SEVENTH EDITION and EXPANDED SEVENTH EDITION

Size: px
Start display at page:

Download "SEVENTH EDITION and EXPANDED SEVENTH EDITION"

Transcription

1 SEVENTH EDITION and EXPANDED SEVENTH EDITION Slide 2-1

2 Chapter 2 Sets

3 2.1 Set Concepts

4 Set A collection of objects, which are called elements or members of the set. Listing the elements of a set inside a pair of braces, { }, is called roster form. Slide 2-4

5 Well-defined Set A set which has no question about what elements should be included. Its elements can be clearly determined. No opinion is associated with the members. Slide 2-5

6 Roster Form This is the form of the set where the elements are all listed, each separated by commas. Example: Set N is the set of all natural numbers less than or equal to 25. Solution: N = {1, 2, 3, 4, 5, 25} The 25 after the ellipsis indicates that the elements continue up to and including the number 25. Slide 2-6

7 Set-Builder (or Set-Generator) Notation A formal statement that describes the members of a set is written between the braces. A variable may represent any one of the members of the set. Example: Write set B = {2, 4, 6, 8, 10} in set-builder notation. Solution: B = { x x N and x is an even number 10}. Slide 2-7

8 Finite Set A set that contains no elements or the number of elements in the set is a natural number. Example: Set S = {2, 3, 4, 5, 6, 7} is a finite set because the number of elements in the set is 6, and 6 is a natural number. Slide 2-8

9 Infinite Set An infinite set contains an indefinite (uncountable) number of elements. The set of natural numbers is an example of an infinite set because it continues to increase forever without stopping, making it impossible to count its members. Slide 2-9

10 Equal Sets Equal sets have the exact same elements in them, regardless of their order. Symbol: A = B Slide 2-10

11 Cardinal Number The number of elements in set A is its cardinal number. Symbol: n(a) Slide 2-11

12 Equivalent Sets Equivalent sets have the same number of elements in them. Symbol: n(a) = n(b) Slide 2-12

13 Empty (or Null) Set A null (or empty set ) contains absolutely NO elements. Symbol: or { } Slide 2-13

14 Universal Set The universal set contains all of the possible elements which could be discusses in a particular problem. Symbol: U Slide 2-14

15 2.2 Subsets

16 Subsets A set is a subset of a given set if and only if all elements of the subset are also elements of the given set. Symbol: To show that set A is not a subset of set B, one must find at least one element of set A that is not an element of set B. Slide 2-16

17 Determining Subsets Example: Determine whether set A is a subset of set B. A = { 3, 5, 6, 8 } B = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} Solution: All of the elements of set A are contained in set B, so A B. Slide 2-17

18 Proper Subset All subsets are proper subsets except the subset containing all of the given elements. Symbol: Slide 2-18

19 Determining Proper Subsets Example: Determine whether set A is a proper subset of set B. A = { dog, cat } B = { dog, cat, bird, fish } Solution: All the elements of set A are contained in set B, and sets A and B are not equal, therefore A B. Slide 2-19

20 Determining Proper Subsets continued Example: Determine whether set A is a proper subset of set B. A = { dog, bird, fish, cat } B = { dog, cat, bird, fish } Solution: All the elements of set A are contained in set B, but sets A and B are equal, therefore A B. Slide 2-20

21 Number of Distinct Subsets The number of distinct subsets of a finite set A is 2 n, where n is the number of elements in set A. Example: Determine the number of distinct subsets for the given set { t, a, p, e }. List all the distinct subsets for the given set: { t, a, p, e }. Slide 2-21

22 Number of Distinct Subsets continued Solution: Since there are 4 elements in the given set, the number of distinct subsets is 2 4 = = 16 subsets. {t,a,p,e}, {t,a,p}, {t,a,e}, {t,p,e}, {a,p,e}, {t,a}, {t,p}, {t,e}, {a,p}, {a,e}, {p,e}, {t}, {a}, {p}, {e}, { } Slide 2-22

23 2.3 Venn Diagrams and Set Operations

24 Venn Diagrams A Venn diagram is a technique used for picturing set relationships. A rectangle usually represents the universal set, U. The items inside the rectangle are divided into subsets of U and are represented by circles. Slide 2-24

25 Disjoint Sets Two sets which have no elements in common are said to be disjoint. The intersection of disjoint sets is the empty set. Disjoint sets A and B are drawn in this figure. There U are no elements in common since there is no overlapping area of the two circles. A B Slide 2-25

26 Overlapping Sets For sets A and B drawn in this figure, notice the overlapping area shared by the two circles. This section represents the elements are in the intersection of set A and set B. U A B Slide 2-26

27 Complement of a Set The set known as the complement contains all the elements of the universal set, which are not listed in the given subset. Symbol: A Slide 2-27

28 Intersection The intersection of two given sets contains only those elements common to those sets. Symbol: A I B Slide 2-28

29 Union The union of two given sets contains all of the elements for those sets. The union unites that is, it brings together everything into one set. Symbol: AUB Slide 2-29

30 Subsets When B A, every element of B is also an element of A. Circle B is completely inside circle A. U A B Slide 2-30

31 Equal Sets When set A is equal to set B, all the elements of A are elements of B, and all the elements of B are elements of A. U A B Both sets are drawn as one circle. Slide 2-31

32 2.4 Venn Diagrams with Three Sets

33 General Procedure for Constructing Venn Diagrams with Three Sets Find the elements that are common to all three sets and place in region V. U A I IV II V VI III B VII C VIII Slide 2-33

34 General Procedure for Constructing Venn Diagrams with Three Sets continued Find the elements for region II. Find the elements in AI B. The elements in this set belong in regions II and V. Place the elements in the set AI B that are not listed in region V in region II. The elements in regions IV and VI are found in a similar manner. U A I IV II V VI VII C III B VIII Slide 2-34

35 General Procedure for Constructing Venn Diagrams with Three Sets continued Determine the elements to be placed in region I by determining the elements in set A that are not in regions II, IV, and V. The elements in regions III and VII are found in a similar manner. U A I IV II V VI VII C III B VIII Slide 2-35

36 General Procedure for Constructing Venn Diagrams with Three Sets continued Determine the elements to be placed in region VIII by finding the elements in the universal set that are not in regions I through VII. U A I IV II V VI VII C III B VIII Slide 2-36

37 Example: Constructing a Venn diagram for Three Sets Construct a Venn diagram illustrating the following sets. U = {1, 2, 3, 4, 5, 6, 7, 8} A = { 1, 2, 5, 8} B = {2, 4, 5} C = {1, 3, 5, 8} Solution: Find the intersection of all three sets and place in region V, {5}. AIBIC = Slide 2-37

38 Example: Constructing a Venn diagram for Three Sets continued Determine the intersection of sets A and B and place in region II. AI B = {2, 5} Element 5 has already been placed in region V, so 2 must be placed in region II. Now determine the numbers that go into region V. AI C = { 1, 2, 5, 8} Since 5 has been placed in region V, place 1 and 8 in region IV. Slide 2-38

39 Example: Constructing a Venn diagram for Three Sets continued Now determine the numbers that go in region VI. BI C = {5} There are now new numbers to be placed in this region. Since all numbers in set A have been placed, there are no numbers in region I. The same procedures using set B completes region III. Using set C completes region VII. Slide 2-39

40 Example: Constructing a Venn diagram for Three Sets continued The Venn diagram is then completed. U A I 1,8 IV II 2 4 III 5 V VI 3 VII B 6 7 C VIII Slide 2-40

41 De Morgan s Laws A pair of related theorems known as De Morgan s laws make it possible to change statements and formulas into more convenient forms. (A UB) = A I B (A IB) = A U B Slide 2-41

42 2.5 Applications of Sets

43 Example: Toothpaste Taste Test A drug company is considering manufacturing a new toothpaste. They are considering two flavors, regular and mint. In a sample of 120 people, it was found that 74 liked the regular, 62 liked the mint, and 35 liked both types. How many liked only the regular flavor? How many liked either one or the other or both? How many people did not like either flavor? Slide 2-43

44 Solution Begin by setting up a Venn diagram with sets A (regular flavor) and B (mint flavor). Since some people liked both flavors, the sets will overlap and the number who liked both with be placed in region II. 35 people liked both flavors. U Regular 35 Mint Slide 2-44

45 Solution continued Next, region I will refer to those who liked only the regular and region III will refer to those who liked only the mint. In order to get the number of people in each region, find the difference between all the people who liked each toothpaste and those who liked both = = 27 U Regular 39 regular only 35 both 27 mint only Mint Slide 2-45

46 Solution continued One or the other or both represents the UNION of the two sets. Therefore, = 101 people who liked one or the other or both. Slide 2-46

47 Solution continued Take the total number of people in the entire sample and subtract the number who liked one or the other or both. 19 people did not like either flavor. U 19 liked neither 74-35=39 Liked mint only 35 both 62-35=27 Liked mint only Regular Mint Slide 2-47

48 2.6 Infinite Sets

49 Infinite Sets An infinite set is a set that can be placed in a one-to-one correspondence with a proper subset of itself. These sets are unbounded. Slide 2-49

50 Example: The Set of Multiples of Four Show that it is an infinite set. {4, 8, 12, 16, 20,,4n, } Solution: We establish one-to-one correspondence between the counting numbers and a proper subset of itself. Given set: {4, 8, 12, 16, 20,, 4n, } Proper subset: {4, 8, 12, 16, 20,, 4n + 4, } Therefore, the given set is infinite. Slide 2-50

51 Countable Sets A set is countable if it is finite or if it can be placed in a one-to-one correspondence with the set of counting numbers. Any set that can be placed in a one-to-one correspondence with a set of counting numbers has cardinality aleph-null and is countable. Slide 2-51

Section 1.1. Inductive Reasoning. Copyright 2013, 2010, 2007, Pearson, Education, Inc.

Section 1.1. Inductive Reasoning. Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 1.1 Inductive Reasoning What You Will Learn Inductive and deductive reasoning processes 1.1-2 Natural Numbers The set of natural numbers is also called the set of counting numbers. N = {1, 2, 3,

More information

Section 1.1. Inductive Reasoning. Copyright 2013, 2010, 2007, Pearson, Education, Inc.

Section 1.1. Inductive Reasoning. Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 1.1 Inductive Reasoning What You Will Learn Inductive and deductive reasoning processes 1.1-2 Natural Numbers The set of natural numbers is also called the set of counting numbers. N = {1, 2, 3,

More information

Sets MAT231. Fall Transition to Higher Mathematics. MAT231 (Transition to Higher Math) Sets Fall / 31

Sets MAT231. Fall Transition to Higher Mathematics. MAT231 (Transition to Higher Math) Sets Fall / 31 Sets MAT231 Transition to Higher Mathematics Fall 2014 MAT231 (Transition to Higher Math) Sets Fall 2014 1 / 31 Outline 1 Sets Introduction Cartesian Products Subsets Power Sets Union, Intersection, Difference

More information

What is Set? Set Theory. Notation. Venn Diagram

What is Set? Set Theory. Notation. Venn Diagram What is Set? Set Theory Peter Lo Set is any well-defined list, collection, or class of objects. The objects in set can be anything These objects are called the Elements or Members of the set. CS218 Peter

More information

Review of Sets. Review. Philippe B. Laval. Current Semester. Kennesaw State University. Philippe B. Laval (KSU) Sets Current Semester 1 / 16

Review of Sets. Review. Philippe B. Laval. Current Semester. Kennesaw State University. Philippe B. Laval (KSU) Sets Current Semester 1 / 16 Review of Sets Review Philippe B. Laval Kennesaw State University Current Semester Philippe B. Laval (KSU) Sets Current Semester 1 / 16 Outline 1 Introduction 2 Definitions, Notations and Examples 3 Special

More information

CSC Discrete Math I, Spring Sets

CSC Discrete Math I, Spring Sets CSC 125 - Discrete Math I, Spring 2017 Sets Sets A set is well-defined, unordered collection of objects The objects in a set are called the elements, or members, of the set A set is said to contain its

More information

SET DEFINITION 1 elements members

SET DEFINITION 1 elements members SETS SET DEFINITION 1 Unordered collection of objects, called elements or members of the set. Said to contain its elements. We write a A to denote that a is an element of the set A. The notation a A denotes

More information

Math Week in Review #5

Math Week in Review #5 Math 141 Spring 2006 c Heather Ramsey Page 1 Math 141 - Week in Review #5 Section 4.1 - Simplex Method for Standard Maximization Problems A standard maximization problem is a linear programming problem

More information

CS100: DISCRETE STRUCTURES

CS100: DISCRETE STRUCTURES CS: DISCRETE STRUCTURES Computer Science Department Lecture : Set and Sets Operations (Ch2) Lecture Contents 2 Sets Definition. Some Important Sets. Notation used to describe membership in sets. How to

More information

COUNTING AND PROBABILITY

COUNTING AND PROBABILITY CHAPTER 9 COUNTING AND PROBABILITY Copyright Cengage Learning. All rights reserved. SECTION 9.3 Counting Elements of Disjoint Sets: The Addition Rule Copyright Cengage Learning. All rights reserved. Counting

More information

2.1 Symbols and Terminology

2.1 Symbols and Terminology 2.1 Symbols and Terminology A is a collection of objects or things. The objects belonging to the are called the, or. - : there is a way of determining for sure whether a particular item is an element of

More information

Set and Set Operations

Set and Set Operations Set and Set Operations Introduction A set is a collection of objects. The objects in a set are called elements of the set. A well defined set is a set in which we know for sure if an element belongs to

More information

Taibah University College of Computer Science & Engineering Course Title: Discrete Mathematics Code: CS 103. Chapter 2. Sets

Taibah University College of Computer Science & Engineering Course Title: Discrete Mathematics Code: CS 103. Chapter 2. Sets Taibah University College of Computer Science & Engineering Course Title: Discrete Mathematics Code: CS 103 Chapter 2 Sets Slides are adopted from Discrete Mathematics and It's Applications Kenneth H.

More information

Chapter 2: Sets. Diana Pell. In the roster method: elements are listed between braces, with commas between the elements

Chapter 2: Sets. Diana Pell. In the roster method: elements are listed between braces, with commas between the elements Chapter 2: Sets Diana Pell 2.1: The Nature of Sets Set: any collection of elements. Elements: objects of the set. In the roster method: elements are listed between braces, with commas between the elements

More information

SETS. Sets are of two sorts: finite infinite A system of sets is a set, whose elements are again sets.

SETS. Sets are of two sorts: finite infinite A system of sets is a set, whose elements are again sets. SETS A set is a file of objects which have at least one property in common. The objects of the set are called elements. Sets are notated with capital letters K, Z, N, etc., the elements are a, b, c, d,

More information

Introduction. Sets and the Real Number System

Introduction. Sets and the Real Number System Sets: Basic Terms and Operations Introduction Sets and the Real Number System Definition (Set) A set is a well-defined collection of objects. The objects which form a set are called its members or Elements.

More information

1.1 - Introduction to Sets

1.1 - Introduction to Sets 1.1 - Introduction to Sets Math 166-502 Blake Boudreaux Department of Mathematics Texas A&M University January 18, 2018 Blake Boudreaux (Texas A&M University) 1.1 - Introduction to Sets January 18, 2018

More information

2 Review of Set Theory

2 Review of Set Theory 2 Review of Set Theory Example 2.1. Let Ω = {1, 2, 3, 4, 5, 6} 2.2. Venn diagram is very useful in set theory. It is often used to portray relationships between sets. Many identities can be read out simply

More information

2. Sets. 2.1&2.2: Sets and Subsets. Combining Sets. c Dr Oksana Shatalov, Fall

2. Sets. 2.1&2.2: Sets and Subsets. Combining Sets. c Dr Oksana Shatalov, Fall c Dr Oksana Shatalov, Fall 2014 1 2. Sets 2.1&2.2: Sets and Subsets. Combining Sets. Set Terminology and Notation DEFINITIONS: Set is well-defined collection of objects. Elements are objects or members

More information

1.2 Venn Diagrams and Partitions

1.2 Venn Diagrams and Partitions 1.2 Venn Diagrams and Partitions Mark R. Woodard Furman U 2010 Mark R. Woodard (Furman U) 1.2 Venn Diagrams and Partitions 2010 1 / 9 Outline 1 Venn Diagrams 2 Partitions 3 Fundamentals of Counting Mark

More information

Lecture-12: Closed Sets

Lecture-12: Closed Sets and Its Examples Properties of Lecture-12: Dr. Department of Mathematics Lovely Professional University Punjab, India October 18, 2014 Outline Introduction and Its Examples Properties of 1 Introduction

More information

Math Week in Review #5. A proposition, or statement, is a declarative sentence that can be classified as either true or false, but not both.

Math Week in Review #5. A proposition, or statement, is a declarative sentence that can be classified as either true or false, but not both. Math 166 Fall 2006 c Heather Ramsey Page 1 Math 166 - Week in Review #5 Sections A.1 and A.2 - Propositions, Connectives, and Truth Tables A proposition, or statement, is a declarative sentence that can

More information

Introduction II. Sets. Terminology III. Definition. Definition. Definition. Example

Introduction II. Sets. Terminology III. Definition. Definition. Definition. Example Sets Slides by Christopher M. ourke Instructor: erthe Y. Choueiry Spring 2006 Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 1.6 1.7 of Rosen cse235@cse.unl.edu Introduction

More information

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Discrete Mathematics

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Discrete Mathematics About the Tutorial Discrete Mathematics is a branch of mathematics involving discrete elements that uses algebra and arithmetic. It is increasingly being applied in the practical fields of mathematics

More information

Math 110 FOUNDATIONS OF THE REAL NUMBER SYSTEM FOR ELEMENTARY AND MIDDLE SCHOOL TEACHERS

Math 110 FOUNDATIONS OF THE REAL NUMBER SYSTEM FOR ELEMENTARY AND MIDDLE SCHOOL TEACHERS 2-1Numeration Systems Hindu-Arabic Numeration System Tally Numeration System Egyptian Numeration System Babylonian Numeration System Mayan Numeration System Roman Numeration System Other Number Base Systems

More information

Algebraic Expressions

Algebraic Expressions P.1 Algebraic Expressions, Mathematical Models, and Real Numbers P.2 Exponents and Scientific Notation Objectives: Evaluate algebraic expressions, find intersection and unions of sets, simplify algebraic

More information

Section Sets and Set Operations

Section Sets and Set Operations Section 6.1 - Sets and Set Operations Definition: A set is a well-defined collection of objects usually denoted by uppercase letters. Definition: The elements, or members, of a set are denoted by lowercase

More information

2.2 Set Operations. Introduction DEFINITION 1. EXAMPLE 1 The union of the sets {1, 3, 5} and {1, 2, 3} is the set {1, 2, 3, 5}; that is, EXAMPLE 2

2.2 Set Operations. Introduction DEFINITION 1. EXAMPLE 1 The union of the sets {1, 3, 5} and {1, 2, 3} is the set {1, 2, 3, 5}; that is, EXAMPLE 2 2.2 Set Operations 127 2.2 Set Operations Introduction Two, or more, sets can be combined in many different ways. For instance, starting with the set of mathematics majors at your school and the set of

More information

Calculating Cardinalities

Calculating Cardinalities Math Circle Monday March 20, 2017 Calculating Cardinalities Martin Zeman To say that a set A has 5 elements means that we can write the elements of A as a list a 1, a 2, a 3, a 4, a 5 in a way that (a)

More information

The Intersection of Two Sets

The Intersection of Two Sets Venn Diagrams There are times when it proves useful or desirable for us to represent sets and the relationships among them in a visual manner. This can be beneficial for a variety of reasons, among which

More information

2.1 Sets 2.2 Set Operations

2.1 Sets 2.2 Set Operations CSC2510 Theoretical Foundations of Computer Science 2.1 Sets 2.2 Set Operations Introduction to Set Theory A set is a structure, representing an unordered collection (group, plurality) of zero or more

More information

Figure 1: From Left to Right, General Venn Diagrams for One, Two, and Three Sets

Figure 1: From Left to Right, General Venn Diagrams for One, Two, and Three Sets 2.3. VENN DIAGRAMS & SET OPERATIONS In this section we introduce Venn diagrams and define four basic operations on sets. We also present some important properties related to these operations. Venn Diagrams

More information

Slides for Faculty Oxford University Press All rights reserved.

Slides for Faculty Oxford University Press All rights reserved. Oxford University Press 2013 Slides for Faculty Assistance Preliminaries Author: Vivek Kulkarni vivek_kulkarni@yahoo.com Outline Following topics are covered in the slides: Basic concepts, namely, symbols,

More information

EDAA40 At home exercises 1

EDAA40 At home exercises 1 EDAA40 At home exercises 1 1. Given, with as always the natural numbers starting at 1, let us define the following sets (with iff ): Give the number of elements in these sets as follows: 1. 23 2. 6 3.

More information

COLLEGE ALGEBRA. Intro, Sets of Real Numbers, & Set Theory

COLLEGE ALGEBRA. Intro, Sets of Real Numbers, & Set Theory COLLEGE LGER y: Sister Mary Rebekah www.survivormath.weebly.com Cornell-Style Fill in the lank Notes and Teacher s Key Intro, Sets of Real Numbers, & Set Theory 1 Vocabulary Workshop SIMPLIFY Expressions

More information

Pre-Calc Unit 1 Lesson 1

Pre-Calc Unit 1 Lesson 1 Pre-Calc Unit 1 Lesson 1 The Number System and Set Theory Learning Goal: IWBAT write subsets of the rational, real, and complex number system using set notation and apply set operations on sets of numbers.

More information

1-1 Sets of Numbers. Warm Up Lesson Presentation Lesson Quiz. Holt Algebra 2

1-1 Sets of Numbers. Warm Up Lesson Presentation Lesson Quiz. Holt Algebra 2 1-1 Sets of Numbers Warm Up Lesson Presentation Lesson Quiz Warm Up Write in decimal form. 1. 4.5 2. 3. Write as a decimal approximation. 1.414 Order from least to greatest. 4. 10, 5, 10, 0, 5 10, 5, 0,

More information

Objective. Vocabulary. 1.1: Sets of Numbers. 1-1 Sets of Numbers

Objective. Vocabulary. 1.1: Sets of Numbers. 1-1 Sets of Numbers Starter 1.1 Write in decimal form. 1. 4.5 2. 3. Write as a decimal approximation. 1.414 Order from least to greatest. 4. 10, 5, 10, 0, 5 10, 5, 0, 5, 10 5. 0.1, 1, 1.1, 0.01, 0.11, 0.009 0.009, 0.01, 0.1,

More information

TOPICS. Integers Properties of addition and. Rational Numbers Need for rational numbers. Exponents or Powers Introduction to Exponents or

TOPICS. Integers Properties of addition and. Rational Numbers Need for rational numbers. Exponents or Powers Introduction to Exponents or TOPICS DETAILS Integers Properties of addition and subtraction of integers Multiplication of integers Properties of multiplication of integers Division of integers Properties of division of integers Introduction

More information

The set consisting of all natural numbers that are in A and are in B is the set f1; 3; 5g;

The set consisting of all natural numbers that are in A and are in B is the set f1; 3; 5g; Chapter 5 Set Theory 5.1 Sets and Operations on Sets Preview Activity 1 (Set Operations) Before beginning this section, it would be a good idea to review sets and set notation, including the roster method

More information

Lecture : Topological Space

Lecture : Topological Space Example of Lecture : Dr. Department of Mathematics Lovely Professional University Punjab, India October 18, 2014 Outline Example of 1 2 3 Example of 4 5 6 Example of I Topological spaces and continuous

More information

1 of 7 7/15/2009 3:40 PM Virtual Laboratories > 1. Foundations > 1 2 3 4 5 6 7 8 9 1. Sets Poincaré's quote, on the title page of this chapter could not be more wrong (what was he thinking?). Set theory

More information

11,23,35,47 B) 1 is a multiple of 12

11,23,35,47 B) 1 is a multiple of 12 Where applicable, indicates that none of the above answers is correct. 1. Let X x x 1 is a multiple of 3 and 5 and 1 is a multiple of 4 Find XY. Y y y y. 11,23,35,47 B) 1 is a multiple of 12 A) z z C)

More information

2.8. Connectedness A topological space X is said to be disconnected if X is the disjoint union of two non-empty open subsets. The space X is said to

2.8. Connectedness A topological space X is said to be disconnected if X is the disjoint union of two non-empty open subsets. The space X is said to 2.8. Connectedness A topological space X is said to be disconnected if X is the disjoint union of two non-empty open subsets. The space X is said to be connected if it is not disconnected. A subset of

More information

1 Sets, Fields, and Events

1 Sets, Fields, and Events CHAPTER 1 Sets, Fields, and Events B 1.1 SET DEFINITIONS The concept of sets play an important role in probability. We will define a set in the following paragraph. Definition of Set A set is a collection

More information

Figure 1.1: This is an illustration of a generic set and its elements.

Figure 1.1: This is an illustration of a generic set and its elements. Chapter 1 Mathematical Review et theory is now generally accepted as the foundation of modern mathematics, and it plays an instrumental role in the treatment of probability. Unfortunately, a simple description

More information

CHAPTER 1 SETS AND PROBLEM SOLVING

CHAPTER 1 SETS AND PROBLEM SOLVING CHAPTER 1 SETS AND PROBLEM SOLVING EXERCISE 1.l Word problems, sometimes called "story problems" or "statement problems" are at the heart of math anxiety. So says Sheila Tobias, author of Overcoming Math

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Final exam The final exam is Saturday December 16 11:30am-2:30pm. Lecture A will take the exam in Lecture B will take the exam

More information

SECONDARY DRAFT SYLLABUS. 2. Representation of functions. 3. Types of functions. 4. Composition of functions (two and three)

SECONDARY DRAFT SYLLABUS. 2. Representation of functions. 3. Types of functions. 4. Composition of functions (two and three) et et et CLASS IX Topic :Set Language et et 1. Describing and representing sets SECONDARY DRAFT SYLLABUS Able to describe a set in Descriptive, Set- builder and roster forms and through Venn diagram. Use

More information

Chapter 3. Set Theory. 3.1 What is a Set?

Chapter 3. Set Theory. 3.1 What is a Set? Chapter 3 Set Theory 3.1 What is a Set? A set is a well-defined collection of objects called elements or members of the set. Here, well-defined means accurately and unambiguously stated or described. Any

More information

Sets 1. The things in a set are called the elements of it. If x is an element of the set S, we say

Sets 1. The things in a set are called the elements of it. If x is an element of the set S, we say Sets 1 Where does mathematics start? What are the ideas which come first, in a logical sense, and form the foundation for everything else? Can we get a very small number of basic ideas? Can we reduce it

More information

Discrete Mathematics

Discrete Mathematics Discrete Mathematics Lecture 2: Basic Structures: Set Theory MING GAO DaSE@ ECNU (for course related communications) mgao@dase.ecnu.edu.cn Sep. 18, 2017 Outline 1 Set Concepts 2 Set Operations 3 Application

More information

Outline. CISC 1100/1400 Structures of Comp. Sci./Discrete Structures Chapter 1 Sets. Sets. Enumerating the elements of a set

Outline. CISC 1100/1400 Structures of Comp. Sci./Discrete Structures Chapter 1 Sets. Sets. Enumerating the elements of a set Outline CISC 1100/1400 Structures of Comp. Sci./Discrete Structures Chapter 1 Sets rthur G. Werschulz Fordham University Department of Computer and Information Sciences Copyright rthur G. Werschulz, 2017.

More information

Topology Homework 3. Section Section 3.3. Samuel Otten

Topology Homework 3. Section Section 3.3. Samuel Otten Topology Homework 3 Section 3.1 - Section 3.3 Samuel Otten 3.1 (1) Proposition. The intersection of finitely many open sets is open and the union of finitely many closed sets is closed. Proof. Note that

More information

Chapter 1: Thinking Critically Lecture notes Math 1030 Section C

Chapter 1: Thinking Critically Lecture notes Math 1030 Section C Section C.1: Sets and Venn Diagrams Definition of a set A set is a collection of objects and its objects are called members. Ex.1 Days of the week. Ex.2 Students in this class. Ex.3 Letters of the alphabet.

More information

Sets. X. Zhang Dept. of Computer & Information Sciences Fordham University

Sets. X. Zhang Dept. of Computer & Information Sciences Fordham University Sets! X. Zhang Dept. of Computer & Information Sciences Fordham University 1 Outline on sets! Basics!! Specify a set by enumerating all elements!! Notations!! Cardinality!! Venn Diagram!! Relations on

More information

Section 6.3: Further Rules for Counting Sets

Section 6.3: Further Rules for Counting Sets Section 6.3: Further Rules for Counting Sets Often when we are considering the probability of an event, that event is itself a union of other events. For example, suppose there is a horse race with three

More information

Hillel Academy. Grade 9 Mathematics End of Year Study Guide September June 2013

Hillel Academy. Grade 9 Mathematics End of Year Study Guide September June 2013 Hillel Academy Grade 9 Mathematics End of Year Study Guide September 2012 - June 2013 Examination Duration Date The exam consists of 2 papers: Paper 1: Paper 2: Short Response No Calculators Allowed Structured

More information

Computer Science and Mathematics. Part I: Fundamental Mathematical Concepts Winfried Kurth

Computer Science and Mathematics. Part I: Fundamental Mathematical Concepts Winfried Kurth Computer Science and Mathematics Part I: Fundamental Mathematical Concepts Winfried Kurth http://www.uni-forst.gwdg.de/~wkurth/csm17_home.htm 1. Mathematical Logic Propositions - can be either true or

More information

Lecture 15: The subspace topology, Closed sets

Lecture 15: The subspace topology, Closed sets Lecture 15: The subspace topology, Closed sets 1 The Subspace Topology Definition 1.1. Let (X, T) be a topological space with topology T. subset of X, the collection If Y is a T Y = {Y U U T} is a topology

More information

Math 395: Topology. Bret Benesh (College of Saint Benedict/Saint John s University)

Math 395: Topology. Bret Benesh (College of Saint Benedict/Saint John s University) Math 395: Topology Bret Benesh (College of Saint Benedict/Saint John s University) October 30, 2012 ii Contents Acknowledgments v 1 Topological Spaces 1 2 Closed sets and Hausdorff spaces 7 iii iv CONTENTS

More information

Sets and Venn Diagrams Quiz 2 [101 marks]

Sets and Venn Diagrams Quiz 2 [101 marks] Sets and Venn Diagrams Quiz 2 [101 marks] A school offers three activities, basketball (B), choir (C) and drama (D). Every student must participate in at least one activity. 16 students play basketball

More information

COMP Logic for Computer Scientists. Lecture 17

COMP Logic for Computer Scientists. Lecture 17 COMP 1002 Logic for Computer Scientists Lecture 17 5 2 J Puzzle: the barber In a certain village, there is a (male) barber who shaves all and only those men of the village who do not shave themselves.

More information

[Ch 6] Set Theory. 1. Basic Concepts and Definitions. 400 lecture note #4. 1) Basics

[Ch 6] Set Theory. 1. Basic Concepts and Definitions. 400 lecture note #4. 1) Basics 400 lecture note #4 [Ch 6] Set Theory 1. Basic Concepts and Definitions 1) Basics Element: ; A is a set consisting of elements x which is in a/another set S such that P(x) is true. Empty set: notated {

More information

Intersection of sets *

Intersection of sets * OpenStax-CNX module: m15196 1 Intersection of sets * Sunil Kumar Singh This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0 We have pointed out that a set

More information

9.5 Equivalence Relations

9.5 Equivalence Relations 9.5 Equivalence Relations You know from your early study of fractions that each fraction has many equivalent forms. For example, 2, 2 4, 3 6, 2, 3 6, 5 30,... are all different ways to represent the same

More information

Mathematically Rigorous Software Design Review of mathematical prerequisites

Mathematically Rigorous Software Design Review of mathematical prerequisites Mathematically Rigorous Software Design 2002 September 27 Part 1: Boolean algebra 1. Define the Boolean functions and, or, not, implication ( ), equivalence ( ) and equals (=) by truth tables. 2. In an

More information

Algorithm. Algorithm Analysis. Algorithm. Algorithm. Analyzing Sorting Algorithms (Insertion Sort) Analyzing Algorithms 8/31/2017

Algorithm. Algorithm Analysis. Algorithm. Algorithm. Analyzing Sorting Algorithms (Insertion Sort) Analyzing Algorithms 8/31/2017 8/3/07 Analysis Introduction to Analysis Model of Analysis Mathematical Preliminaries for Analysis Set Notation Asymptotic Analysis What is an algorithm? An algorithm is any well-defined computational

More information

Section 1.7 Sequences, Summations Cardinality of Infinite Sets

Section 1.7 Sequences, Summations Cardinality of Infinite Sets Section 1.7 Sequences, Summations Cardinality of Infinite Sets Definition: A sequence is a function from a subset of the natural numbers (usually of the form {0, 1, 2,... } to a set S. Note: the sets and

More information

Solution: It may be helpful to list out exactly what is in each of these events:

Solution: It may be helpful to list out exactly what is in each of these events: MATH 5010(002) Fall 2017 Homework 1 Solutions Please inform your instructor if you find any errors in the solutions. 1. You ask a friend to choose an integer N between 0 and 9. Let A = {N 5}, B = {3 N

More information

Dr. Relja Vulanovic Professor of Mathematics Kent State University at Stark c 2008

Dr. Relja Vulanovic Professor of Mathematics Kent State University at Stark c 2008 MATH-LITERACY MANUAL Dr. Relja Vulanovic Professor of Mathematics Kent State University at Stark c 2008 1 Real Numbers 1.1 Sets 1 1.2 Constants and Variables; Real Numbers 7 1.3 Operations with Numbers

More information

MAT 090 Brian Killough s Instructor Notes Strayer University

MAT 090 Brian Killough s Instructor Notes Strayer University MAT 090 Brian Killough s Instructor Notes Strayer University Success in online courses requires self-motivation and discipline. It is anticipated that students will read the textbook and complete sample

More information

Section 2.4 Sequences and Summations

Section 2.4 Sequences and Summations Section 2.4 Sequences and Summations Definition: A sequence is a function from a subset of the natural numbers (usually of the form {0, 1, 2,... } to a set S. Note: the sets and {0, 1, 2, 3,..., k} {1,

More information

Sets. Mukulika Ghosh. Fall Based on slides by Dr. Hyunyoung Lee

Sets. Mukulika Ghosh. Fall Based on slides by Dr. Hyunyoung Lee Sets Mukulika Ghosh Fall 2018 Based on slides by Dr. Hyunyoung Lee Sets Sets A set is an unordered collection of objects, called elements, without duplication. We write a A to denote that a is an element

More information

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions.

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions. THREE LECTURES ON BASIC TOPOLOGY PHILIP FOTH 1. Basic notions. Let X be a set. To make a topological space out of X, one must specify a collection T of subsets of X, which are said to be open subsets of

More information

CSE 20 DISCRETE MATH. Winter

CSE 20 DISCRETE MATH. Winter CSE 20 DISCRETE MATH Winter 2017 http://cseweb.ucsd.edu/classes/wi17/cse20-ab/ Final exam The final exam is Saturday March 18 8am-11am. Lecture A will take the exam in GH 242 Lecture B will take the exam

More information

Fundamental Mathematical Concepts Math 107A. Professor T. D. Hamilton

Fundamental Mathematical Concepts Math 107A. Professor T. D. Hamilton Fundamental Mathematical Concepts Math 107A Professor T. D. Hamilton January 17, 2007 2 Contents 1 Set Theory 7 What is a set?.......................................... 7 Describing a Set.........................................

More information

Generell Topologi. Richard Williamson. May 27, 2013

Generell Topologi. Richard Williamson. May 27, 2013 Generell Topologi Richard Williamson May 27, 2013 1 1 Tuesday 15th January 1.1 Topological spaces definition, terminology, finite examples Definition 1.1. A topological space is a pair (X, O) of a set

More information

Math 202 Test Problem Solving, Sets, and Whole Numbers 19 September, 2008

Math 202 Test Problem Solving, Sets, and Whole Numbers 19 September, 2008 Math 202 Test Problem Solving, Sets, and Whole Numbers 19 September, 2008 Ten questions, each worth the same amount. Complete six of your choice. I will only grade the first six I see. Make sure your name

More information

The Size of the Cantor Set

The Size of the Cantor Set The Size of the Cantor Set Washington University Math Circle November 6, 2016 In mathematics, a set is a collection of things called elements. For example, {1, 2, 3, 4}, {a,b,c,...,z}, and {cat, dog, chicken}

More information

1.7 The Heine-Borel Covering Theorem; open sets, compact sets

1.7 The Heine-Borel Covering Theorem; open sets, compact sets 1.7 The Heine-Borel Covering Theorem; open sets, compact sets This section gives another application of the interval halving method, this time to a particularly famous theorem of analysis, the Heine Borel

More information

Review of Operations on the Set of Real Numbers

Review of Operations on the Set of Real Numbers 1 Review of Operations on the Set of Real Numbers Before we start our jurney through algebra, let us review the structure of the real number system, properties of four operations, order of operations,

More information

A set with only one member is called a SINGLETON. A set with no members is called the EMPTY SET or 2 N

A set with only one member is called a SINGLETON. A set with no members is called the EMPTY SET or 2 N Mathematical Preliminaries Read pages 529-540 1. Set Theory 1.1 What is a set? A set is a collection of entities of any kind. It can be finite or infinite. A = {a, b, c} N = {1, 2, 3, } An entity is an

More information

Topology 550A Homework 3, Week 3 (Corrections: February 22, 2012)

Topology 550A Homework 3, Week 3 (Corrections: February 22, 2012) Topology 550A Homework 3, Week 3 (Corrections: February 22, 2012) Michael Tagare De Guzman January 31, 2012 4A. The Sorgenfrey Line The following material concerns the Sorgenfrey line, E, introduced in

More information

Examination Duration Date

Examination Duration Date Hillel Academy High School Grade 9 Mathematics End of Year Study Guide September2013- June 2014 Examination Duration Date The exam consists of 2 papers: Paper 1: Short Response Calculator Paper 2:Structured

More information

WUCT121. Discrete Mathematics. Graphs

WUCT121. Discrete Mathematics. Graphs WUCT121 Discrete Mathematics Graphs WUCT121 Graphs 1 Section 1. Graphs 1.1. Introduction Graphs are used in many fields that require analysis of routes between locations. These areas include communications,

More information

LECTURE NOTES ON SETS

LECTURE NOTES ON SETS LECTURE NOTES ON SETS PETE L. CLARK Contents 1. Introducing Sets 1 2. Subsets 5 3. Power Sets 5 4. Operations on Sets 6 5. Families of Sets 8 6. Partitions 10 7. Cartesian Products 11 1. Introducing Sets

More information

This Lecture. We will first introduce some basic set theory before we do counting. Basic Definitions. Operations on Sets.

This Lecture. We will first introduce some basic set theory before we do counting. Basic Definitions. Operations on Sets. Sets A B C This Lecture We will first introduce some basic set theory before we do counting. Basic Definitions Operations on Sets Set Identities Defining Sets Definition: A set is an unordered collection

More information

9/19/12. Why Study Discrete Math? What is discrete? Sets (Rosen, Chapter 2) can be described by discrete math TOPICS

9/19/12. Why Study Discrete Math? What is discrete? Sets (Rosen, Chapter 2) can be described by discrete math TOPICS What is discrete? Sets (Rosen, Chapter 2) TOPICS Discrete math Set Definition Set Operations Tuples Consisting of distinct or unconnected elements, not continuous (calculus) Helps us in Computer Science

More information

Topology I Test 1 Solutions October 13, 2008

Topology I Test 1 Solutions October 13, 2008 Topology I Test 1 Solutions October 13, 2008 1. Do FIVE of the following: (a) Give a careful definition of connected. A topological space X is connected if for any two sets A and B such that A B = X, we

More information

Let A(x) be x is an element of A, and B(x) be x is an element of B.

Let A(x) be x is an element of A, and B(x) be x is an element of B. Homework 6. CSE 240, Fall, 2014 Due, Tuesday October 28. Can turn in at the beginning of class, or earlier in the mailbox labelled Pless in Bryan Hall, room 509c. Practice Problems: 1. Given two arbitrary

More information

Question7.How many proper subsets in all are there if a set contains (a) 7 elements (b) 4 elements

Question7.How many proper subsets in all are there if a set contains (a) 7 elements (b) 4 elements Question1. Write the following sets in roster form: 1. A={z: z=3x-8, x W and x0 and x is a multiple of 3 less than 100} Question2. Write the following

More information

11 Sets II Operations

11 Sets II Operations 11 Sets II Operations Tom Lewis Fall Term 2010 Tom Lewis () 11 Sets II Operations Fall Term 2010 1 / 12 Outline 1 Union and intersection 2 Set operations 3 The size of a union 4 Difference and symmetric

More information

Abe Mirza Test 1 Review & Practice Math 1. List all the elements for: 1. B C 2. B A 3. C B. Draw the Venn diagram and shade the proper region for,

Abe Mirza Test 1 Review & Practice Math 1. List all the elements for: 1. B C 2. B A 3. C B. Draw the Venn diagram and shade the proper region for, Abe Mirza Test 1 Review & Practice Math 1 Let = {,,, a c e g, k, m, p,} s A= {,,,} a c e k B = {, ck, ps,} = {, k m, p} List all the elements for: 1. B 1) 2. B A 2) 3. B 3) 4. A ( B ) 4) 5. A ( B ) 5)

More information

Cardinality of Sets. Washington University Math Circle 10/30/2016

Cardinality of Sets. Washington University Math Circle 10/30/2016 Cardinality of Sets Washington University Math Circle 0/0/06 The cardinality of a finite set A is just the number of elements of A, denoted by A. For example, A = {a, b, c, d}, B = {n Z : n } = {,,, 0,,,

More information

Topology notes. Basic Definitions and Properties.

Topology notes. Basic Definitions and Properties. Topology notes. Basic Definitions and Properties. Intuitively, a topological space consists of a set of points and a collection of special sets called open sets that provide information on how these points

More information

Notes on Topology. Andrew Forrester January 28, Notation 1. 2 The Big Picture 1

Notes on Topology. Andrew Forrester January 28, Notation 1. 2 The Big Picture 1 Notes on Topology Andrew Forrester January 28, 2009 Contents 1 Notation 1 2 The Big Picture 1 3 Fundamental Concepts 2 4 Topological Spaces and Topologies 2 4.1 Topological Spaces.........................................

More information

Combinatorial properties and n-ary topology on product of power sets

Combinatorial properties and n-ary topology on product of power sets Combinatorial properties and n-ary topology on product of power sets Seethalakshmi.R 1, Kamaraj.M 2 1 Deaprtmant of mathematics, Jaya collage of arts and Science, Thiruninravuir - 602024, Tamilnadu, India.

More information

Logic and Discrete Mathematics. Section 2.5 Equivalence relations and partitions

Logic and Discrete Mathematics. Section 2.5 Equivalence relations and partitions Logic and Discrete Mathematics Section 2.5 Equivalence relations and partitions Slides version: January 2015 Equivalence relations Let X be a set and R X X a binary relation on X. We call R an equivalence

More information

The Language of Sets and Functions

The Language of Sets and Functions MAT067 University of California, Davis Winter 2007 The Language of Sets and Functions Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (January 7, 2007) 1 The Language of Sets 1.1 Definition and Notation

More information