CNNs. Andrew Palmer Single Image Super Resolution of Textures via CNNs Andrew Palmer What is Super Resolution (SR)? Simple: Obtain one or more high-resolution images from one or more low-resolution ones Many, many applications

More information

Progress on Generative Adversarial Networks

Progress on Generative Adversarial Networks Progress on Generative Adversarial Networks Wangmeng Zuo Vision Perception and Cognition Centre Harbin Institute of Technology Content Image generation: problem formulation Three issues about GAN Discriminate

More information

arxiv: v2 [cs.cv] 19 Apr 2019

arxiv: v2 [cs.cv] 19 Apr 2019 arxiv:1809.04789v2 [cs.cv] 19 Apr 2019 Deep Learning-based Image Super-Resolution Considering Quantitative and Perceptual Quality Jun-Ho Choi, Jun-Hyuk Kim, Manri Cheon, and Jong-Seok Lee School of Integrated

More information

arxiv: v1 [cs.cv] 25 Dec 2017

arxiv: v1 [cs.cv] 25 Dec 2017 Deep Blind Image Inpainting Yang Liu 1, Jinshan Pan 2, Zhixun Su 1 1 School of Mathematical Sciences, Dalian University of Technology 2 School of Computer Science and Engineering, Nanjing University of

More information

DENSE BYNET: RESIDUAL DENSE NETWORK FOR IMAGE SUPER RESOLUTION. Bjo rn Stenger2

DENSE BYNET: RESIDUAL DENSE NETWORK FOR IMAGE SUPER RESOLUTION. Bjo rn Stenger2 DENSE BYNET: RESIDUAL DENSE NETWORK FOR IMAGE SUPER RESOLUTION Jiu Xu1 Yeongnam Chae2 1 Bjo rn Stenger2 Ankur Datta1 Rakuten Institute of Technology, Boston Rakuten Institute of Technology, Tokyo 2 ABSTRACT

More information

arxiv: v1 [cs.cv] 20 Jul 2018

arxiv: v1 [cs.cv] 20 Jul 2018 arxiv:1807.07930v1 [cs.cv] 20 Jul 2018 Photorealistic Video Super Resolution Eduardo Pérez-Pellitero 1, Mehdi S. M. Sajjadi 1, Michael Hirsch 2, and Bernhard Schölkopf 12 1 Max Planck Institute for Intelligent

More information

Introduction. Prior work BYNET: IMAGE SUPER RESOLUTION WITH A BYPASS CONNECTION NETWORK. Bjo rn Stenger. Rakuten Institute of Technology

Introduction. Prior work BYNET: IMAGE SUPER RESOLUTION WITH A BYPASS CONNECTION NETWORK. Bjo rn Stenger. Rakuten Institute of Technology BYNET: IMAGE SUPER RESOLUTION WITH A BYPASS CONNECTION NETWORK Jiu Xu Yeongnam Chae Bjo rn Stenger Rakuten Institute of Technology ABSTRACT This paper proposes a deep residual network, ByNet, for the single

More information

arxiv: v2 [cs.cv] 24 May 2018

arxiv: v2 [cs.cv] 24 May 2018 Learning a Single Convolutional Super-Resolution Network for Multiple Degradations Kai Zhang 1,2,3, Wangmeng Zuo 1, Lei Zhang 2 1 School of Computer Science and Technology, Harbin Institute of Technology,

More information

Image Restoration: From Sparse and Low-rank Priors to Deep Priors

Image Restoration: From Sparse and Low-rank Priors to Deep Priors Image Restoration: From Sparse and Low-rank Priors to Deep Priors Lei Zhang 1, Wangmeng Zuo 2 1 Dept. of computing, The Hong Kong Polytechnic University, 2 School of Computer Science and Technology, Harbin

More information

FAST: A Framework to Accelerate Super- Resolution Processing on Compressed Videos

FAST: A Framework to Accelerate Super- Resolution Processing on Compressed Videos FAST: A Framework to Accelerate Super- Resolution Processing on Compressed Videos Zhengdong Zhang, Vivienne Sze Massachusetts Institute of Technology http://www.mit.edu/~sze/fast.html 1 Super-Resolution

More information

SINGLE image super-resolution (SR) aims to reconstruct

SINGLE image super-resolution (SR) aims to reconstruct Fast and Accurate Image Super-Resolution with Deep Laplacian Pyramid Networks Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang 1 arxiv:1710.01992v3 [cs.cv] 9 Aug 2018 Abstract Convolutional

More information

FSRNet: End-to-End Learning Face Super-Resolution with Facial Priors

FSRNet: End-to-End Learning Face Super-Resolution with Facial Priors FSRNet: End-to-End Learning Face Super-Resolution with Facial Priors Yu Chen 1,5 Ying Tai 2 Xiaoming Liu 3 Chunhua Shen 4 Jian Yang 1 1 Nanjing University of Science and Technology 2 Youtu Lab, Tencent

More information

Physics-Based Generative Adversarial Models for Image Restoration and Beyond

Physics-Based Generative Adversarial Models for Image Restoration and Beyond 1 Physics-Based Generative Adversarial Models for Image Restoration and Beyond Jinshan Pan, Yang Liu, Jiangxin Dong, Jiawei Zhang, Jimmy Ren, Jinhui Tang, Yu-Wing Tai and Ming-Hsuan Yang arxiv:1808.00605v1

More information

IEGAN: Multi-purpose Perceptual Quality Image Enhancement Using Generative Adversarial Network

IEGAN: Multi-purpose Perceptual Quality Image Enhancement Using Generative Adversarial Network IEGAN: Multi-purpose Perceptual Quality Image Enhancement Using Generative Adversarial Network Soumya Shubhra Ghosh 1, Yang Hua 1, Sankha Subhra Mukherjee 2, Neil Robertson 1,2 1 EEECS/ECIT, Queen s University

More information

Super-Resolution on Image and Video

Super-Resolution on Image and Video Super-Resolution on Image and Video Jason Liu Stanford University liujas00@stanford.edu Max Spero Stanford University maxspero@stanford.edu Allan Raventos Stanford University aravento@stanford.edu Abstract

More information

SINGLE image super-resolution (SR) aims to reconstruct

SINGLE image super-resolution (SR) aims to reconstruct Fast and Accurate Image Super-Resolution with Deep Laplacian Pyramid Networks Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang 1 arxiv:1710.01992v2 [cs.cv] 11 Oct 2017 Abstract Convolutional

More information

Fast and Accurate Single Image Super-Resolution via Information Distillation Network

Fast and Accurate Single Image Super-Resolution via Information Distillation Network Fast and Accurate Single Image Super-Resolution via Information Distillation Network Recently, due to the strength of deep convolutional neural network (CNN), many CNN-based SR methods try to train a deep

More information

An Attention-Based Approach for Single Image Super Resolution

An Attention-Based Approach for Single Image Super Resolution An Attention-Based Approach for Single Image Super Resolution Yuan Liu 1,2,3, Yuancheng Wang 1, Nan Li 1,Xu Cheng 4, Yifeng Zhang 1,2,3,, Yongming Huang 1, Guojun Lu 5 1 School of Information Science and

More information

arxiv: v1 [cs.lg] 21 Dec 2018

arxiv: v1 [cs.lg] 21 Dec 2018 Multimodal Sensor Fusion In Single Thermal image Super-Resolution Feras Almasri 1 and Olivier Debeir 2 arxiv:1812.09276v1 [cs.lg] 21 Dec 2018 Dept.LISA - Laboratory of Image Synthesis and Analysis, Universit

More information

arxiv:submit/ [cs.cv] 27 Mar 2018

arxiv:submit/ [cs.cv] 27 Mar 2018 Ours SRGAN Input Super-FAN: Integrated facial landmark localization and super-resolution of real-world low resolution faces in arbitrary poses with GANs arxiv:submit/2208568 [cs.cv] 27 Mar 2018 Adrian

More information

Deep Video Super-Resolution Network Using Dynamic Upsampling Filters Without Explicit Motion Compensation

Deep Video Super-Resolution Network Using Dynamic Upsampling Filters Without Explicit Motion Compensation Deep Video Super-Resolution Network Using Dynamic Upsampling Filters Without Explicit Motion Compensation Younghyun Jo Seoung Wug Oh Jaeyeon Kang Seon Joo Kim Yonsei University Abstract Video super-resolution

More information

FSRNet: End-to-End Learning Face Super-Resolution with Facial Priors

FSRNet: End-to-End Learning Face Super-Resolution with Facial Priors : End-to-End Learning Face Super-Resolution with Facial Priors Yu Chen 1 Ying Tai 2 Xiaoming Liu 3 Chunhua Shen 4 Jian Yang 1 1 Nanjing University of Science and Technology 2 Youtu Lab, Tencent 3 Michigan

More information

Accelerated very deep denoising convolutional neural network for image super-resolution NTIRE2017 factsheet

Accelerated very deep denoising convolutional neural network for image super-resolution NTIRE2017 factsheet Accelerated very deep denoising convolutional neural network for image super-resolution NTIRE2017 factsheet Yunjin Chen, Kai Zhang and Wangmeng Zuo April 17, 2017 1 Team details Team name HIT-ULSee Team

More information

Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution

Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution Wei-Sheng Lai 1 Jia-Bin Huang 2 Narendra Ahuja 3 Ming-Hsuan Yang 1 1 University of California, Merced 2 Virginia Tech 3 University

More information

DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION

DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION Yen-Cheng Liu 1, Wei-Chen Chiu 2, Sheng-De Wang 1, and Yu-Chiang Frank Wang 1 1 Graduate Institute of Electrical Engineering,

More information

Example-Based Image Super-Resolution Techniques

Example-Based Image Super-Resolution Techniques Example-Based Image Super-Resolution Techniques Mark Sabini msabini & Gili Rusak gili December 17, 2016 1 Introduction With the current surge in popularity of imagebased applications, improving content

More information

arxiv: v1 [cs.cv] 31 Dec 2018 Abstract

arxiv: v1 [cs.cv] 31 Dec 2018 Abstract Image Super-Resolution via RL-CSC: When Residual Learning Meets olutional Sparse Coding Menglei Zhang, Zhou Liu, Lei Yu School of Electronic and Information, Wuhan University, China {zmlhome, liuzhou,

More information

Bidirectional Recurrent Convolutional Networks for Video Super-Resolution

Bidirectional Recurrent Convolutional Networks for Video Super-Resolution Bidirectional Recurrent Convolutional Networks for Video Super-Resolution Qi Zhang & Yan Huang Center for Research on Intelligent Perception and Computing (CRIPAC) National Laboratory of Pattern Recognition

More information

IRGUN : Improved Residue based Gradual Up-Scaling Network for Single Image Super Resolution

IRGUN : Improved Residue based Gradual Up-Scaling Network for Single Image Super Resolution IRGUN : Improved Residue based Gradual Up-Scaling Network for Single Image Super Resolution Manoj Sharma, Rudrabha Mukhopadhyay, Avinash Upadhyay, Sriharsha Koundinya, Ankit Shukla, Santanu Chaudhury.

More information

A Novel Multi-Frame Color Images Super-Resolution Framework based on Deep Convolutional Neural Network. Zhe Li, Shu Li, Jianmin Wang and Hongyang Wang

A Novel Multi-Frame Color Images Super-Resolution Framework based on Deep Convolutional Neural Network. Zhe Li, Shu Li, Jianmin Wang and Hongyang Wang 5th International Conference on Measurement, Instrumentation and Automation (ICMIA 2016) A Novel Multi-Frame Color Images Super-Resolution Framewor based on Deep Convolutional Neural Networ Zhe Li, Shu

More information

Image Super Resolution Based on Fusing Multiple Convolution Neural Networks

Image Super Resolution Based on Fusing Multiple Convolution Neural Networks Image Super Resolution Based on Fusing Multiple Convolution Neural Networks Haoyu Ren, Mostafa El-Khamy, Jungwon Lee SAMSUNG SEMICONDUCTOR INC. 4921 Directors Place, San Diego, CA, US {haoyu.ren, mostafa.e,

More information

arxiv: v1 [cs.cv] 15 Sep 2016

arxiv: v1 [cs.cv] 15 Sep 2016 Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arxiv:1609.04802v1 [cs.cv] 15 Sep 2016 Christian Ledig 1, Lucas Theis 1, Ferenc Huszár 1, Jose Caballero 1, Andrew Aitken

More information

Task-Aware Image Downscaling

Task-Aware Image Downscaling Task-Aware Image Downscaling Heewon Kim, Myungsub Choi, Bee Lim, and Kyoung Mu Lee Department of ECE, ASRI, Seoul National University, Seoul, Korea {ghimhw,cms6539,biya999,kyoungmu}@snu.ac.kr https://cv.snu.ac.kr

More information

OPTICAL Character Recognition systems aim at converting

OPTICAL Character Recognition systems aim at converting ICDAR 2015 COMPETITION ON TEXT IMAGE SUPER-RESOLUTION 1 Boosting Optical Character Recognition: A Super-Resolution Approach Chao Dong, Ximei Zhu, Yubin Deng, Chen Change Loy, Member, IEEE, and Yu Qiao

More information

arxiv: v2 [cs.cv] 19 Sep 2016

arxiv: v2 [cs.cv] 19 Sep 2016 Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arxiv:1609.04802v2 [cs.cv] 19 Sep 2016 Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Aitken, Alykhan

More information

DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION

DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION 2017 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 25 28, 2017, TOKYO, JAPAN DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION Yen-Cheng Liu 1,

More information

RTSR: Enhancing Real-time H.264 Video Streaming using Deep Learning based Video Super Resolution Spring 2017 CS570 Project Presentation June 8, 2017

RTSR: Enhancing Real-time H.264 Video Streaming using Deep Learning based Video Super Resolution Spring 2017 CS570 Project Presentation June 8, 2017 RTSR: Enhancing Real-time H.264 Video Streaming using Deep Learning based Video Super Resolution Spring 2017 CS570 Project Presentation June 8, 2017 Team 16 Soomin Kim Leslie Tiong Youngki Kwon Insu Jang

More information

Feature Super-Resolution: Make Machine See More Clearly

Feature Super-Resolution: Make Machine See More Clearly Feature Super-Resolution: Make Machine See More Clearly Weimin Tan, Bo Yan, Bahetiyaer Bare School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University {wmtan14,

More information

Controllable Generative Adversarial Network

Controllable Generative Adversarial Network Controllable Generative Adversarial Network arxiv:1708.00598v2 [cs.lg] 12 Sep 2017 Minhyeok Lee 1 and Junhee Seok 1 1 School of Electrical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul,

More information

Residual Dense Network for Image Super-Resolution

Residual Dense Network for Image Super-Resolution Residual Dense Network for Image Super-Resolution Yulun Zhang 1, Yapeng Tian 2,YuKong 1, Bineng Zhong 1, Yun Fu 1,3 1 Department of Electrical and Computer Engineering, Northeastern University, Boston,

More information

arxiv: v1 [cs.cv] 30 Nov 2018

arxiv: v1 [cs.cv] 30 Nov 2018 Super-Resolution based on Image-Adapted CNN Denoisers: Incorporating Generalization of Training Data and Internal Learning in Test Time arxiv:1811.12866v1 [cs.cv] 30 Nov 2018 Tom Tirer Tel Aviv University,

More information

An Effective Single-Image Super-Resolution Model Using Squeeze-and-Excitation Networks

An Effective Single-Image Super-Resolution Model Using Squeeze-and-Excitation Networks An Effective Single-Image Super-Resolution Model Using Squeeze-and-Excitation Networks Kangfu Mei 1, Juncheng Li 2, Luyao 1, Mingwen Wang 1, Aiwen Jiang 1 Jiangxi Normal University 1 East China Normal

More information

arxiv: v1 [cs.cv] 7 Mar 2018

arxiv: v1 [cs.cv] 7 Mar 2018 Deep Back-Projection Networks For Super-Resolution Muhammad Haris 1, Greg Shakhnarovich, and Norimichi Ukita 1, 1 Toyota Technological Institute, Japan Toyota Technological Institute at Chicago, United

More information

Learning to Super-Resolve Blurry Face and Text Images

Learning to Super-Resolve Blurry Face and Text Images Learning to Super-Resolve Blurry Face and Text Images Xiangyu Xu,2,3 Deqing Sun 3,4 Jinshan Pan 5 Yujin Zhang Hanspeter Pfister 3 Ming-Hsuan Yang 2 Tsinghua University 2 University of California, Merced

More information

Attribute Augmented Convolutional Neural Network for Face Hallucination

Attribute Augmented Convolutional Neural Network for Face Hallucination Attribute Augmented Convolutional Neural Network for Face Hallucination Cheng-Han Lee 1 Kaipeng Zhang 1 Hu-Cheng Lee 1 Chia-Wen Cheng 2 Winston Hsu 1 1 National Taiwan University 2 The University of Texas

More information

CT Image Denoising with Perceptive Deep Neural Networks

CT Image Denoising with Perceptive Deep Neural Networks June 2017, Xi'an CT Image Denoising with Perceptive Deep Neural Networks Qingsong Yang, and Ge Wang Department of Biomedical Engineering Rensselaer Polytechnic Institute Troy, NY, USA Email: wangg6@rpi.edu

More information

SINGLE image restoration (IR) aims to generate a visually

SINGLE image restoration (IR) aims to generate a visually Concat 1x1 JOURNAL OF L A T E X CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 1 Residual Dense Network for Image Restoration Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu, Fellow, IEEE arxiv:1812.10477v1

More information

arxiv: v1 [cs.cv] 16 Dec 2018

arxiv: v1 [cs.cv] 16 Dec 2018 Efficient Super Resolution Using Binarized Neural Network arxiv:1812.06378v1 [cs.cv] 16 Dec 2018 Yinglan Ma Adobe Inc. Research yingma@adobe.com Abstract Deep convolutional neural networks (DCNNs) have

More information

Fast and Accurate Single Image Super-Resolution via Information Distillation Network

Fast and Accurate Single Image Super-Resolution via Information Distillation Network Fast and Accurate Single Image Super-Resolution via Information Distillation Network Zheng Hui, Xiumei Wang, Xinbo Gao School of Electronic Engineering, Xidian University Xi an, China zheng hui@aliyun.com,

More information

CARN: Convolutional Anchored Regression Network for Fast and Accurate Single Image Super-Resolution

CARN: Convolutional Anchored Regression Network for Fast and Accurate Single Image Super-Resolution CARN: Convolutional Anchored Regression Network for Fast and Accurate Single Image Super-Resolution Yawei Li 1, Eirikur Agustsson 1, Shuhang Gu 1, Radu Timofte 1, and Luc Van Gool 1,2 1 ETH Zürich, Sternwartstrasse

More information

Image Restoration with Deep Generative Models

Image Restoration with Deep Generative Models Image Restoration with Deep Generative Models Raymond A. Yeh *, Teck-Yian Lim *, Chen Chen, Alexander G. Schwing, Mark Hasegawa-Johnson, Minh N. Do Department of Electrical and Computer Engineering, University

More information

Video Frame Interpolation Using Recurrent Convolutional Layers

Video Frame Interpolation Using Recurrent Convolutional Layers 2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM) Video Frame Interpolation Using Recurrent Convolutional Layers Zhifeng Zhang 1, Li Song 1,2, Rong Xie 2, Li Chen 1 1 Institute of

More information

arxiv: v3 [cs.cv] 6 Dec 2017

arxiv: v3 [cs.cv] 6 Dec 2017 Deep Generative Adversarial Compression Artifact Removal Leonardo Galteri, Lorenzo Seidenari, Marco Bertini, Alberto Del Bimbo MICC, University of Florence arxiv:1704.02518v3 [cs.cv] 6 Dec 2017 https://www.micc.unifi.it/

More information

One Network to Solve Them All Solving Linear Inverse Problems using Deep Projection Models

One Network to Solve Them All Solving Linear Inverse Problems using Deep Projection Models One Network to Solve Them All Solving Linear Inverse Problems using Deep Projection Models [Supplemental Materials] 1. Network Architecture b ref b ref +1 We now describe the architecture of the networks

More information

Single Image Super-resolution. Slides from Libin Geoffrey Sun and James Hays

Single Image Super-resolution. Slides from Libin Geoffrey Sun and James Hays Single Image Super-resolution Slides from Libin Geoffrey Sun and James Hays Cs129 Computational Photography James Hays, Brown, fall 2012 Types of Super-resolution Multi-image (sub-pixel registration) Single-image

More information

LOW-RESOLUTION and noisy images are always. Simultaneously Color-Depth Super-Resolution with Conditional Generative Adversarial Network

LOW-RESOLUTION and noisy images are always. Simultaneously Color-Depth Super-Resolution with Conditional Generative Adversarial Network 1 Simultaneously Color-Depth Super-Resolution with Conditional Generative Adversarial Network Lijun Zhao, Huihui Bai, Member, IEEE, Jie Liang, Senior Member, IEEE, Bing Zeng, Fellow, IEEE, Anhong Wang,

More information

Super-Resolving Very Low-Resolution Face Images with Supplementary Attributes

Super-Resolving Very Low-Resolution Face Images with Supplementary Attributes Super-Resolving Very Low-Resolution Face Images with Supplementary Attributes Xin Yu Basura Fernando Richard Hartley Fatih Porikli Australian National University {xin.yu,basura.fernando,richard.hartley,fatih.porikli}@anu.edu.au

More information

Blind Image Deblurring Using Dark Channel Prior

Blind Image Deblurring Using Dark Channel Prior Blind Image Deblurring Using Dark Channel Prior Jinshan Pan 1,2,3, Deqing Sun 2,4, Hanspeter Pfister 2, and Ming-Hsuan Yang 3 1 Dalian University of Technology 2 Harvard University 3 UC Merced 4 NVIDIA

More information

Multi-Input Cardiac Image Super-Resolution using Convolutional Neural Networks

Multi-Input Cardiac Image Super-Resolution using Convolutional Neural Networks Multi-Input Cardiac Image Super-Resolution using Convolutional Neural Networks Ozan Oktay, Wenjia Bai, Matthew Lee, Ricardo Guerrero, Konstantinos Kamnitsas, Jose Caballero, Antonio de Marvao, Stuart Cook,

More information

Hallucinating Very Low-Resolution Unaligned and Noisy Face Images by Transformative Discriminative Autoencoders

Hallucinating Very Low-Resolution Unaligned and Noisy Face Images by Transformative Discriminative Autoencoders Hallucinating Very Low-Resolution Unaligned and Noisy Face Images by Transformative Discriminative Autoencoders Xin Yu, Fatih Porikli Australian National University {xin.yu, fatih.porikli}@anu.edu.au Abstract

More information

GENERATIVE ADVERSARIAL NETWORK-BASED VIR-

GENERATIVE ADVERSARIAL NETWORK-BASED VIR- GENERATIVE ADVERSARIAL NETWORK-BASED VIR- TUAL TRY-ON WITH CLOTHING REGION Shizuma Kubo, Yusuke Iwasawa, and Yutaka Matsuo The University of Tokyo Bunkyo-ku, Japan {kubo, iwasawa, matsuo}@weblab.t.u-tokyo.ac.jp

More information

Convolutional Neural Networks + Neural Style Transfer. Justin Johnson 2/1/2017

Convolutional Neural Networks + Neural Style Transfer. Justin Johnson 2/1/2017 Convolutional Neural Networks + Neural Style Transfer Justin Johnson 2/1/2017 Outline Convolutional Neural Networks Convolution Pooling Feature Visualization Neural Style Transfer Feature Inversion Texture

More information

arxiv: v4 [cs.cv] 25 Mar 2018

arxiv: v4 [cs.cv] 25 Mar 2018 Frame-Recurrent Video Super-Resolution Mehdi S. M. Sajjadi 1,2 msajjadi@tue.mpg.de Raviteja Vemulapalli 2 ravitejavemu@google.com 1 Max Planck Institute for Intelligent Systems 2 Google Matthew Brown 2

More information

arxiv: v1 [cs.cv] 8 Feb 2018

arxiv: v1 [cs.cv] 8 Feb 2018 DEEP IMAGE SUPER RESOLUTION VIA NATURAL IMAGE PRIORS Hojjat S. Mousavi, Tiantong Guo, Vishal Monga Dept. of Electrical Engineering, The Pennsylvania State University arxiv:802.0272v [cs.cv] 8 Feb 208 ABSTRACT

More information

arxiv: v1 [cs.cv] 10 Jul 2017

arxiv: v1 [cs.cv] 10 Jul 2017 Enhanced Deep Residual Networks for Single Image SuperResolution Bee Lim Sanghyun Son Heewon Kim Seungjun Nah Kyoung Mu Lee Department of ECE, ASRI, Seoul National University, 08826, Seoul, Korea forestrainee@gmail.com,

More information

arxiv: v5 [cs.cv] 4 Oct 2018

arxiv: v5 [cs.cv] 4 Oct 2018 Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network Namhyuk Ahn [0000 0003 1990 9516], Byungkon Kang [0000 0001 8541 2861], and Kyung-Ah Sohn [0000 0001 8941 1188] arxiv:1803.08664v5

More information

arxiv: v1 [cs.cv] 7 Aug 2017

arxiv: v1 [cs.cv] 7 Aug 2017 MemNet: A Persistent Memory Network for Image Restoration Ying Tai 1, Jian Yang 1, Xiaoming Liu 2, and Chunyan Xu 1 1 Department of Computer Science and Engineering, Nanjing University of Science and Technology

More information

Face Super-resolution Guided by Facial Component Heatmaps

Face Super-resolution Guided by Facial Component Heatmaps Face Super-resolution Guided by Facial Component Heatmaps Xin Yu 1, Basura Fernando 1, Bernard Ghanem 2, Fatih Porikli 1, Richard Hartley 1 1 Australian National University, 2 King Abdullah University

More information

Multi-scale Residual Network for Image Super-Resolution

Multi-scale Residual Network for Image Super-Resolution Multi-scale Residual Network for Image Super-Resolution Juncheng Li 1[0000 0001 7314 6754], Faming Fang 1[0000 0003 4511 4813], Kangfu Mei 2[0000 0001 8949 9597], and Guixu Zhang 1[0000 0003 4720 6607]

More information

UDNet: Up-Down Network for Compact and Efficient Feature Representation in Image Super-Resolution

UDNet: Up-Down Network for Compact and Efficient Feature Representation in Image Super-Resolution UDNet: Up-Down Network for Compact and Efficient Feature Representation in Image Super-Resolution Chang Chen Xinmei Tian Zhiwei Xiong Feng Wu University of Science and Technology of China Abstract Recently,

More information

arxiv: v1 [cs.cv] 23 Mar 2018

arxiv: v1 [cs.cv] 23 Mar 2018 arxiv:1803.08664v1 [cs.cv] 23 Mar 2018 Fast, Accurate, and, Lightweight Super-Resolution with Cascading Residual Network Namhyuk Ahn, Byungkon Kang, and Kyung-Ah Sohn Department of Computer Engineering,

More information

Connecting Image Denoising and High-Level Vision Tasks via Deep Learning

Connecting Image Denoising and High-Level Vision Tasks via Deep Learning 1 Connecting Image Denoising and High-Level Vision Tasks via Deep Learning Ding Liu, Student Member, IEEE, Bihan Wen, Student Member, IEEE, Jianbo Jiao, Student Member, IEEE, Xianming Liu, Zhangyang Wang,

More information

Fast Guided Global Interpolation for Depth and. Yu Li, Dongbo Min, Minh N. Do, Jiangbo Lu

Fast Guided Global Interpolation for Depth and. Yu Li, Dongbo Min, Minh N. Do, Jiangbo Lu Fast Guided Global Interpolation for Depth and Yu Li, Dongbo Min, Minh N. Do, Jiangbo Lu Introduction Depth upsampling and motion interpolation are often required to generate a dense, high-quality, and

More information

Deep Learning for Visual Manipulation and Synthesis

Deep Learning for Visual Manipulation and Synthesis Deep Learning for Visual Manipulation and Synthesis Jun-Yan Zhu 朱俊彦 UC Berkeley 2017/01/11 @ VALSE What is visual manipulation? Image Editing Program input photo User Input result Desired output: stay

More information

arxiv: v2 [cs.cv] 2 Dec 2017

arxiv: v2 [cs.cv] 2 Dec 2017 Learning to Generate Time-Lapse Videos Using Multi-Stage Dynamic Generative Adversarial Networks Wei Xiong, Wenhan Luo, Lin Ma, Wei Liu, and Jiebo Luo Department of Computer Science, University of Rochester,

More information

Deep Generative Adversarial Compression Artifact Removal

Deep Generative Adversarial Compression Artifact Removal Deep Generative Adversarial Compression Artifact Removal Leonardo Galteri, Lorenzo Seidenari, Marco Bertini, Alberto Del Bimbo MICC, University of Florence https://www.micc.unifi.it/ Abstract Compression

More information

Learning Warped Guidance for Blind Face Restoration

Learning Warped Guidance for Blind Face Restoration Learning Warped Guidance for Blind Face Restoration Xiaoming Li 1[0000 0003 3844 9308], Ming Liu 1[0000 0001 9136 8481], Yuting Ye 1[0000 0002 3922 148X], Wangmeng Zuo 1( )[0000 0002 3330 783X], Liang

More information

arxiv: v1 [cs.cv] 19 Oct 2017

arxiv: v1 [cs.cv] 19 Oct 2017 Be Your Own Prada: Fashion Synthesis with Structural Coherence Shizhan Zhu 1 Sanja Fidler 2,3 Raquel Urtasun 2,3,4 Dahua Lin 1 Chen Change Loy 1 1 Department of Information Engineering, The Chinese University

More information

GAN-D: Generative Adversarial Networks for Image Deconvolution

GAN-D: Generative Adversarial Networks for Image Deconvolution GAN-D: Generative Adversarial Networks for Image Deconvolution Ha Yeon Lee, Jin Myung Kwak, Byunghyun Ban, Seon Jin Na, Se Ra Lee, Heung-Kyu Lee School of Computing and Department of Bio and Brain Engineering

More information

Learning Data Terms for Non-blind Deblurring Supplemental Material

Learning Data Terms for Non-blind Deblurring Supplemental Material Learning Data Terms for Non-blind Deblurring Supplemental Material Jiangxin Dong 1, Jinshan Pan 2, Deqing Sun 3, Zhixun Su 1,4, and Ming-Hsuan Yang 5 1 Dalian University of Technology dongjxjx@gmail.com,

More information