Jorge Salvador Marques, geometric camera model

Size: px
Start display at page:

Download "Jorge Salvador Marques, geometric camera model"

Transcription

1 geometric camera model

2 image acquisition 6 years ago today curc of te Holy Spirit, Brunellesci, 436 te camera projects 3D points into an image plane

3 geometric primitives and transformations

4 How do we see te world? Let s design a camera Idea : put a piece of film in front of an object Do we get a reasonable image? Slide by Steve Seitz

5 Pinole camera Add a barrier to block off most of te rays is reduces blurring e opening known as te aperture How does tis transform te image? Slide by Steve Seitz

6 Pinole camera model Pinole model: Captures pencil of rays all rays troug a single point e point is called Center of Projection (COP) e image is formed on te Image Plane Effective focal lengt f is distance from COP to Image Plane Slide by Steve Seitz

7 Dimensionality Reduction Macine (3D to 2D) 3D world 2D image Point of observation Wat ave we lost? Angles Distances (lengts) Figures Stepen E. Palmer, 22

8 Funny tings appen

9 Parallel lines aren t Figure by David Forsyt

10 Distances can t be trusted... Figure by David Forsyt

11 but umans adopt! Müller-Lyer Illusion We don t make measurements in te image plane ttp://

12 How to Build a Camera? Camera Obscura Camera Obscura, Gemma Frisius, 558 e first camera Known to Aristotle Dept of te room is te effective focal lengt

13 Home-made pinole camera Wy so blurry? ttp://

14 Srinking te aperture Less ligt gets troug Wy not make te aperture as small as possible? Less ligt gets troug Diffraction effects Slide by Steve Seitz

15 Srinking te aperture

16 e reason for lenses Slide by Steve Seitz

17 Image Formation using Lenses Ideal Lens: Same projection as pinole but gaters more ligt! i o P P f Lens Formula: i + o f f is te focal lengt of te lens determines te lens s ability to bend (refract) ligt f different from te effective focal lengt f discussed before! Slide by Sree Nayar

18 Modeling Projections

19 Modeling gprojection e coordinate system We will use te pin-ole model as an approimation Put te optical center (Center Of Projection) at te origin Put te image plane (Projection Plane) in front of te COP Wy? e camera looks down te negative z ais we need tis if we want rigt-anded-coordinates d di t Slide by Steve Seitz

20 Modeling gprojection Projection equations Compute intersection wit PP of ray from (,y,z) to COP Derived using similar triangles (on board) We get te projection by trowing out te last coordinate: Slide by Steve Seitz

21 Homogeneous coordinates Is tis a linear transformation? no division by z is nonlinear rick: add one more coordinate: omogeneous image coordinates omogeneous scene coordinates Converting from omogeneous coordinates Slide by Steve Seitz

22 Perspective Projection Projection is a matri multiply using omogeneous coordinates: divide by tird coordinate is is known as perspective projection e matri is te projection matri Can also formulate as a 44 divide by fourt coordinate Slide by Steve Seitz

23 Ortograpic Projection Special case of perspective projection Distance from te COP to te PP is infinite Image World Also called parallel projection Wat s te projection matri? Slide by Steve Seitz

24 geometric primitives: 2D points y Cartesian coordinates (, y ) IR y 2 omogeneous coordinates λ (, y,) λ y IR 3 \ {} λ te same 2D point can be represented by several (infinite) omogeneous vectors. Points of te form (a,b,) are called points at infinity since tey do not correspond to (finite) 2D points.

25 geometric primitives: 2D lines 2D line l a + by + c y d n normalization: l ( nˆ, d) nˆ - normal vector ( nˆ ) d - distance to te origin line at infinity l (,, ) (includes all points at infinity) intersection of two lines line joining two points l l 2 l 2

26 geometric primitives: 3D points Cartesian coordinates (, y, z) y IR z 3 z omogeneous coordinates y λ (, y, z,) λ IR 4 \ {} λ z y te same 2D point can be represented by several (infinite) omogeneous vectors. Points of te form (a,b,c,) are called points at infinity since tey do not correspond to (finite) 2D points.

27 geometric primitives: 3D lines and planes plane l a + by + cy + d z nˆ l ( n ˆ, d ) ( nˆ - normal vector ( nˆ ) d - distance to te origin y z line αp + ( α ) q p, q - two points p q α p + β q y

28 geometric transformations in te plane translation rotation +translation affine projective invariance lines paralelism lengt orientation Y Y Y Y +R Y Y Y N A Y Y N N P Y N N N

29 transformation of points in te plane translation ' + t ' I t rotation +translation ' R + t ' R t R cosθ sinθ - sinθ cosθ affine ' A + t ' A t a a A a a projective ' y + y + + y + y' y + 22 ' H

30 transformation of lines Previous transformations can be written as ' H can we use tis equation to transform lines? l I I H ' l ' ' tis is te equation of a line in te transformed space wit l ' H I

31 transformation of points in 3d space translation ' + t ' I t rotation +translation R t ' R + t ' R R RR I affine ' A + t ' A t a a A a a projective ' y' y' y + y + y + y + y + y ' H

32 camera model

33 camera model arbitrary position internal parameters: focal lengt, scaa factors, principal point O

34 pin-ole model P f y p Y O Z Inverted image point in space: [ Y Z] [ y] point in te image: perspective projection f Z y f Y Z

35 Perspective projection wit frontal plane non inverted image point in space: [ Y Z] [ y] point in te image: perspective projection f y Z f Y Z

36 omogeneous coordinates Y α y, arbitrary (, β α β α β Z ) All tese vectors represent te same point in space

37 Perspective projection (ideal case) p p j ( ) Y Z Y y Z [ ] I Π Π λ Π λ

38 etrinsic parameters aamera a in arbitrary ab aypositiono Z R + t Cartesian coordinates Y Z world Y g omogeneous coordinates g R t λ Π g λ λ [ R t ] λ R, são parâmetros etrínsecos da câmara

39 Intrinsic parameters o y ' 2 ' 2 o internal model: conversion from metric coordinates to piels ' y' fs fs y + o y + o y (,y ) in piels ' fs o y ' fsy oy y ' K K upper triangular matri

40 comment Matri K is usually considered as a upper triangular matriz witout additional constraints is is equivalent to assuming tat te angle θ between te two coordinate ais can be sligtly different from 9º. K α α cotθ β sinθ c c2 ' 2 θ '

41 Full perspective p model Camera model: Π Π K[ R ] Π is a 3 4 matri denoted as camera matri. te camera model is linear in omogeneous coordinates!

42 Camera model in Cartesian equations q Cartesian coordinates Π 2 Y π π π Π Z, 2, π π π π graus de liberdade Matri P é specified apart from a scale factor!

43 Projection of straigt lines general case special cases

44 vanising point gp α + y Z Y Z Y z Z Z Π + Π α Wen a goes to infinity Π π π 2 Π y π π e vanising point does not depend on. Eac set of parallel lines as its on valising point. gp p p gp

45 Optical center plane 3 C plane plane 2 optical center ΠC

46 optical ray How to obtain te optical ray projected on? C is line is defined by 2 pontos e.g., te optical center C and Π ( ΠΠ )

47 Projective transformation from te plane Z C + p Y + p 2 4 p3 + p32y + p34 Z p2 + p22y + p y 24 p3 + p32y + p34 p em coordenadas omogéneas H ' ' ' [ Y ] 2 3 H ij p ij, i, 2 3 j p 4 j e converse i also true ' H'

48 projective transformation from a plane C in omogeneous coordinates ' H H

49 Camera calibration ( i, i ) Calibration involves te estimation of te intrinsic and etrinsic parameters K, R, t from eperimental data. data: we assume tat we know several pairs of corresponding points in 3D and in te image plane 3 i R, i {(, ), i,..., n} R i i 2

50 linear metod P j ti dl Projective model 3 π π ( 3 ) π π y π π π ) ( ) ( yπ π Há um par de equações lineares que relacionam e. Conecendo n pares ( i, i ) obtém-se π M y M M M M 2 π π π Mπ n n n n n n y M M M M 3 2 π π π

51 Linear metod II Minimize te norm of te residual r Mπ π 2 Solução: π é o vector próprio (unitário) associado ao menor valor próprio de M M.

COSC579: Scene Geometry. Jeremy Bolton, PhD Assistant Teaching Professor

COSC579: Scene Geometry. Jeremy Bolton, PhD Assistant Teaching Professor COSC579: Scene Geometry Jeremy Bolton, PhD Assistant Teaching Professor Overview Linear Algebra Review Homogeneous vs non-homogeneous representations Projections and Transformations Scene Geometry The

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 5: Projection Reading: Szeliski 2.1 Projection Reading: Szeliski 2.1 Projection Müller Lyer Illusion http://www.michaelbach.de/ot/sze_muelue/index.html Modeling

More information

MAPI Computer Vision

MAPI Computer Vision MAPI Computer Vision Multiple View Geometry In tis module we intend to present several tecniques in te domain of te 3D vision Manuel Joao University of Mino Dep Industrial Electronics - Applications -

More information

MAN-522: COMPUTER VISION SET-2 Projections and Camera Calibration

MAN-522: COMPUTER VISION SET-2 Projections and Camera Calibration MAN-522: COMPUTER VISION SET-2 Projections and Camera Calibration Image formation How are objects in the world captured in an image? Phsical parameters of image formation Geometric Tpe of projection Camera

More information

Projective Geometry and Camera Models

Projective Geometry and Camera Models Projective Geometry and Camera Models Computer Vision CS 43 Brown James Hays Slides from Derek Hoiem, Alexei Efros, Steve Seitz, and David Forsyth Administrative Stuff My Office hours, CIT 375 Monday and

More information

Perspective projection. A. Mantegna, Martyrdom of St. Christopher, c. 1450

Perspective projection. A. Mantegna, Martyrdom of St. Christopher, c. 1450 Perspective projection A. Mantegna, Martyrdom of St. Christopher, c. 1450 Overview of next two lectures The pinhole projection model Qualitative properties Perspective projection matrix Cameras with lenses

More information

Projective Geometry and Camera Models

Projective Geometry and Camera Models /2/ Projective Geometry and Camera Models Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Note about HW Out before next Tues Prob: covered today, Tues Prob2: covered next Thurs Prob3:

More information

Image formation - About the course. Grading & Project. Tentative Schedule. Course Content. Students introduction

Image formation - About the course. Grading & Project. Tentative Schedule. Course Content. Students introduction About the course Instructors: Haibin Ling (hbling@temple, Wachman 305) Hours Lecture: Tuesda 5:30-8:00pm, TTLMAN 403B Office hour: Tuesda 3:00-5:00pm, or b appointment Tetbook Computer Vision: Models,

More information

Pinhole Camera Model 10/05/17. Computational Photography Derek Hoiem, University of Illinois

Pinhole Camera Model 10/05/17. Computational Photography Derek Hoiem, University of Illinois Pinhole Camera Model /5/7 Computational Photography Derek Hoiem, University of Illinois Next classes: Single-view Geometry How tall is this woman? How high is the camera? What is the camera rotation? What

More information

Chapter K. Geometric Optics. Blinn College - Physics Terry Honan

Chapter K. Geometric Optics. Blinn College - Physics Terry Honan Capter K Geometric Optics Blinn College - Pysics 2426 - Terry Honan K. - Properties of Ligt Te Speed of Ligt Te speed of ligt in a vacuum is approximately c > 3.0µ0 8 mês. Because of its most fundamental

More information

Geometric Model of Camera

Geometric Model of Camera Geometric Model of Camera Dr. Gerhard Roth COMP 42A Winter 25 Version 2 Similar Triangles 2 Geometric Model of Camera Perspective projection P(X,Y,Z) p(,) f X Z f Y Z 3 Parallel lines aren t 4 Figure b

More information

Affine and Projective Transformations

Affine and Projective Transformations CS 674: Intro to Computer Vision Affine and Projective Transformations Prof. Adriana Kovaska Universit of Pittsburg October 3, 26 Alignment problem We previousl discussed ow to matc features across images,

More information

CSE 252B: Computer Vision II

CSE 252B: Computer Vision II CSE 252B: Computer Vision II Lecturer: Serge Belongie Scribe: Sameer Agarwal LECTURE 1 Image Formation 1.1. The geometry of image formation We begin by considering the process of image formation when a

More information

Image Formation. Antonino Furnari. Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania

Image Formation. Antonino Furnari. Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania Image Formation Antonino Furnari Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania furnari@dmi.unict.it 18/03/2014 Outline Introduction; Geometric Primitives

More information

Lecture 8: Camera Models

Lecture 8: Camera Models Lecture 8: Camera Models Dr. Juan Carlos Niebles Stanford AI Lab Professor Fei- Fei Li Stanford Vision Lab 1 14- Oct- 15 What we will learn today? Pinhole cameras Cameras & lenses The geometry of pinhole

More information

CMPSCI 670: Computer Vision! Image formation. University of Massachusetts, Amherst September 8, 2014 Instructor: Subhransu Maji

CMPSCI 670: Computer Vision! Image formation. University of Massachusetts, Amherst September 8, 2014 Instructor: Subhransu Maji CMPSCI 670: Computer Vision! Image formation University of Massachusetts, Amherst September 8, 2014 Instructor: Subhransu Maji MATLAB setup and tutorial Does everyone have access to MATLAB yet? EdLab accounts

More information

Modeling Light. On Simulating the Visual Experience

Modeling Light. On Simulating the Visual Experience Modeling Light 15-463: Rendering and Image Processing Alexei Efros On Simulating the Visual Experience Just feed the eyes the right data No one will know the difference! Philosophy: Ancient question: Does

More information

Rigid Body Motion and Image Formation. Jana Kosecka, CS 482

Rigid Body Motion and Image Formation. Jana Kosecka, CS 482 Rigid Body Motion and Image Formation Jana Kosecka, CS 482 A free vector is defined by a pair of points : Coordinates of the vector : 1 3D Rotation of Points Euler angles Rotation Matrices in 3D 3 by 3

More information

θ R = θ 0 (1) -The refraction law says that: the direction of refracted ray (angle θ 1 from vertical) is (2)

θ R = θ 0 (1) -The refraction law says that: the direction of refracted ray (angle θ 1 from vertical) is (2) LIGHT (Basic information) - Considering te ligt of a projector in a smoky room, one gets to geometrical optics model of ligt as a set of tiny particles tat travel along straigt lines called "optical rays.

More information

Section 3. Imaging With A Thin Lens

Section 3. Imaging With A Thin Lens Section 3 Imaging Wit A Tin Lens 3- at Ininity An object at ininity produces a set o collimated set o rays entering te optical system. Consider te rays rom a inite object located on te axis. Wen te object

More information

Cameras and Stereo CSE 455. Linda Shapiro

Cameras and Stereo CSE 455. Linda Shapiro Cameras and Stereo CSE 455 Linda Shapiro 1 Müller-Lyer Illusion http://www.michaelbach.de/ot/sze_muelue/index.html What do you know about perspective projection? Vertical lines? Other lines? 2 Image formation

More information

Visual Recognition: Image Formation

Visual Recognition: Image Formation Visual Recognition: Image Formation Raquel Urtasun TTI Chicago Jan 5, 2012 Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 1 / 61 Today s lecture... Fundamentals of image formation You should know

More information

Computer Vision CS 776 Fall 2018

Computer Vision CS 776 Fall 2018 Computer Vision CS 776 Fall 2018 Cameras & Photogrammetry 1 Prof. Alex Berg (Slide credits to many folks on individual slides) Cameras & Photogrammetry 1 Albrecht Dürer early 1500s Brunelleschi, early

More information

Robotics - Projective Geometry and Camera model. Marcello Restelli

Robotics - Projective Geometry and Camera model. Marcello Restelli Robotics - Projective Geometr and Camera model Marcello Restelli marcello.restelli@polimi.it Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano Ma 2013 Inspired from Matteo

More information

DD2429 Computational Photography :00-19:00

DD2429 Computational Photography :00-19:00 . Examination: DD2429 Computational Photography 202-0-8 4:00-9:00 Each problem gives max 5 points. In order to pass you need about 0-5 points. You are allowed to use the lecture notes and standard list

More information

19.2 Surface Area of Prisms and Cylinders

19.2 Surface Area of Prisms and Cylinders Name Class Date 19 Surface Area of Prisms and Cylinders Essential Question: How can you find te surface area of a prism or cylinder? Resource Locker Explore Developing a Surface Area Formula Surface area

More information

Announcements. Equation of Perspective Projection. Image Formation and Cameras

Announcements. Equation of Perspective Projection. Image Formation and Cameras Announcements Image ormation and Cameras Introduction to Computer Vision CSE 52 Lecture 4 Read Trucco & Verri: pp. 22-4 Irfanview: http://www.irfanview.com/ is a good Windows utilit for manipulating images.

More information

Camera Projection Models We will introduce different camera projection models that relate the location of an image point to the coordinates of the

Camera Projection Models We will introduce different camera projection models that relate the location of an image point to the coordinates of the Camera Projection Models We will introduce different camera projection models that relate the location of an image point to the coordinates of the corresponding 3D points. The projection models include:

More information

NOTES: A quick overview of 2-D geometry

NOTES: A quick overview of 2-D geometry NOTES: A quick overview of 2-D geometry Wat is 2-D geometry? Also called plane geometry, it s te geometry tat deals wit two dimensional sapes flat tings tat ave lengt and widt, suc as a piece of paper.

More information

Lecture 11 MRF s (conbnued), cameras and lenses.

Lecture 11 MRF s (conbnued), cameras and lenses. 6.869 Advances in Computer Vision Bill Freeman and Antonio Torralba Spring 2011 Lecture 11 MRF s (conbnued), cameras and lenses. remember correction on Gibbs sampling Motion application image patches image

More information

3D Computer Vision II. Reminder Projective Geometry, Transformations. Nassir Navab. October 27, 2009

3D Computer Vision II. Reminder Projective Geometry, Transformations. Nassir Navab. October 27, 2009 3D Computer Vision II Reminder Projective Geometr, Transformations Nassir Navab based on a course given at UNC b Marc Pollefes & the book Multiple View Geometr b Hartle & Zisserman October 27, 29 2D Transformations

More information

N-Views (1) Homographies and Projection

N-Views (1) Homographies and Projection CS 4495 Computer Vision N-Views (1) Homographies and Projection Aaron Bobick School of Interactive Computing Administrivia PS 2: Get SDD and Normalized Correlation working for a given windows size say

More information

More Mosaic Madness. CS194: Image Manipulation & Computational Photography. Steve Seitz and Rick Szeliski. Jeffrey Martin (jeffrey-martin.

More Mosaic Madness. CS194: Image Manipulation & Computational Photography. Steve Seitz and Rick Szeliski. Jeffrey Martin (jeffrey-martin. More Mosaic Madness Jeffrey Martin (jeffrey-martin.com) CS194: Image Manipulation & Computational Photography with a lot of slides stolen from Alexei Efros, UC Berkeley, Fall 2018 Steve Seitz and Rick

More information

Interference and Diffraction of Light

Interference and Diffraction of Light Interference and Diffraction of Ligt References: [1] A.P. Frenc: Vibrations and Waves, Norton Publ. 1971, Capter 8, p. 280-297 [2] PASCO Interference and Diffraction EX-9918 guide (written by Ann Hanks)

More information

Announcements. The equation of projection. Image Formation and Cameras

Announcements. The equation of projection. Image Formation and Cameras Announcements Image ormation and Cameras Introduction to Computer Vision CSE 52 Lecture 4 Read Trucco & Verri: pp. 5-4 HW will be on web site tomorrow or Saturda. Irfanview: http://www.irfanview.com/ is

More information

12.2 Investigate Surface Area

12.2 Investigate Surface Area Investigating g Geometry ACTIVITY Use before Lesson 12.2 12.2 Investigate Surface Area MATERIALS grap paper scissors tape Q U E S T I O N How can you find te surface area of a polyedron? A net is a pattern

More information

Local features and image matching May 8 th, 2018

Local features and image matching May 8 th, 2018 Local features and image matcing May 8 t, 2018 Yong Jae Lee UC Davis Last time RANSAC for robust fitting Lines, translation Image mosaics Fitting a 2D transformation Homograpy 2 Today Mosaics recap: How

More information

1 Affine and Projective Coordinate Notation

1 Affine and Projective Coordinate Notation CS348a: Computer Graphics Handout #9 Geometric Modeling Original Handout #9 Stanford University Tuesday, 3 November 992 Original Lecture #2: 6 October 992 Topics: Coordinates and Transformations Scribe:

More information

Introduction to Homogeneous coordinates

Introduction to Homogeneous coordinates Last class we considered smooth translations and rotations of the camera coordinate system and the resulting motions of points in the image projection plane. These two transformations were expressed mathematically

More information

13.5 DIRECTIONAL DERIVATIVES and the GRADIENT VECTOR

13.5 DIRECTIONAL DERIVATIVES and the GRADIENT VECTOR 13.5 Directional Derivatives and te Gradient Vector Contemporary Calculus 1 13.5 DIRECTIONAL DERIVATIVES and te GRADIENT VECTOR Directional Derivatives In Section 13.3 te partial derivatives f x and f

More information

Section 1.2 The Slope of a Tangent

Section 1.2 The Slope of a Tangent Section 1.2 Te Slope of a Tangent You are familiar wit te concept of a tangent to a curve. Wat geometric interpretation can be given to a tangent to te grap of a function at a point? A tangent is te straigt

More information

Image Formation I Chapter 2 (R. Szelisky)

Image Formation I Chapter 2 (R. Szelisky) Image Formation I Chapter 2 (R. Selisky) Guido Gerig CS 632 Spring 22 cknowledgements: Slides used from Prof. Trevor Darrell, (http://www.eecs.berkeley.edu/~trevor/cs28.html) Some slides modified from

More information

DD2423 Image Analysis and Computer Vision IMAGE FORMATION. Computational Vision and Active Perception School of Computer Science and Communication

DD2423 Image Analysis and Computer Vision IMAGE FORMATION. Computational Vision and Active Perception School of Computer Science and Communication DD2423 Image Analysis and Computer Vision IMAGE FORMATION Mårten Björkman Computational Vision and Active Perception School of Computer Science and Communication November 8, 2013 1 Image formation Goal:

More information

Multiple Views Geometry

Multiple Views Geometry Multiple Views Geometry Subhashis Banerjee Dept. Computer Science and Engineering IIT Delhi email: suban@cse.iitd.ac.in January 2, 28 Epipolar geometry Fundamental geometric relationship between two perspective

More information

CS4670: Computer Vision

CS4670: Computer Vision CS467: Computer Vision Noah Snavely Lecture 13: Projection, Part 2 Perspective study of a vase by Paolo Uccello Szeliski 2.1.3-2.1.6 Reading Announcements Project 2a due Friday, 8:59pm Project 2b out Friday

More information

2D transformations Homogeneous coordinates. Uses of Transformations

2D transformations Homogeneous coordinates. Uses of Transformations 2D transformations omogeneous coordinates Uses of Transformations Modeling: position and resize parts of a complex model; Viewing: define and position te virtual camera Animation: define ow objects move/cange

More information

Homogeneous Coordinates. Lecture18: Camera Models. Representation of Line and Point in 2D. Cross Product. Overall scaling is NOT important.

Homogeneous Coordinates. Lecture18: Camera Models. Representation of Line and Point in 2D. Cross Product. Overall scaling is NOT important. Homogeneous Coordinates Overall scaling is NOT important. CSED44:Introduction to Computer Vision (207F) Lecture8: Camera Models Bohyung Han CSE, POSTECH bhhan@postech.ac.kr (",, ) ()", ), )) ) 0 It is

More information

CHAPTER 3. Single-view Geometry. 1. Consequences of Projection

CHAPTER 3. Single-view Geometry. 1. Consequences of Projection CHAPTER 3 Single-view Geometry When we open an eye or take a photograph, we see only a flattened, two-dimensional projection of the physical underlying scene. The consequences are numerous and startling.

More information

Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Image Formation I Chapter 1 (Forsyth&Ponce) Cameras Image Formation I Chapter 1 (Forsyth&Ponce) Cameras Guido Gerig CS 632 Spring 215 cknowledgements: Slides used from Prof. Trevor Darrell, (http://www.eecs.berkeley.edu/~trevor/cs28.html) Some slides modified

More information

3.6 Directional Derivatives and the Gradient Vector

3.6 Directional Derivatives and the Gradient Vector 288 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES 3.6 Directional Derivatives and te Gradient Vector 3.6.1 Functions of two Variables Directional Derivatives Let us first quickly review, one more time, te

More information

Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Image Formation I Chapter 1 (Forsyth&Ponce) Cameras Image Formation I Chapter 1 (Forsyth&Ponce) Cameras Guido Gerig CS 632 Spring 213 cknowledgements: Slides used from Prof. Trevor Darrell, (http://www.eecs.berkeley.edu/~trevor/cs28.html) Some slides modified

More information

Interactive Computer Graphics. Hearn & Baker, chapter D transforms Hearn & Baker, chapter 5. Aliasing and Anti-Aliasing

Interactive Computer Graphics. Hearn & Baker, chapter D transforms Hearn & Baker, chapter 5. Aliasing and Anti-Aliasing Interactive Computer Graphics Aliasing and Anti-Aliasing Hearn & Baker, chapter 4-7 D transforms Hearn & Baker, chapter 5 Aliasing and Anti-Aliasing Problem: jaggies Also known as aliasing. It results

More information

Outline The Refraction of Light Forming Images with a Plane Mirror 26-3 Spherical Mirror 26-4 Ray Tracing and the Mirror Equation

Outline The Refraction of Light Forming Images with a Plane Mirror 26-3 Spherical Mirror 26-4 Ray Tracing and the Mirror Equation Chapter 6 Geometrical Optics Outline 6-1 The Reflection of Light 6- Forming Images with a Plane Mirror 6-3 Spherical Mirror 6-4 Ray Tracing and the Mirror Equation 6-5 The Refraction of Light 6-6 Ray Tracing

More information

Computer Vision Project-1

Computer Vision Project-1 University of Utah, School Of Computing Computer Vision Project- Singla, Sumedha sumedha.singla@utah.edu (00877456 February, 205 Theoretical Problems. Pinhole Camera (a A straight line in the world space

More information

Geometry of a single camera. Odilon Redon, Cyclops, 1914

Geometry of a single camera. Odilon Redon, Cyclops, 1914 Geometr o a single camera Odilon Redon, Cclops, 94 Our goal: Recover o 3D structure Recover o structure rom one image is inherentl ambiguous??? Single-view ambiguit Single-view ambiguit Rashad Alakbarov

More information

Computer Vision. Coordinates. Prof. Flávio Cardeal DECOM / CEFET- MG.

Computer Vision. Coordinates. Prof. Flávio Cardeal DECOM / CEFET- MG. Computer Vision Coordinates Prof. Flávio Cardeal DECOM / CEFET- MG cardeal@decom.cefetmg.br Abstract This lecture discusses world coordinates and homogeneous coordinates, as well as provides an overview

More information

Computer Vision cmput 428/615

Computer Vision cmput 428/615 Computer Vision cmput 428/615 Basic 2D and 3D geometry and Camera models Martin Jagersand The equation of projection Intuitively: How do we develop a consistent mathematical framework for projection calculations?

More information

Geometric camera models and calibration

Geometric camera models and calibration Geometric camera models and calibration http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 13 Course announcements Homework 3 is out. - Due October

More information

Pin Hole Cameras & Warp Functions

Pin Hole Cameras & Warp Functions Pin Hole Cameras & Warp Functions Instructor - Simon Lucey 16-423 - Designing Computer Vision Apps Today Pinhole Camera. Homogenous Coordinates. Planar Warp Functions. Motivation Taken from: http://img.gawkerassets.com/img/18w7i1umpzoa9jpg/original.jpg

More information

Camera model and calibration

Camera model and calibration and calibration AVIO tristan.moreau@univ-rennes1.fr Laboratoire de Traitement du Signal et des Images (LTSI) Université de Rennes 1. Mardi 21 janvier 1 AVIO tristan.moreau@univ-rennes1.fr and calibration

More information

ECE Digital Image Processing and Introduction to Computer Vision. Outline

ECE Digital Image Processing and Introduction to Computer Vision. Outline ECE592-064 Digital Image Processing and Introduction to Computer Vision Depart. of ECE, NC State University Instructor: Tianfu (Matt) Wu Spring 2017 1. Recap Outline 2. Modeling Projection and Projection

More information

2 The Derivative. 2.0 Introduction to Derivatives. Slopes of Tangent Lines: Graphically

2 The Derivative. 2.0 Introduction to Derivatives. Slopes of Tangent Lines: Graphically 2 Te Derivative Te two previous capters ave laid te foundation for te study of calculus. Tey provided a review of some material you will need and started to empasize te various ways we will view and use

More information

Refraction and Lenses. Honors Physics

Refraction and Lenses. Honors Physics Refraction and Lenses Honors Physics Refraction Refraction is based on the idea that LIGHT is passing through one MEDIUM into another. The question is, WHAT HAPPENS? Suppose you are running on the beach

More information

CS231M Mobile Computer Vision Structure from motion

CS231M Mobile Computer Vision Structure from motion CS231M Mobile Computer Vision Structure from motion - Cameras - Epipolar geometry - Structure from motion Pinhole camera Pinhole perspective projection f o f = focal length o = center of the camera z y

More information

How to achieve this goal? (1) Cameras

How to achieve this goal? (1) Cameras How to achieve this goal? (1) Cameras History, progression and comparisons of different Cameras and optics. Geometry, Linear Algebra Images Image from Chris Jaynes, U. Kentucky Discrete vs. Continuous

More information

PROJECTIVE SPACE AND THE PINHOLE CAMERA

PROJECTIVE SPACE AND THE PINHOLE CAMERA PROJECTIVE SPACE AND THE PINHOLE CAMERA MOUSA REBOUH Abstract. Here we provide (linear algebra) proofs of the ancient theorem of Pappus and the contemporary theorem of Desargues on collineations. We also

More information

Chapter 31: Images and Optical Instruments

Chapter 31: Images and Optical Instruments Capter 3: Image and Optical Intrument Relection at a plane urace Image ormation Te relected ray entering eye look a toug tey ad come rom image P. P virtual image P Ligt ray radiate rom a point object at

More information

521466S Machine Vision Exercise #1 Camera models

521466S Machine Vision Exercise #1 Camera models 52466S Machine Vision Exercise # Camera models. Pinhole camera. The perspective projection equations or a pinhole camera are x n = x c, = y c, where x n = [x n, ] are the normalized image coordinates,

More information

CS 418: Interactive Computer Graphics. Projection

CS 418: Interactive Computer Graphics. Projection CS 418: Interactive Computer Graphics Projection Eric Shaffer Based on John Hart s CS 418 Slides Hierarchical Solar System Model Without push/pop, You can t move the Earth scale to before you draw the

More information

3-D D Euclidean Space - Vectors

3-D D Euclidean Space - Vectors 3-D D Euclidean Space - Vectors Rigid Body Motion and Image Formation A free vector is defined by a pair of points : Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Coordinates of the vector : 3D Rotation

More information

Experiment 7 Geometric Optics

Experiment 7 Geometric Optics Physics 263 Experiment 7 Geometric Optics In this laboratory, we will perform several experiments on geometric optics. A pictorial diagram of the various components to be used is shown in Figure 5. 1 Refraction

More information

The Lens. Refraction and The Lens. Figure 1a:

The Lens. Refraction and The Lens. Figure 1a: Lenses are used in many different optical devices. They are found in telescopes, binoculars, cameras, camcorders and eyeglasses. Even your eye contains a lens that helps you see objects at different distances.

More information

Chapter 34. Images. Two Types of Images. A Common Mirage. Plane Mirrors, Extended Object. Plane Mirrors, Point Object

Chapter 34. Images. Two Types of Images. A Common Mirage. Plane Mirrors, Extended Object. Plane Mirrors, Point Object Capter Images One o te most important uses o te basic laws governing ligt is te production o images. Images are critical to a variety o ields and industries ranging rom entertainment, security, and medicine

More information

Chapter 34. Images. In this chapter we define and classify images, and then classify several basic ways in which they can be produced.

Chapter 34. Images. In this chapter we define and classify images, and then classify several basic ways in which they can be produced. Chapter 34 Images One of the most important uses of the basic laws governing light is the production of images. Images are critical to a variety of fields and industries ranging from entertainment, security,

More information

VideoText Interactive

VideoText Interactive VideoText Interactive Homescool and Independent Study Sampler Print Materials for Geometry: A Complete Course Unit I, Part C, Lesson 3 Triangles ------------------------------------------ Course Notes

More information

You Try: A. Dilate the following figure using a scale factor of 2 with center of dilation at the origin.

You Try: A. Dilate the following figure using a scale factor of 2 with center of dilation at the origin. 1 G.SRT.1-Some Tings To Know Dilations affect te size of te pre-image. Te pre-image will enlarge or reduce by te ratio given by te scale factor. A dilation wit a scale factor of 1> x >1enlarges it. A dilation

More information

Perception II: Pinhole camera and Stereo Vision

Perception II: Pinhole camera and Stereo Vision Perception II: Pinhole camera and Stereo Vision Davide Scaramuzza Margarita Chli, Paul Furgale, Marco Hutter, Roland Siegwart 1 Mobile Robot Control Scheme knowledge, data base mission commands Localization

More information

ECE-161C Cameras. Nuno Vasconcelos ECE Department, UCSD

ECE-161C Cameras. Nuno Vasconcelos ECE Department, UCSD ECE-161C Cameras Nuno Vasconcelos ECE Department, UCSD Image formation all image understanding starts with understanding of image formation: projection of a scene from 3D world into image on 2D plane 2

More information

Perspective Projection in Homogeneous Coordinates

Perspective Projection in Homogeneous Coordinates Perspective Projection in Homogeneous Coordinates Carlo Tomasi If standard Cartesian coordinates are used, a rigid transformation takes the form X = R(X t) and the equations of perspective projection are

More information

CS-9645 Introduction to Computer Vision Techniques Winter 2019

CS-9645 Introduction to Computer Vision Techniques Winter 2019 Table of Contents Projective Geometry... 1 Definitions...1 Axioms of Projective Geometry... Ideal Points...3 Geometric Interpretation... 3 Fundamental Transformations of Projective Geometry... 4 The D

More information

Robotics - Projective Geometry and Camera model. Matteo Pirotta

Robotics - Projective Geometry and Camera model. Matteo Pirotta Robotics - Projective Geometry and Camera model Matteo Pirotta pirotta@elet.polimi.it Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano 14 March 2013 Inspired from Simone

More information

But First: Multi-View Projective Geometry

But First: Multi-View Projective Geometry View Morphing (Seitz & Dyer, SIGGRAPH 96) Virtual Camera Photograph Morphed View View interpolation (ala McMillan) but no depth no camera information Photograph But First: Multi-View Projective Geometry

More information

Capturing Light: Geometry of Image Formation

Capturing Light: Geometry of Image Formation Capturing Light: Geometry of Image Formation Computer Vision James Hays Slides from Derek Hoiem, Alexei Efros, Steve Seitz, and David Forsyth Administrative Stuff My Office hours, CoC building 35 Monday

More information

General Physics II. Mirrors & Lenses

General Physics II. Mirrors & Lenses General Physics II Mirrors & Lenses Nothing New! For the next several lectures we will be studying geometrical optics. You already know the fundamentals of what is going on!!! Reflection: θ 1 = θ r incident

More information

COMP30019 Graphics and Interaction Three-dimensional transformation geometry and perspective

COMP30019 Graphics and Interaction Three-dimensional transformation geometry and perspective COMP30019 Graphics and Interaction Three-dimensional transformation geometry and perspective Department of Computing and Information Systems The Lecture outline Introduction Rotation about artibrary axis

More information

Chapter 23. Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian

Chapter 23. Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian Chapter 23 Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian Reflection and Refraction at a Plane Surface The light radiate from a point object in all directions The light reflected from a plane

More information

Single View Geometry. Camera model & Orientation + Position estimation. What am I?

Single View Geometry. Camera model & Orientation + Position estimation. What am I? Single View Geometry Camera model & Orientation + Position estimation What am I? Vanishing point Mapping from 3D to 2D Point & Line Goal: Point Homogeneous coordinates represent coordinates in 2 dimensions

More information

1 Projective Geometry

1 Projective Geometry CIS8, Machine Perception Review Problem - SPRING 26 Instructions. All coordinate systems are right handed. Projective Geometry Figure : Facade rectification. I took an image of a rectangular object, and

More information

Computer Vision Projective Geometry and Calibration. Pinhole cameras

Computer Vision Projective Geometry and Calibration. Pinhole cameras Computer Vision Projective Geometry and Calibration Professor Hager http://www.cs.jhu.edu/~hager Jason Corso http://www.cs.jhu.edu/~jcorso. Pinhole cameras Abstract camera model - box with a small hole

More information

Computer Vision I Name : CSE 252A, Fall 2012 Student ID : David Kriegman Assignment #1. (Due date: 10/23/2012) x P. = z

Computer Vision I Name : CSE 252A, Fall 2012 Student ID : David Kriegman   Assignment #1. (Due date: 10/23/2012) x P. = z Computer Vision I Name : CSE 252A, Fall 202 Student ID : David Kriegman E-Mail : Assignment (Due date: 0/23/202). Perspective Projection [2pts] Consider a perspective projection where a point = z y x P

More information

Ch. 26: Geometrical Optics

Ch. 26: Geometrical Optics Sec. 6-1: The Reflection of Light Wave Fronts and Rays Ch. 6: Geometrical Optics Wave front: a surface on which E is a maximum. Figure 5-3: Plane Wave *For this wave, the wave fronts are a series of planes.

More information

Bounding Tree Cover Number and Positive Semidefinite Zero Forcing Number

Bounding Tree Cover Number and Positive Semidefinite Zero Forcing Number Bounding Tree Cover Number and Positive Semidefinite Zero Forcing Number Sofia Burille Mentor: Micael Natanson September 15, 2014 Abstract Given a grap, G, wit a set of vertices, v, and edges, various

More information

2.3 Additional Relations

2.3 Additional Relations 3 2.3 Additional Relations Figure 2.3 identiies additional relations, indicating te locations o te object and image, and te ratio o teir eigts (magniication) and orientations. Ray enters te lens parallel

More information

Projections. Brian Curless CSE 457 Spring Reading. Shrinking the pinhole. The pinhole camera. Required:

Projections. Brian Curless CSE 457 Spring Reading. Shrinking the pinhole. The pinhole camera. Required: Reading Required: Projections Brian Curless CSE 457 Spring 2013 Angel, 5.1-5.6 Further reading: Fole, et al, Chapter 5.6 and Chapter 6 David F. Rogers and J. Alan Adams, Mathematical Elements for Computer

More information

Chapter 3 Geometric Optics

Chapter 3 Geometric Optics Chapter 3 Geometric Optics [Reading assignment: Goodman, Fourier Optics, Appendix B Ray Optics The full three dimensional wave equation is: (3.) One solution is E E o ûe i ωt± k r ( ). This is a plane

More information

Perspective Projection Transformation

Perspective Projection Transformation Perspective Projection Transformation Where does a point of a scene appear in an image?? p p Transformation in 3 steps:. scene coordinates => camera coordinates. projection of camera coordinates into image

More information

Cameras and Radiometry. Last lecture in a nutshell. Conversion Euclidean -> Homogenous -> Euclidean. Affine Camera Model. Simplified Camera Models

Cameras and Radiometry. Last lecture in a nutshell. Conversion Euclidean -> Homogenous -> Euclidean. Affine Camera Model. Simplified Camera Models Cameras and Radiometry Last lecture in a nutshell CSE 252A Lecture 5 Conversion Euclidean -> Homogenous -> Euclidean In 2-D Euclidean -> Homogenous: (x, y) -> k (x,y,1) Homogenous -> Euclidean: (x, y,

More information

Geometry of image formation

Geometry of image formation Geometr of image formation Tomáš Svoboda, svoboda@cmp.felk.cvut.c ech Technical Universit in Prague, enter for Machine Perception http://cmp.felk.cvut.c Last update: November 0, 2008 Talk Outline Pinhole

More information

Pin Hole Cameras & Warp Functions

Pin Hole Cameras & Warp Functions Pin Hole Cameras & Warp Functions Instructor - Simon Lucey 16-423 - Designing Computer Vision Apps Today Pinhole Camera. Homogenous Coordinates. Planar Warp Functions. Example of SLAM for AR Taken from:

More information

3D Geometry and Camera Calibration

3D Geometry and Camera Calibration 3D Geometr and Camera Calibration 3D Coordinate Sstems Right-handed vs. left-handed 2D Coordinate Sstems ais up vs. ais down Origin at center vs. corner Will often write (u, v) for image coordinates v

More information