Cameras and Radiometry. Last lecture in a nutshell. Conversion Euclidean -> Homogenous -> Euclidean. Affine Camera Model. Simplified Camera Models

Size: px
Start display at page:

Download "Cameras and Radiometry. Last lecture in a nutshell. Conversion Euclidean -> Homogenous -> Euclidean. Affine Camera Model. Simplified Camera Models"

Transcription

1 Cameras and Radiometry Last lecture in a nutshell CSE 252A Lecture 5 Conversion Euclidean -> Homogenous -> Euclidean In 2-D Euclidean -> Homogenous: (x, y) -> k (x,y,1) Homogenous -> Euclidean: (x, y, z) -> (x/z, y/z) In 3-D Euclidean -> Homogenous: (x, y, z) -> k (x,y,z,1) Homogenous -> Euclidean: (x, y, z, w) -> (x/w, y/w, z/w) Z 1 Y X (x,y,1) (x,y) Affine Camera Model Take perspective projection equation, and perform Taylor series expansion about some point (x 0,y 0,z 0 ). Drop terms that are higher order than linear. Resulting expression is affine camera model Appropriate in Neighborhoo About (x 0,y 0,z 0 Simplified Camera Models erspective rojection Coordinate Changes: Rigid Transformations Affine Camera Model Scaled rthographic rojection Euclidean rthographic rojection Homogeneous 1

2 Some points about S(n) S(n) = { R R nxn : R T R = I, det(r) = 1} S(2): rotation matrices in plane R 2 S(3): rotation matrices in 3-space R 3 orms a Group under matrix product operation: Identity Inverse Associative Closure Closed (finite intersection of closed sets) Bounded R i,j [-1, +1] Does not form a vector space. Manifold of dimension n(n-1)/2 Dim(S(2)) = 1 Dim(S(3)) = 3 S(3) arameterizations of S(3) 3-D manifold, so between 3 parameters and 2n +1 parameters (Whitney s Embedding Thm.) Roll-itch-Yaw Euler Angles Axis Angle (Rodrigues formula) Cayley s formula Matrix Exponential Quaternions (four parameters + one constraint) Camera parameters Issue World units (e.g., cm), camera units (pixels) camera may not be at the origin, looking down the z-axis extrinsic parameters one unit in camera coordinates may not be the same as one unit in world coordinates intrinsic parameters - focal length, principal point, aspect ratio, angle between axes, etc. Camera Calibration X U Transformation Transformation V = representing representing Y Z W intrinsic parameters extrinsic parameters T 3 x 3 4 x 4: Rigid transformation, estimate intrinsic and extrinsic camera parameters See Text book for how to do it. Camera Calibration Toolbox for Matlab (Bouguet) Qualcomm Augmented Reality Demo v=hxtq1qbmliw&feature=player_embedded rojective Transformation (Homography) 3 x 3 linear transformation of homogenous coordinates oints map to points, Lines map to lines 2

3 Image of a plane The mapping between coordinates in a plane in 3-D to the image plane under perspective is a projective transformation Beyond the pinhole Camera Getting more light Bigger Aperture A square maps to an arbitrary quadrilateral Under affine or scaled orthographic camera model, square maps to a parallelogram inhole Camera Images with Variable Aperture Limits for pinhole cameras 2 mm 1mm.6 mm.35 mm.15 mm.07 mm The reason for lenses Thin Lens ptical axis Rotationally symmetric about optical axis. Spherical interfaces. 3

4 Thin Lens: Center Thin Lens: ocus All rays that enter lens along line pointing at emerge in same direction. arallel lines pass through the focus, Thin Lens: Image of oint Thin Lens: Image of oint Z f Z All rays passing through lens and starting at converge upon Thin Lens: Image lane Thin Lens: Aperture Q Q Image lane A price: Whereas the image of is in focus, the image of Q isn t. Image lane Smaller Aperture -> Less Blur inhole -> No Blur 4

5 ield of View Deviations from the lens model Deviations from this ideal are aberrations Two types Image lane f ield of View 1. geometrical 2. chromatic spherical aberration astigmatism distortion coma Aberrations are reduced by combining lenses Compound lenses Spherical aberration Rays parallel to the axis do not converge uter portions of the lens yield smaller focal lengths Astigmatism An optical system with astigmatism is one where rays that propagate in two perpendicular planes have different foci. If an optical system with astigmatism is used to form an image of a cross, the vertical and horizontal lines will be in sharp focus at two different distances. object Distortion magnification/focal length different for different angles of inclination Chromatic aberration (great for prisms, bad for lenses) pincushion (tele-photo) barrel (wide-angle) Can be corrected! (if parameters are know) 5

6 Chromatic aberration Vignetting: Spatial Non-Uniformity rays of different wavelengths focused in different planes cannot be removed completely sometimes achromatization is achieved for more than 2 wavelengths camera Iris Litvinov & Schechner, radiometric nonidealities Vignetting Appearance and surface reflectance nly part of the light reaches the sensor eriphery of the image is dimmer Read Chapter 4 of once & orsyth Solid Angle Irradiance Radiance BRD Lambertian/hong BRD Radiometry A local coordinate system on a surface Consider a point on the surface Light arrives at from a hemisphere of directions defined by the surface normal N We can defined a local coordinate system whose origin is and with one axis aligned with N Convenient to represent in spherical angles. 6

7 oreshortening Measuring Angle The solid angle subtended by an object from a point is the area of the projection of the object onto the unit sphere centered at. Measured in steradians, sr Definition is analogous to projected angle in 2D If I m at, and I look out, solid angle tells me how much of my view is filled with an object By analogy with angle (in radians), the solid angle subtended by a region at a point is the area projected on a unit sphere centered at that point The solid angle subtended by a patch area da is given by Solid Angle ower is energy per unit time Radiance: ower traveling at some point in a specified direction, per unit area perpendicular to the direction of travel, per unit solid angle Symbol: L(x,θ,φ) Units: watts per square meter per steradian : w/(m 2 sr 1 ) (θ, φ) dω x da CSE 252A ower is energy per unit time Radiance: ower traveling at some point in a specified direction, per unit area perpendicular to the direction of travel, per unit solid angle Symbol: L(x,θ,φ) Units: watts per square meter per steradian : w/(m 2 sr 1 ) L = α (θ, φ) x da dω (dacosα)dω In free space, radiance is constant as it propagates along a ray Derived from conservation of flux undamental in Light Transport. CSE 252A ower emitted from patch, but radiance in direction different from surface normal CSE 252A, Winter

8 Crucial property: How much light is arriving at a Total Irradiance arriving at the surface? surface is given by adding Units of irradiance: Watts/m 2 irradiance over all incoming angles This is a function of incoming angle. Total irradiance is A surface experiencing radiance L (x,θ,φ) coming in from solid angle dω experiences irradiance: L(x,θ,φ) φ θ N What is image irradiance E for a radiance L emitted from a point? x x CSE 252A CSE 252A, Winter 2007 δa δa δa δa Let δω be the solid angle subtended by δa (or δa ) from the center of the lens Let Ω be the solid angle subtended by the lens from. CSE 252A, Winter 2007 CSE 252A, all 2009 δa δa δa δa The power δ emitted from the patch δa with radiance L and falling on the lens is: CSE 252A, Winter 2007 E = π 2 d cos 4 α L 4 z' E: Image irradiance L: emitted radiance d : Lens diameter z : depth of image plane CSE 252A, Winter 2007 α: Image Angle of Irradiance patch from optical axis 8

Announcements. The equation of projection. Image Formation and Cameras

Announcements. The equation of projection. Image Formation and Cameras Announcements Image ormation and Cameras Introduction to Computer Vision CSE 52 Lecture 4 Read Trucco & Verri: pp. 5-4 HW will be on web site tomorrow or Saturda. Irfanview: http://www.irfanview.com/ is

More information

Reflectance & Lighting

Reflectance & Lighting Reflectance & Lighting Computer Vision I CSE5A Lecture 6 Last lecture in a nutshell Need for lenses (blur from pinhole) Thin lens equation Distortion and aberrations Vignetting CS5A, Winter 007 Computer

More information

Announcements. Equation of Perspective Projection. Image Formation and Cameras

Announcements. Equation of Perspective Projection. Image Formation and Cameras Announcements Image ormation and Cameras Introduction to Computer Vision CSE 52 Lecture 4 Read Trucco & Verri: pp. 22-4 Irfanview: http://www.irfanview.com/ is a good Windows utilit for manipulating images.

More information

Announcements. Image Formation: Outline. Homogenous coordinates. Image Formation and Cameras (cont.)

Announcements. Image Formation: Outline. Homogenous coordinates. Image Formation and Cameras (cont.) Announcements Image Formation and Cameras (cont.) HW1 due, InitialProject topics due today CSE 190 Lecture 6 Image Formation: Outline Factors in producing images Projection Perspective Vanishing points

More information

Introduction to Computer Vision. Introduction CMPSCI 591A/691A CMPSCI 570/670. Image Formation

Introduction to Computer Vision. Introduction CMPSCI 591A/691A CMPSCI 570/670. Image Formation Introduction CMPSCI 591A/691A CMPSCI 570/670 Image Formation Lecture Outline Light and Optics Pinhole camera model Perspective projection Thin lens model Fundamental equation Distortion: spherical & chromatic

More information

Understanding Variability

Understanding Variability Understanding Variability Why so different? Light and Optics Pinhole camera model Perspective projection Thin lens model Fundamental equation Distortion: spherical & chromatic aberration, radial distortion

More information

Mosaics, Plenoptic Function, and Light Field Rendering. Last Lecture

Mosaics, Plenoptic Function, and Light Field Rendering. Last Lecture Mosaics, Plenoptic Function, and Light Field Rendering Topics in Image-ased Modeling and Rendering CSE291 J00 Lecture 3 Last Lecture Camera Models Pinhole perspective Affine/Orthographic models Homogeneous

More information

Vision Review: Image Formation. Course web page:

Vision Review: Image Formation. Course web page: Vision Review: Image Formation Course web page: www.cis.udel.edu/~cer/arv September 10, 2002 Announcements Lecture on Thursday will be about Matlab; next Tuesday will be Image Processing The dates some

More information

Capturing light. Source: A. Efros

Capturing light. Source: A. Efros Capturing light Source: A. Efros Review Pinhole projection models What are vanishing points and vanishing lines? What is orthographic projection? How can we approximate orthographic projection? Lenses

More information

COSC579: Scene Geometry. Jeremy Bolton, PhD Assistant Teaching Professor

COSC579: Scene Geometry. Jeremy Bolton, PhD Assistant Teaching Professor COSC579: Scene Geometry Jeremy Bolton, PhD Assistant Teaching Professor Overview Linear Algebra Review Homogeneous vs non-homogeneous representations Projections and Transformations Scene Geometry The

More information

Announcements. Lighting. Camera s sensor. HW1 has been posted See links on web page for readings on color. Intro Computer Vision.

Announcements. Lighting. Camera s sensor. HW1 has been posted See links on web page for readings on color. Intro Computer Vision. Announcements HW1 has been posted See links on web page for readings on color. Introduction to Computer Vision CSE 152 Lecture 6 Deviations from the lens model Deviations from this ideal are aberrations

More information

Image Formation. Antonino Furnari. Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania

Image Formation. Antonino Furnari. Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania Image Formation Antonino Furnari Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania furnari@dmi.unict.it 18/03/2014 Outline Introduction; Geometric Primitives

More information

Radiometry. Radiometry. Measuring Angle. Solid Angle. Radiance

Radiometry. Radiometry. Measuring Angle. Solid Angle. Radiance Radiometry Radiometry Computer Vision I CSE5A ecture 5-Part II Read Chapter 4 of Ponce & Forsyth Solid Angle Irradiance Radiance BRDF ambertian/phong BRDF Measuring Angle Solid Angle By analogy with angle

More information

Visual Recognition: Image Formation

Visual Recognition: Image Formation Visual Recognition: Image Formation Raquel Urtasun TTI Chicago Jan 5, 2012 Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 1 / 61 Today s lecture... Fundamentals of image formation You should know

More information

Measuring Light: Radiometry and Cameras

Measuring Light: Radiometry and Cameras Lecture 11: Measuring Light: Radiometry and Cameras Computer Graphics CMU 15-462/15-662, Fall 2015 Slides credit: a majority of these slides were created by Matt Pharr and Pat Hanrahan Simulating a pinhole

More information

3D Vision Real Objects, Real Cameras. Chapter 11 (parts of), 12 (parts of) Computerized Image Analysis MN2 Anders Brun,

3D Vision Real Objects, Real Cameras. Chapter 11 (parts of), 12 (parts of) Computerized Image Analysis MN2 Anders Brun, 3D Vision Real Objects, Real Cameras Chapter 11 (parts of), 12 (parts of) Computerized Image Analysis MN2 Anders Brun, anders@cb.uu.se 3D Vision! Philisophy! Image formation " The pinhole camera " Projective

More information

Geometric camera models and calibration

Geometric camera models and calibration Geometric camera models and calibration http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 13 Course announcements Homework 3 is out. - Due October

More information

Camera model and multiple view geometry

Camera model and multiple view geometry Chapter Camera model and multiple view geometry Before discussing how D information can be obtained from images it is important to know how images are formed First the camera model is introduced and then

More information

Homogeneous Coordinates. Lecture18: Camera Models. Representation of Line and Point in 2D. Cross Product. Overall scaling is NOT important.

Homogeneous Coordinates. Lecture18: Camera Models. Representation of Line and Point in 2D. Cross Product. Overall scaling is NOT important. Homogeneous Coordinates Overall scaling is NOT important. CSED44:Introduction to Computer Vision (207F) Lecture8: Camera Models Bohyung Han CSE, POSTECH bhhan@postech.ac.kr (",, ) ()", ), )) ) 0 It is

More information

CSE 252B: Computer Vision II

CSE 252B: Computer Vision II CSE 252B: Computer Vision II Lecturer: Serge Belongie Scribe: Sameer Agarwal LECTURE 1 Image Formation 1.1. The geometry of image formation We begin by considering the process of image formation when a

More information

INFOGR Computer Graphics. J. Bikker - April-July Lecture 10: Shading Models. Welcome!

INFOGR Computer Graphics. J. Bikker - April-July Lecture 10: Shading Models. Welcome! INFOGR Computer Graphics J. Bikker - April-July 2016 - Lecture 10: Shading Models Welcome! Today s Agenda: Introduction Light Transport Materials Sensors Shading INFOGR Lecture 10 Shading Models 3 Introduction

More information

Discriminant Functions for the Normal Density

Discriminant Functions for the Normal Density Announcements Project Meetings CSE Rm. 4120 HW1: Not yet posted Pattern classification & Image Formation CSE 190 Lecture 5 CSE190d, Winter 2011 CSE190d, Winter 2011 Discriminant Functions for the Normal

More information

Camera Model and Calibration

Camera Model and Calibration Camera Model and Calibration Lecture-10 Camera Calibration Determine extrinsic and intrinsic parameters of camera Extrinsic 3D location and orientation of camera Intrinsic Focal length The size of the

More information

dq dt I = Irradiance or Light Intensity is Flux Φ per area A (W/m 2 ) Φ =

dq dt I = Irradiance or Light Intensity is Flux Φ per area A (W/m 2 ) Φ = Radiometry (From Intro to Optics, Pedrotti -4) Radiometry is measurement of Emag radiation (light) Consider a small spherical source Total energy radiating from the body over some time is Q total Radiant

More information

DD2423 Image Analysis and Computer Vision IMAGE FORMATION. Computational Vision and Active Perception School of Computer Science and Communication

DD2423 Image Analysis and Computer Vision IMAGE FORMATION. Computational Vision and Active Perception School of Computer Science and Communication DD2423 Image Analysis and Computer Vision IMAGE FORMATION Mårten Björkman Computational Vision and Active Perception School of Computer Science and Communication November 8, 2013 1 Image formation Goal:

More information

Rigid Body Motion and Image Formation. Jana Kosecka, CS 482

Rigid Body Motion and Image Formation. Jana Kosecka, CS 482 Rigid Body Motion and Image Formation Jana Kosecka, CS 482 A free vector is defined by a pair of points : Coordinates of the vector : 1 3D Rotation of Points Euler angles Rotation Matrices in 3D 3 by 3

More information

3D Geometry and Camera Calibration

3D Geometry and Camera Calibration 3D Geometry and Camera Calibration 3D Coordinate Systems Right-handed vs. left-handed x x y z z y 2D Coordinate Systems 3D Geometry Basics y axis up vs. y axis down Origin at center vs. corner Will often

More information

Announcements. Rotation. Camera Calibration

Announcements. Rotation. Camera Calibration Announcements HW1 has been posted See links on web page for reading Introduction to Computer Vision CSE 152 Lecture 5 Coordinate Changes: Rigid Transformations both translation and rotatoin Rotation About

More information

CS4670: Computer Vision

CS4670: Computer Vision CS467: Computer Vision Noah Snavely Lecture 13: Projection, Part 2 Perspective study of a vase by Paolo Uccello Szeliski 2.1.3-2.1.6 Reading Announcements Project 2a due Friday, 8:59pm Project 2b out Friday

More information

The Light Field. Last lecture: Radiometry and photometry

The Light Field. Last lecture: Radiometry and photometry The Light Field Last lecture: Radiometry and photometry This lecture: Light field = radiance function on rays Conservation of radiance Measurement equation Throughput and counting rays Irradiance calculations

More information

Single View Geometry. Camera model & Orientation + Position estimation. What am I?

Single View Geometry. Camera model & Orientation + Position estimation. What am I? Single View Geometry Camera model & Orientation + Position estimation What am I? Vanishing point Mapping from 3D to 2D Point & Line Goal: Point Homogeneous coordinates represent coordinates in 2 dimensions

More information

Perspective Projection [2 pts]

Perspective Projection [2 pts] Instructions: CSE252a Computer Vision Assignment 1 Instructor: Ben Ochoa Due: Thursday, October 23, 11:59 PM Submit your assignment electronically by email to iskwak+252a@cs.ucsd.edu with the subject line

More information

Representing the World

Representing the World Table of Contents Representing the World...1 Sensory Transducers...1 The Lateral Geniculate Nucleus (LGN)... 2 Areas V1 to V5 the Visual Cortex... 2 Computer Vision... 3 Intensity Images... 3 Image Focusing...

More information

dq dt I = Irradiance or Light Intensity is Flux Φ per area A (W/m 2 ) Φ =

dq dt I = Irradiance or Light Intensity is Flux Φ per area A (W/m 2 ) Φ = Radiometry (From Intro to Optics, Pedrotti -4) Radiometry is measurement of Emag radiation (light) Consider a small spherical source Total energy radiating from the body over some time is Q total Radiant

More information

Announcements. Radiometry and Sources, Shadows, and Shading

Announcements. Radiometry and Sources, Shadows, and Shading Announcements Radiometry and Sources, Shadows, and Shading CSE 252A Lecture 6 Instructor office hours This week only: Thursday, 3:45 PM-4:45 PM Tuesdays 6:30 PM-7:30 PM Library (for now) Homework 1 is

More information

Image Formation: Light and Shading. Introduction to Computer Vision CSE 152 Lecture 3

Image Formation: Light and Shading. Introduction to Computer Vision CSE 152 Lecture 3 Image Formation: Light and Shading CSE 152 Lecture 3 Announcements Homework 1 is due Apr 11, 11:59 PM Homework 2 will be assigned on Apr 11 Reading: Chapter 2: Light and Shading Geometric image formation

More information

Image formation. Thanks to Peter Corke and Chuck Dyer for the use of some slides

Image formation. Thanks to Peter Corke and Chuck Dyer for the use of some slides Image formation Thanks to Peter Corke and Chuck Dyer for the use of some slides Image Formation Vision infers world properties form images. How do images depend on these properties? Two key elements Geometry

More information

Computer Vision cmput 428/615

Computer Vision cmput 428/615 Computer Vision cmput 428/615 Basic 2D and 3D geometry and Camera models Martin Jagersand The equation of projection Intuitively: How do we develop a consistent mathematical framework for projection calculations?

More information

Perspective projection and Transformations

Perspective projection and Transformations Perspective projection and Transformations The pinhole camera The pinhole camera P = (X,,) p = (x,y) O λ = 0 Q λ = O λ = 1 Q λ = P =-1 Q λ X = 0 + λ X 0, 0 + λ 0, 0 + λ 0 = (λx, λ, λ) The pinhole camera

More information

Lecture 11 MRF s (conbnued), cameras and lenses.

Lecture 11 MRF s (conbnued), cameras and lenses. 6.869 Advances in Computer Vision Bill Freeman and Antonio Torralba Spring 2011 Lecture 11 MRF s (conbnued), cameras and lenses. remember correction on Gibbs sampling Motion application image patches image

More information

Computer Vision. Coordinates. Prof. Flávio Cardeal DECOM / CEFET- MG.

Computer Vision. Coordinates. Prof. Flávio Cardeal DECOM / CEFET- MG. Computer Vision Coordinates Prof. Flávio Cardeal DECOM / CEFET- MG cardeal@decom.cefetmg.br Abstract This lecture discusses world coordinates and homogeneous coordinates, as well as provides an overview

More information

Computer Vision Projective Geometry and Calibration. Pinhole cameras

Computer Vision Projective Geometry and Calibration. Pinhole cameras Computer Vision Projective Geometry and Calibration Professor Hager http://www.cs.jhu.edu/~hager Jason Corso http://www.cs.jhu.edu/~jcorso. Pinhole cameras Abstract camera model - box with a small hole

More information

Photometric Stereo. Lighting and Photometric Stereo. Computer Vision I. Last lecture in a nutshell BRDF. CSE252A Lecture 7

Photometric Stereo. Lighting and Photometric Stereo. Computer Vision I. Last lecture in a nutshell BRDF. CSE252A Lecture 7 Lighting and Photometric Stereo Photometric Stereo HW will be on web later today CSE5A Lecture 7 Radiometry of thin lenses δa Last lecture in a nutshell δa δa'cosα δacos β δω = = ( z' / cosα ) ( z / cosα

More information

Agenda. Rotations. Camera models. Camera calibration. Homographies

Agenda. Rotations. Camera models. Camera calibration. Homographies Agenda Rotations Camera models Camera calibration Homographies D Rotations R Y = Z r r r r r r r r r Y Z Think of as change of basis where ri = r(i,:) are orthonormal basis vectors r rotated coordinate

More information

Camera Model and Calibration. Lecture-12

Camera Model and Calibration. Lecture-12 Camera Model and Calibration Lecture-12 Camera Calibration Determine extrinsic and intrinsic parameters of camera Extrinsic 3D location and orientation of camera Intrinsic Focal length The size of the

More information

Robotics - Projective Geometry and Camera model. Marcello Restelli

Robotics - Projective Geometry and Camera model. Marcello Restelli Robotics - Projective Geometr and Camera model Marcello Restelli marcello.restelli@polimi.it Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano Ma 2013 Inspired from Matteo

More information

ECE-161C Cameras. Nuno Vasconcelos ECE Department, UCSD

ECE-161C Cameras. Nuno Vasconcelos ECE Department, UCSD ECE-161C Cameras Nuno Vasconcelos ECE Department, UCSD Image formation all image understanding starts with understanding of image formation: projection of a scene from 3D world into image on 2D plane 2

More information

Announcements. Image Formation: Light and Shading. Photometric image formation. Geometric image formation

Announcements. Image Formation: Light and Shading. Photometric image formation. Geometric image formation Announcements Image Formation: Light and Shading Homework 0 is due Oct 5, 11:59 PM Homework 1 will be assigned on Oct 5 Reading: Chapters 2: Light and Shading CSE 252A Lecture 3 Geometric image formation

More information

Realistic Camera Model

Realistic Camera Model Realistic Camera Model Shan-Yung Yang November 2, 2006 Shan-Yung Yang () Realistic Camera Model November 2, 2006 1 / 25 Outline Introduction Lens system Thick lens approximation Radiometry Sampling Assignment

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 5: Projection Reading: Szeliski 2.1 Projection Reading: Szeliski 2.1 Projection Müller Lyer Illusion http://www.michaelbach.de/ot/sze_muelue/index.html Modeling

More information

Pin Hole Cameras & Warp Functions

Pin Hole Cameras & Warp Functions Pin Hole Cameras & Warp Functions Instructor - Simon Lucey 16-423 - Designing Computer Vision Apps Today Pinhole Camera. Homogenous Coordinates. Planar Warp Functions. Motivation Taken from: http://img.gawkerassets.com/img/18w7i1umpzoa9jpg/original.jpg

More information

Assignment 2 : Projection and Homography

Assignment 2 : Projection and Homography TECHNISCHE UNIVERSITÄT DRESDEN EINFÜHRUNGSPRAKTIKUM COMPUTER VISION Assignment 2 : Projection and Homography Hassan Abu Alhaija November 7,204 INTRODUCTION In this exercise session we will get a hands-on

More information

Pin Hole Cameras & Warp Functions

Pin Hole Cameras & Warp Functions Pin Hole Cameras & Warp Functions Instructor - Simon Lucey 16-423 - Designing Computer Vision Apps Today Pinhole Camera. Homogenous Coordinates. Planar Warp Functions. Example of SLAM for AR Taken from:

More information

Outline. ETN-FPI Training School on Plenoptic Sensing

Outline. ETN-FPI Training School on Plenoptic Sensing Outline Introduction Part I: Basics of Mathematical Optimization Linear Least Squares Nonlinear Optimization Part II: Basics of Computer Vision Camera Model Multi-Camera Model Multi-Camera Calibration

More information

Radiometry. Reflectance & Lighting. Solid Angle. Radiance. Radiance Power is energy per unit time

Radiometry. Reflectance & Lighting. Solid Angle. Radiance. Radiance Power is energy per unit time Radiometry Reflectance & Lighting Computer Vision I CSE5A Lecture 6 Read Chapter 4 of Ponce & Forsyth Homework 1 Assigned Outline Solid Angle Irradiance Radiance BRDF Lambertian/Phong BRDF By analogy with

More information

Chapter 23. Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian

Chapter 23. Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian Chapter 23 Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian Reflection and Refraction at a Plane Surface The light radiate from a point object in all directions The light reflected from a plane

More information

Camera Projection Models We will introduce different camera projection models that relate the location of an image point to the coordinates of the

Camera Projection Models We will introduce different camera projection models that relate the location of an image point to the coordinates of the Camera Projection Models We will introduce different camera projection models that relate the location of an image point to the coordinates of the corresponding 3D points. The projection models include:

More information

Final Exam. Today s Review of Optics Polarization Reflection and transmission Linear and circular polarization Stokes parameters/jones calculus

Final Exam. Today s Review of Optics Polarization Reflection and transmission Linear and circular polarization Stokes parameters/jones calculus Physics 42200 Waves & Oscillations Lecture 40 Review Spring 206 Semester Matthew Jones Final Exam Date:Tuesday, May 3 th Time:7:00 to 9:00 pm Room: Phys 2 You can bring one double-sided pages of notes/formulas.

More information

Radiometry and reflectance

Radiometry and reflectance Radiometry and reflectance http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 16 Course announcements Homework 4 is still ongoing - Any questions?

More information

Camera Models and Image Formation. Srikumar Ramalingam School of Computing University of Utah

Camera Models and Image Formation. Srikumar Ramalingam School of Computing University of Utah Camera Models and Image Formation Srikumar Ramalingam School of Computing University of Utah srikumar@cs.utah.edu VisualFunHouse.com 3D Street Art Image courtesy: Julian Beaver (VisualFunHouse.com) 3D

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 40 Review Spring 2016 Semester Matthew Jones Final Exam Date:Tuesday, May 3 th Time:7:00 to 9:00 pm Room: Phys 112 You can bring one double-sided pages of notes/formulas.

More information

CS667 Lecture Notes: Radiometry

CS667 Lecture Notes: Radiometry CS667 Lecture Notes: Radiometry Steve Marschner Cornell University 23-28 August 2007 Radiometry is a system for describing the flow of radiant energy through space. It is essentially a geometric topic

More information

CIS 580, Machine Perception, Spring 2016 Homework 2 Due: :59AM

CIS 580, Machine Perception, Spring 2016 Homework 2 Due: :59AM CIS 580, Machine Perception, Spring 2016 Homework 2 Due: 2015.02.24. 11:59AM Instructions. Submit your answers in PDF form to Canvas. This is an individual assignment. 1 Recover camera orientation By observing

More information

Projective Geometry and Camera Models

Projective Geometry and Camera Models /2/ Projective Geometry and Camera Models Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Note about HW Out before next Tues Prob: covered today, Tues Prob2: covered next Thurs Prob3:

More information

Camera Calibration. Schedule. Jesus J Caban. Note: You have until next Monday to let me know. ! Today:! Camera calibration

Camera Calibration. Schedule. Jesus J Caban. Note: You have until next Monday to let me know. ! Today:! Camera calibration Camera Calibration Jesus J Caban Schedule! Today:! Camera calibration! Wednesday:! Lecture: Motion & Optical Flow! Monday:! Lecture: Medical Imaging! Final presentations:! Nov 29 th : W. Griffin! Dec 1

More information

Computer Vision Projective Geometry and Calibration. Pinhole cameras

Computer Vision Projective Geometry and Calibration. Pinhole cameras Computer Vision Projective Geometry and Calibration Professor Hager http://www.cs.jhu.edu/~hager Jason Corso http://www.cs.jhu.edu/~jcorso. Pinhole cameras Abstract camera model - box with a small hole

More information

Autonomous Navigation for Flying Robots

Autonomous Navigation for Flying Robots Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 3.1: 3D Geometry Jürgen Sturm Technische Universität München Points in 3D 3D point Augmented vector Homogeneous

More information

Agenda. Rotations. Camera calibration. Homography. Ransac

Agenda. Rotations. Camera calibration. Homography. Ransac Agenda Rotations Camera calibration Homography Ransac Geometric Transformations y x Transformation Matrix # DoF Preserves Icon translation rigid (Euclidean) similarity affine projective h I t h R t h sr

More information

Single View Geometry. Camera model & Orientation + Position estimation. What am I?

Single View Geometry. Camera model & Orientation + Position estimation. What am I? Single View Geometry Camera model & Orientation + Position estimation What am I? Vanishing points & line http://www.wetcanvas.com/ http://pennpaint.blogspot.com/ http://www.joshuanava.biz/perspective/in-other-words-the-observer-simply-points-in-thesame-direction-as-the-lines-in-order-to-find-their-vanishing-point.html

More information

Radiance. Radiance properties. Radiance properties. Computer Graphics (Fall 2008)

Radiance. Radiance properties. Radiance properties. Computer Graphics (Fall 2008) Computer Graphics (Fall 2008) COMS 4160, Lecture 19: Illumination and Shading 2 http://www.cs.columbia.edu/~cs4160 Radiance Power per unit projected area perpendicular to the ray per unit solid angle in

More information

Radiometry & BRDFs CS295, Spring 2017 Shuang Zhao

Radiometry & BRDFs CS295, Spring 2017 Shuang Zhao Radiometry & BRDFs CS295, Spring 2017 Shuang Zhao Computer Science Department University of California, Irvine CS295, Spring 2017 Shuang Zhao 1 Today s Lecture Radiometry Physics of light BRDFs How materials

More information

Agenda. Perspective projection. Rotations. Camera models

Agenda. Perspective projection. Rotations. Camera models Image formation Agenda Perspective projection Rotations Camera models Light as a wave + particle Light as a wave (ignore for now) Refraction Diffraction Image formation Digital Image Film Human eye Pixel

More information

Index. 3D reconstruction, point algorithm, point algorithm, point algorithm, point algorithm, 253

Index. 3D reconstruction, point algorithm, point algorithm, point algorithm, point algorithm, 253 Index 3D reconstruction, 123 5+1-point algorithm, 274 5-point algorithm, 260 7-point algorithm, 255 8-point algorithm, 253 affine point, 43 affine transformation, 55 affine transformation group, 55 affine

More information

Camera Models and Image Formation. Srikumar Ramalingam School of Computing University of Utah

Camera Models and Image Formation. Srikumar Ramalingam School of Computing University of Utah Camera Models and Image Formation Srikumar Ramalingam School of Computing University of Utah srikumar@cs.utah.edu Reference Most slides are adapted from the following notes: Some lecture notes on geometric

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 7: Image Alignment and Panoramas What s inside your fridge? http://www.cs.washington.edu/education/courses/cse590ss/01wi/ Projection matrix intrinsics projection

More information

Computer Vision Projective Geometry and Calibration

Computer Vision Projective Geometry and Calibration Computer Vision Projective Geometry and Calibration Professor Hager http://www.cs.jhu.edu/~hager Jason Corso http://www.cs.jhu.edu/~jcorso. Pinhole cameras Abstract camera model - box with a small hole

More information

More Mosaic Madness. CS194: Image Manipulation & Computational Photography. Steve Seitz and Rick Szeliski. Jeffrey Martin (jeffrey-martin.

More Mosaic Madness. CS194: Image Manipulation & Computational Photography. Steve Seitz and Rick Szeliski. Jeffrey Martin (jeffrey-martin. More Mosaic Madness Jeffrey Martin (jeffrey-martin.com) CS194: Image Manipulation & Computational Photography with a lot of slides stolen from Alexei Efros, UC Berkeley, Fall 2018 Steve Seitz and Rick

More information

3D Graphics for Game Programming (J. Han) Chapter II Vertex Processing

3D Graphics for Game Programming (J. Han) Chapter II Vertex Processing Chapter II Vertex Processing Rendering Pipeline Main stages in the pipeline The vertex processing stage operates on every input vertex stored in the vertex buffer and performs various operations such as

More information

Announcements. Camera Calibration. Thin Lens: Image of Point. Limits for pinhole cameras. f O Z

Announcements. Camera Calibration. Thin Lens: Image of Point. Limits for pinhole cameras. f O Z Announcements Introduction to Computer Vision CSE 152 Lecture 5 Assignment 1 has been posted. See links on web page for reading Irfanview: http://www.irfanview.com/ is a good windows utility for manipulating

More information

References Photography, B. London and J. Upton Optics in Photography, R. Kingslake The Camera, The Negative, The Print, A. Adams

References Photography, B. London and J. Upton Optics in Photography, R. Kingslake The Camera, The Negative, The Print, A. Adams Page 1 Camera Simulation Eect Cause Field o view Depth o ield Motion blur Exposure Film size, stops and pupils Aperture, ocal length Shutter Film speed, aperture, shutter Reerences Photography, B. London

More information

Measuring Light: Radiometry and Photometry

Measuring Light: Radiometry and Photometry Lecture 10: Measuring Light: Radiometry and Photometry Computer Graphics and Imaging UC Berkeley CS184/284A, Spring 2016 Radiometry Measurement system and units for illumination Measure the spatial properties

More information

2.710 Optics Spring 09 Solutions to Problem Set #1 Posted Wednesday, Feb. 18, 2009

2.710 Optics Spring 09 Solutions to Problem Set #1 Posted Wednesday, Feb. 18, 2009 MASSACHUSETTS INSTITUTE OF TECHNOLOGY.70 Optics Spring 09 Solutions to Problem Set # Posted Wednesday, Feb. 8, 009 Problem : Spherical waves and energy conservation In class we mentioned that the radiation

More information

A question from Piazza

A question from Piazza Radiometry, Reflectance, Lights CSE 252A Lecture 6 A question from Piazza 1 Announcements HW1 posted HWO graded, will be returned today If anyone has any registration issues, talk to me. Appearance: lighting,

More information

Computer Vision Project-1

Computer Vision Project-1 University of Utah, School Of Computing Computer Vision Project- Singla, Sumedha sumedha.singla@utah.edu (00877456 February, 205 Theoretical Problems. Pinhole Camera (a A straight line in the world space

More information

Spectral Color and Radiometry

Spectral Color and Radiometry Spectral Color and Radiometry Louis Feng April 13, 2004 April 13, 2004 Realistic Image Synthesis (Spring 2004) 1 Topics Spectral Color Light and Color Spectrum Spectral Power Distribution Spectral Color

More information

Overview. Radiometry and Photometry. Foundations of Computer Graphics (Spring 2012)

Overview. Radiometry and Photometry. Foundations of Computer Graphics (Spring 2012) Foundations of Computer Graphics (Spring 2012) CS 184, Lecture 21: Radiometry http://inst.eecs.berkeley.edu/~cs184 Overview Lighting and shading key in computer graphics HW 2 etc. ad-hoc shading models,

More information

Diffraction. Single-slit diffraction. Diffraction by a circular aperture. Chapter 38. In the forward direction, the intensity is maximal.

Diffraction. Single-slit diffraction. Diffraction by a circular aperture. Chapter 38. In the forward direction, the intensity is maximal. Diffraction Chapter 38 Huygens construction may be used to find the wave observed on the downstream side of an aperture of any shape. Diffraction The interference pattern encodes the shape as a Fourier

More information

Today s lecture. Image Alignment and Stitching. Readings. Motion models

Today s lecture. Image Alignment and Stitching. Readings. Motion models Today s lecture Image Alignment and Stitching Computer Vision CSE576, Spring 2005 Richard Szeliski Image alignment and stitching motion models cylindrical and spherical warping point-based alignment global

More information

Part Images Formed by Flat Mirrors. This Chapter. Phys. 281B Geometric Optics. Chapter 2 : Image Formation. Chapter 2: Image Formation

Part Images Formed by Flat Mirrors. This Chapter. Phys. 281B Geometric Optics. Chapter 2 : Image Formation. Chapter 2: Image Formation Phys. 281B Geometric Optics This Chapter 3 Physics Department Yarmouk University 21163 Irbid Jordan 1- Images Formed by Flat Mirrors 2- Images Formed by Spherical Mirrors 3- Images Formed by Refraction

More information

E (sensor) is given by; Object Size

E (sensor) is given by; Object Size A P P L I C A T I O N N O T E S Practical Radiometry It is often necessary to estimate the response of a camera under given lighting conditions, or perhaps to estimate lighting requirements for a particular

More information

3-D D Euclidean Space - Vectors

3-D D Euclidean Space - Vectors 3-D D Euclidean Space - Vectors Rigid Body Motion and Image Formation A free vector is defined by a pair of points : Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Coordinates of the vector : 3D Rotation

More information

Single View Geometry. Camera model & Orientation + Position estimation. Jianbo Shi. What am I? University of Pennsylvania GRASP

Single View Geometry. Camera model & Orientation + Position estimation. Jianbo Shi. What am I? University of Pennsylvania GRASP Single View Geometry Camera model & Orientation + Position estimation Jianbo Shi What am I? 1 Camera projection model The overall goal is to compute 3D geometry of the scene from just 2D images. We will

More information

Paths, diffuse interreflections, caching and radiometry. D.A. Forsyth

Paths, diffuse interreflections, caching and radiometry. D.A. Forsyth Paths, diffuse interreflections, caching and radiometry D.A. Forsyth How we got here We want to render diffuse interreflections strategy: compute approximation B-hat, then gather B = E +(ρk)e +(ρk)( ˆB

More information

CSE152a Computer Vision Assignment 1 WI14 Instructor: Prof. David Kriegman. Revision 0

CSE152a Computer Vision Assignment 1 WI14 Instructor: Prof. David Kriegman. Revision 0 CSE152a Computer Vision Assignment 1 WI14 Instructor: Prof. David Kriegman. Revision Instructions: This assignment should be solved, and written up in groups of 2. Work alone only if you can not find a

More information

Lighting. Camera s sensor. Lambertian Surface BRDF

Lighting. Camera s sensor. Lambertian Surface BRDF Lighting Introduction to Computer Vision CSE 152 Lecture 6 Special light sources Point sources Distant point sources Strip sources Area sources Common to think of lighting at infinity (a function on the

More information

Pinhole Camera Model 10/05/17. Computational Photography Derek Hoiem, University of Illinois

Pinhole Camera Model 10/05/17. Computational Photography Derek Hoiem, University of Illinois Pinhole Camera Model /5/7 Computational Photography Derek Hoiem, University of Illinois Next classes: Single-view Geometry How tall is this woman? How high is the camera? What is the camera rotation? What

More information

Computer Vision I Name : CSE 252A, Fall 2012 Student ID : David Kriegman Assignment #1. (Due date: 10/23/2012) x P. = z

Computer Vision I Name : CSE 252A, Fall 2012 Student ID : David Kriegman   Assignment #1. (Due date: 10/23/2012) x P. = z Computer Vision I Name : CSE 252A, Fall 202 Student ID : David Kriegman E-Mail : Assignment (Due date: 0/23/202). Perspective Projection [2pts] Consider a perspective projection where a point = z y x P

More information

Viewing. Reading: Angel Ch.5

Viewing. Reading: Angel Ch.5 Viewing Reading: Angel Ch.5 What is Viewing? Viewing transform projects the 3D model to a 2D image plane 3D Objects (world frame) Model-view (camera frame) View transform (projection frame) 2D image View

More information

521466S Machine Vision Exercise #1 Camera models

521466S Machine Vision Exercise #1 Camera models 52466S Machine Vision Exercise # Camera models. Pinhole camera. The perspective projection equations or a pinhole camera are x n = x c, = y c, where x n = [x n, ] are the normalized image coordinates,

More information

Geometric transformations in 3D and coordinate frames. Computer Graphics CSE 167 Lecture 3

Geometric transformations in 3D and coordinate frames. Computer Graphics CSE 167 Lecture 3 Geometric transformations in 3D and coordinate frames Computer Graphics CSE 167 Lecture 3 CSE 167: Computer Graphics 3D points as vectors Geometric transformations in 3D Coordinate frames CSE 167, Winter

More information