Interactive Ray Tracing: Higher Memory Coherence

Size: px
Start display at page:

Download "Interactive Ray Tracing: Higher Memory Coherence"

Transcription

1 Interactive Ray Tracing: Higher Memory Coherence Dinesh Manocha (UNC Chapel Hill) Sung-Eui Yoon (Lawrence Livermore Labs)

2 Interactive Ray Tracing Ray tracing is naturally sub-linear with scene size Ray tracing naturally supports good shading Ray tracing maps well to multi-core architectures [Shirley 2006]

3 Interactive Ray Tracing Ray tracing is naturally sub-linear with scene size Ray tracing naturally supports good shading Ray tracing maps well to multi-core architectures Moore s Law is a natural boon for ray tracing: 2015 prediction -> 2048^2 with 16 samples per pixel [Shirley 2006]

4 Interactive Ray Tracing Ray tracing is natually sub-linear with scene size Ray tracing naturally supports good shading Ray tracing maps well to multi-core architectures Moore s Law is a natural boon for ray tracing: 2015 prediction -> 2048^2 with 16 samples per pixel But.

5 Low Growth Rate of Memory Bandwidth Growth rate during Disk access speed RAM access speed CPU speed Processor speed improvements are not sufficient Courtesy:

6 Applications need to have high memory coherence Memory hierarchies

7 One Driving Application: Massive models Model: geometric representation of object Many sources: Scientific simulation Scanned objects CAD

8 Massive models: Memory Overhead Size: Tens or hundreds of millions of triangles (previous slide: 100M, 372M, 82M) that s 13GB just raw data! Datasets with billions of polygons are becoming available Naïve rendering is not fast enough Still want to display in real time

9 Rasterization Standard method for rendering Draw all triangles on a raster:

10 Rasterization Advantage: Use graphics hardware / GPUs (fast, growing faster than Moore s Law) 1-2 orders of magnitude faster than ray tracing Disadvantages: Local illumination Performance ~ linear to # triangles

11 Rasterization Advantage: Use graphics hardware / GPUs (fast, growing faster than Moore s Law) 1-2 orders of magnitude faster than ray tracing Disadvantages: Local illumination Performance ~ linear to # triangles Improved algorithms for sub-linear performance

12 Rasterization Current GPUs can render M triangles per second

13 Rasterization Current GPUs can render M triangles per second Assumes the triangles are in GPU memory

14 Rasterization Current GPUs can render M triangles per second Assumes the triangles are in GPU memory CPU-GPU bandwidth is a limitation

15 Rasterization Current GPUs can render M triangles per second Assumes the triangles are in GPU memory CPU-GPU bandwidth is a limitation Real-time rasterization of massive model becomes a data management problem

16 Rasterization Current GPUs can render M triangles per second Assumes the triangles are in GPU memory CPU-GPU bandwidth is a limitation Real-time rasterization of massive model becomes a data management problem Deliver the right set of triangles to the GPU for each frame

17 Rasterization: Acceleration Use multi-resolution representations Static LODs View-dependent rendering Visibility and occlusion culling Out-of-core rendering

18 Rasterization: Acceleration Use multi-resolution representations Static LODs View-dependent rendering Visibility and occlusion culling Out-of-core rendering [Hundreds of papers]

19 Rasterization: Acceleration Use multi-resolution representations Static LODs View-dependent rendering Visibility and occlusion culling Out-of-core rendering Develop an integrated solution!

20 Towards Scale-able View-Dependent Rendering View-dependent rendering Uses dynamic simplification New multi-resolution hierarchy (CHPM) Occlusion culling using BVHs Out-of-core rendering Improved layouts for high cache throughput Integrate with low error shadow maps [Lloyd et al. 2006] [Yoon et al. 04, Yoon et al. 2005]

21 Video Demonstration Quick-VDR System

22

23

24 Interactive View-Dependent Shadow Generation Video

25 Ray Tracing Well studied for 25+ years 1-2 orders of magnitude slower than rasterization

26 Ray Tracing Well studied for 25+ years 1-2 orders of magnitude slower than rasterization But: asymptotic performance ~ logarithmic

27 Ray Tracing Well studied for 25+ years 1-2 orders of magnitude slower than rasterization But: asymptotic performance ~ logarithmic Good choice for massive models?

28 Ray Tracing for Massive Models Logarithmic asymptotic behavior Very useful for dealing with massive models Mainly due to its hierarchical data structures

29 Ray Tracing for Massive Models Logarithmic asymptotic behavior Very useful for dealing with massive models Mainly due to its hierarchical data structures BUT: Observed only in in-core datasets

30 Ray Tracing: Performance Measured with 2GB main memory Render time (log scale) Memory thrashing! Working set Size 2GB 2GB Model complexity (M tri) - log scale

31 Low Growth Rate of Memory Bandwidth Growth rate during Disk access speed RAM access speed CPU speed Recent hardware improvements may not provide an efficient solution to our problem! Courtesy:

32 Ray Coherence Techniques Assume coherences between rays Works well with CAD or architectural models Primary rays and some secondary rays Highly-tessellated models Not much coherence between rays Viewpoint Image plane Small triangles Rays per each pixel

33 Issues Design appropriate hierarchical representations: Should avoid access to lower levels in the tree Access should be coherent

34 Incoherent Memory Accesses Model with 370M triangles Assuming 512x512 resolution Hundreds of triangle per pixel At most <1% of triangles visible Each triangle likely in different area of memory Scan of Michelangelo s St.Matthew:

35 Our approach Add levels-of-detail to ray tracing Main benefit: Improved memory coherence

36 Our approach Add levels-of-detail to ray tracing Main benefit: Improved memory coherence LOD: simplified versions of geometry Selection according to LOD metric Use ideas from rasterization literature rasterzation: selection per object ray tracing: selection per ray [Yoon et al. 2006]

37 LOD-based Ray Tracing: Issues Compact and simple to compute LOD can be considered for each node and ray Drastic simplification Factor of two simplification gives only one level reduction for tree traversal High quality and interactive rendering Error should be controllable

38 Our approach R-LODs Highly integrated with kd-tree [Wald et al. 05] Can also be integrated with BVHs Simple but fast LOD metric Works with shadows, reflections Integrates ray and cache coherences

39 Outline LOD-based ray tracing Results

40 Outline LOD-based ray tracing Results

41 Ray Tracing: Performance Measured with 2GB main memory Render time (log scale) Memory thrashing! Working set size 2GB Model complexity (M tri) - log scale

42 Ray Tracing: Performance Achieved up to three order of magnitude speedup! Render time (log scale) Working set size Model complexity (M tri) - log scale

43 Real-time Captured Video St. Matthew Model 512 by 512 and 2x2 super-sampling, 4 pixels-of-error

44 Related Work Interactive ray tracing LOD and out-of-core techniques LOD-based ray tracing

45 Interactive Ray Tracing Ray coherences [Heckbert and Hanrahan 84, Wald et al. 01, Reshetov et al. 05] Parallel computing [Parker et al. 99, DeMarle et al. 04, Dietrich et al. 05] Hardware acceleration [Purcell et al. 02, Schmittler et al. 04, Woop et al. 05] Large dataset [Pharr et al. 97, Wald et al. 04]

46 LOD and Out-of-Core Widely researched Techniques [Luebke et al. 02, Chiang et al. 03] LOD methods combined with out-of-core techniques Points clouds [Rusinkiewicz and Levoy 00] Regular meshes [Hwa et al. 04, Losasso and Hoppe 04] General meshes [Lindstrom 03, Cignoni et al. 04, Yoon et al. 04, Gobbetti and Marton 05]

47 LOD Methods for Rasterization LOD selection difference LOD section for object LOD selection for ray (Culling or LOD) hierarchy difference Coarse-grained hierarchy for rasterization Fine-grained hierarchy for ray tracing Not clear whether LOD techniques for rasterization is applicable to ray tracing

48 LOD-based Ray Tracing Ray differentials [Igehy 99] Subdivision meshes [Christensen et al. 03, Stoll et al. 06] Point clouds [Wand and Straβer 03] Viewpoint Image plane Footprint size of ray Ray beam for one pixel

49 Outline LOD-based ray tracing R-LOD representation LOD selection LOD and layout computations Results

50 Outline LOD-based ray tracing R-LOD representation LOD selection LOD and layout computations Results

51 R-LOD Representation Tightly integrated with kd-nodes A plane, material attributes, and surface deviation Rays kd-node No intersection Intersection Normal Plane Valid extent of the plane

52 LOD-based Runtime Traversal Modification of efficient kd-tree traversal [Wald 04] Traverse, evaluate metric at each node If satisfies, intersect with plane instead if it hits, we re done if not, go back up, try other sub tree In any case: don t need to go deeper!

53 Properties of R-LODs Compact and efficient LOD representation Add only 4 bytes to (8 bytes) kd-node Drastic simplification Useful for performance improvement

54 Properties of R-LODs Error-controllable LOD rendering Error is measured in a screen-space in terms of pixels-of-error (PoE) Provides interactive rendering framework

55 Outline LOD-based ray tracing R-LOD representation LOD selection LOD and layout computations Results

56 Two Main Design Criteria for LOD Metric Controllability of visual errors Efficiency LOD metric can be evaluated with many nodes for every single ray More than tens of million times evaluation

57 Visual Artifacts Visibility difference Illumination difference Path difference for secondary rays Surface deviation Projected area Curvature difference LODs Original mesh View direction Ray with original mesh Ray with LODs Image plane

58 R-LOD Error Metric Consider two factors Projected screen-space area of a kd-node Surface deviation

59 Conservative Projection Method Measures the screen-space area affected by using an R-LOD LOD metric: Image plane? C (B) d min > R Viewpoint B { d min R kd-node PoE error bound One ray beam

60 R-LODs with Different PoE Values PoE: Original (512x512, no anti-aliasing)

61 R-LODs with Different PoE Values PoE: Original x512 image resolution

62 LOD Metric for Secondary Rays Applicable to any linear transformation Shadow Planar reflection Not applicable to non-linear transformation Refraction and non-planar reflection Uses more general, but expensive ray differentials [Igehy 99]

63 C 0 Discontinuity between R- LODs Ray Possible solutions Posing dependencies [Lindstrom 03, Hwa et al. 04, Yoon et al. 04, Cignoni et al. 05] Implicit surfaces [Wald and Seidel 05]

64 Expansion of R-LODs Ray Expansion of the extent of the plane Inspired by hole-free point clouds rendering [Kalaiah and Varshney 03] A function of the surface deviation (20% of the surface deviation)

65 Impact of Expansions of R- LODs Hole Before expansion After expansion Original model PoE = 5 at 512 by 512

66 Outline LOD-based ray tracing R-LOD representation LOD selection LOD and layout computations Results

67 R-LOD Construction Principal component analysis (PCA) Compute the covariance matrix for the plane of R-LODs Normal (= Eigenvector) Hierarchical PCA computation Has linear time complexity Accesses the original data only one time with virtually no memory overhead

68 Ray Coherence Using LOD improve the utilization of SIMD functionality Maintain spatial coherence between rays Maintain ray groups bigger

69 Cache Coherence Cache misses can be a major bottleneck Especially for massive models Use cache-oblivious layouts [Yoon and Manocha 06, Yoon et al. 05] Works well with various caches (L1, L2, memory, disk) Does not require any code modification 10% ~ 60% improvement for LOD-based ray tracer 3X improvement for ray tracing, collision detection, GPUbased rendering, iso-surface extraction

70 Layout Computation vb va vc vd Input graph (weights) Multilevel optimization va vb vd vc Cache-oblivious metric Local permutations Result 1D layout The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

71 OpenCCL The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

72 Specialization to kd-trees and BVHs What is an input graph? Hierarchy itself? Parent-child and spatial localities Implicitly considered given the input hierarchy Weights Indicates coherence levels between two nodes Computed based on geometric relationships The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

73 Probability Function for Layout Computation How much a node is likely to be accessed? Bounding box of a node Point Bounding box of a second object Sphere Rectangular Ray beam Equivalent to surface area heuristics [MacDonald and Booth 90, Havran 00]

74 Layout Algorithms Recursively divide and layout between sub-trees (multi-scale approach) Based on the probability function Works well with various cache block sizes [Yoon and Lindstrom 06]

75 Outline R-LODs for ray tracing Results

76 Implementation Uses common optimized kd-tree construction methods Based on surface-area heuristics [MacDonald and Booth 90, Havran 00] Out-of-core computation Decompose an input model into a set of clusters [Yoon et al. 04]

77 Preprocessing Construction speed Very fast due to its linear complexity (3M triangles per min) Memory overhead Require 33% more storage over the optimized kd-tree representation [Wald 04] Runtime overhead 5% compared to non-lod version of an efficient ray tracer

78 Impacts of R-LODs # of intersected nodes per ray 10X speedup Render time Working set size PoE = 0 (No LOD) PoE = 2.5

79 Real-time Captured Video St. Matthew Model 512 x 512, 2 x 2 anti-aliasing, PoE = 4

80 Image Quality Comparison Forest Model (32M Triangles) 4 X speedup PoE = 0 (No LOD) PoE = 4 and cache-oblivious layout of kd-tree Shading difference

81 Results CAD model 2 fps 2 times speedup Double Eagle tanker, 82M triangles

82 Pros and Cons Limitations Does not handle advanced materials (BRDF) Our metric works well only with a linear transformation No guarantee there is no holes Advantages Simplicity Interactivity Efficiency

83 Ongoing and Future Work Investigate an efficient use of implicit surfaces Allow approximate visibility Extend to global illumination Design an efficient layout algorithm for deforming models

84 Conclusions Massive model rendering limited by memory access and bus bandwidth It is becoming a data and memory management problem LOD-based ray tracing Main improvement due to working set size reduction % speedups Integrate cache and ray coherence techniques

85 UCRL-PRES Some part of this work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W ENG-48.

Level-of-Detail Techniques and Cache-Coherent Layouts

Level-of-Detail Techniques and Cache-Coherent Layouts Level-of-Detail Techniques and Cache-Coherent Layouts Sung-Eui Yoon Lawrence Livermore National Laboratory Note: this talk is not supported or sanctioned by DoE, UC, LLNL, CASC Lawrence Livermore National

More information

Goal. Interactive Walkthroughs using Multiple GPUs. Boeing 777. DoubleEagle Tanker Model

Goal. Interactive Walkthroughs using Multiple GPUs. Boeing 777. DoubleEagle Tanker Model Goal Interactive Walkthroughs using Multiple GPUs Dinesh Manocha University of North Carolina- Chapel Hill http://www.cs.unc.edu/~walk SIGGRAPH COURSE #11, 2003 Interactive Walkthrough of complex 3D environments

More information

RACBVHs: Random Accessible Compressed Bounding Volume Hierarchies

RACBVHs: Random Accessible Compressed Bounding Volume Hierarchies RACBVHs: Random Accessible Compressed Bounding Volume Hierarchies Published at IEEE Transactions on Visualization and Computer Graphics, 2010, Vol. 16, Num. 2, pp. 273 286 Tae Joon Kim joint work with

More information

Cache-Oblivious Ray Reordering

Cache-Oblivious Ray Reordering Cache-Oblivious Ray Reordering Bochang Moon Yongyoung Byun Tae-Joon Kim Pio Claudio Sung-Eui Yoon CS/TR-2009-314 May, 2009 KAIST Department of Computer Science Cache-Oblivious Ray Reordering Bochang Moon

More information

Cache-Oblivious Ray Reordering

Cache-Oblivious Ray Reordering Cache-Oblivious Ray Reordering Bochang Moon, Yongyoung Byun, Tae-Joon Kim, Pio Claudio KAIST Hye-sun Kim, Yun-ji Ban, Seung Woo Nam Electronics and Telecommunications Research Institute (ETRI) and Sung-eui

More information

Fast BVH Construction on GPUs

Fast BVH Construction on GPUs Fast BVH Construction on GPUs Published in EUROGRAGHICS, (2009) C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, D. Manocha University of North Carolina at Chapel Hill NVIDIA University of California

More information

Cache-Oblivious Ray Reordering

Cache-Oblivious Ray Reordering Cache-Oblivious Ray Reordering BOCHANG MOON, YONGYOUNG BYUN, TAE-JOON KIM, and PIO CLAUDIO KAIST HYE-SUN KIM, YUN-JI BAN, and SEUNG WOO NAM Electronics and Telecommunications Research Institute (ETRI)

More information

RACBVHs: Random-Accessible Compressed Bounding Volume Hierarchies

RACBVHs: Random-Accessible Compressed Bounding Volume Hierarchies RACBVHs: Random-Accessible Compressed Bounding Volume Hierarchies TaeJoon Kim (a) St. Matthew scene BoChang Moon DukSu Kim KAIST (b) Iso-surface model Sung-eui Yoon (c) Lucy and CAD turbine models Figure

More information

Massive Model Visualization using Real-time Ray Tracing

Massive Model Visualization using Real-time Ray Tracing Massive Model Visualization using Real-time Ray Tracing Eurographics 2006 Tutorial: Real-time Interactive Massive Model Visualization Andreas Dietrich Philipp Slusallek Saarland University & intrace GmbH

More information

Quick-VDR: Interactive View-Dependent Rendering of Massive Models

Quick-VDR: Interactive View-Dependent Rendering of Massive Models Quick-VDR: Interactive View-Dependent Rendering of Massive Models Sung-Eui Yoon Brian Salomon Russell Gayle Dinesh Manocha University of North Carolina at Chapel Hill {sungeui,salomon,rgayle,dm}@cs.unc.edu

More information

RECENT advances in acquisition, modeling, and simulation

RECENT advances in acquisition, modeling, and simulation IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 4, JULY/AUGUST 2005 369 Quick-VDR: Out-of-Core View-Dependent Rendering of Gigantic Models Sung-Eui Yoon, Brian Salomon, Russell Gayle,

More information

Interactive Visualization and Collision Detection using Dynamic Simplification and Cache-Coherent Layouts

Interactive Visualization and Collision Detection using Dynamic Simplification and Cache-Coherent Layouts Interactive Visualization and Collision Detection using Dynamic Simplification and Cache-Coherent Layouts by Sung-Eui Yoon A dissertation submitted to the faculty of the University of North Carolina at

More information

CS780: Topics in Computer Graphics

CS780: Topics in Computer Graphics CS780: Topics in Computer Graphics Scalable Graphics/Geometric Algorithms Sung-Eui Yoon ( 윤성의 ) Course URL: http://jupiter.kaist.ac.kr/~sungeui/sga/ About the Instructor Joined KAIST at July this year

More information

S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T

S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T Copyright 2018 Sung-eui Yoon, KAIST freely available on the internet http://sglab.kaist.ac.kr/~sungeui/render

More information

Sung-Eui Yoon ( 윤성의 )

Sung-Eui Yoon ( 윤성의 ) CS380: Computer Graphics Ray Tracing Sung-Eui Yoon ( 윤성의 ) Course URL: http://sglab.kaist.ac.kr/~sungeui/cg/ Class Objectives Understand overall algorithm of recursive ray tracing Ray generations Intersection

More information

Ray Tracing. Computer Graphics CMU /15-662, Fall 2016

Ray Tracing. Computer Graphics CMU /15-662, Fall 2016 Ray Tracing Computer Graphics CMU 15-462/15-662, Fall 2016 Primitive-partitioning vs. space-partitioning acceleration structures Primitive partitioning (bounding volume hierarchy): partitions node s primitives

More information

RACBVHs: Random-Accessible Compressed Bounding Volume Hierarchies. Tae-Joon Kim, Bochang Moon, Duksu Kim, Sung-Eui Yoon, Member, IEEE

RACBVHs: Random-Accessible Compressed Bounding Volume Hierarchies. Tae-Joon Kim, Bochang Moon, Duksu Kim, Sung-Eui Yoon, Member, IEEE 1 RACBVHs: Random-Accessible Compressed Bounding Volume Hierarchies Tae-Joon Kim, Bochang Moon, Duksu Kim, Sung-Eui Yoon, Member, IEEE Abstract We present a novel compressed bounding volume hierarchy (BVH)

More information

PantaRay: Fast Ray-traced Occlusion Caching of Massive Scenes J. Pantaleoni, L. Fascione, M. Hill, T. Aila

PantaRay: Fast Ray-traced Occlusion Caching of Massive Scenes J. Pantaleoni, L. Fascione, M. Hill, T. Aila PantaRay: Fast Ray-traced Occlusion Caching of Massive Scenes J. Pantaleoni, L. Fascione, M. Hill, T. Aila Agenda Introduction Motivation Basics PantaRay Accelerating structure generation Massively parallel

More information

Ray Tracing with Multi-Core/Shared Memory Systems. Abe Stephens

Ray Tracing with Multi-Core/Shared Memory Systems. Abe Stephens Ray Tracing with Multi-Core/Shared Memory Systems Abe Stephens Real-time Interactive Massive Model Visualization Tutorial EuroGraphics 2006. Vienna Austria. Monday September 4, 2006 http://www.sci.utah.edu/~abe/massive06/

More information

CS 563 Advanced Topics in Computer Graphics QSplat. by Matt Maziarz

CS 563 Advanced Topics in Computer Graphics QSplat. by Matt Maziarz CS 563 Advanced Topics in Computer Graphics QSplat by Matt Maziarz Outline Previous work in area Background Overview In-depth look File structure Performance Future Point Rendering To save on setup and

More information

Row Tracing with Hierarchical Occlusion Maps

Row Tracing with Hierarchical Occlusion Maps Row Tracing with Hierarchical Occlusion Maps Ravi P. Kammaje, Benjamin Mora August 9, 2008 Page 2 Row Tracing with Hierarchical Occlusion Maps Outline August 9, 2008 Introduction Related Work Row Tracing

More information

ReduceM: Interactive and Memory Efficient Ray Tracing of Large Models

ReduceM: Interactive and Memory Efficient Ray Tracing of Large Models Eurographics Symposium on Rendering 2008 Steve Marschner and Michael Wimmer (Guest Editors) Volume 27 (2008), Number 4 ReduceM: Interactive and Memory Efficient Ray Tracing of Large Models Christian Lauterbach

More information

DiFi: Distance Fields - Fast Computation Using Graphics Hardware

DiFi: Distance Fields - Fast Computation Using Graphics Hardware DiFi: Distance Fields - Fast Computation Using Graphics Hardware Avneesh Sud Dinesh Manocha UNC-Chapel Hill http://gamma.cs.unc.edu/difi Distance Fields Distance Function For a site a scalar function f:r

More information

B-KD Trees for Hardware Accelerated Ray Tracing of Dynamic Scenes

B-KD Trees for Hardware Accelerated Ray Tracing of Dynamic Scenes B-KD rees for Hardware Accelerated Ray racing of Dynamic Scenes Sven Woop Gerd Marmitt Philipp Slusallek Saarland University, Germany Outline Previous Work B-KD ree as new Spatial Index Structure DynR

More information

Part IV. Review of hardware-trends for real-time ray tracing

Part IV. Review of hardware-trends for real-time ray tracing Part IV Review of hardware-trends for real-time ray tracing Hardware Trends For Real-time Ray Tracing Philipp Slusallek Saarland University, Germany Large Model Visualization at Boeing CATIA Model of Boeing

More information

S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T

S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T Copyright 2018 Sung-eui Yoon, KAIST freely available on the internet http://sglab.kaist.ac.kr/~sungeui/render

More information

Stackless Ray Traversal for kd-trees with Sparse Boxes

Stackless Ray Traversal for kd-trees with Sparse Boxes Stackless Ray Traversal for kd-trees with Sparse Boxes Vlastimil Havran Czech Technical University e-mail: havranat f el.cvut.cz Jiri Bittner Czech Technical University e-mail: bittnerat f el.cvut.cz November

More information

Anti-aliased and accelerated ray tracing. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Anti-aliased and accelerated ray tracing. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Anti-aliased and accelerated ray tracing University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Reading Required: Watt, sections 12.5.3 12.5.4, 14.7 Further reading: A. Glassner.

More information

THE complexity of polygonal models has been increasing

THE complexity of polygonal models has been increasing IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 3, MARCH 2014 481 T-ReX: Interactive Global Illumination of Massive Models on Heterogeneous Computing Resources Tae-Joon Kim, Xin

More information

Accelerating Ray-Tracing

Accelerating Ray-Tracing Lecture 9: Accelerating Ray-Tracing Computer Graphics and Imaging UC Berkeley CS184/284A, Spring 2016 Course Roadmap Rasterization Pipeline Core Concepts Sampling Antialiasing Transforms Geometric Modeling

More information

Real Time Ray Tracing

Real Time Ray Tracing Real Time Ray Tracing Programação 3D para Simulação de Jogos Vasco Costa Ray tracing? Why? How? P3DSJ Real Time Ray Tracing Vasco Costa 2 Real time ray tracing : example Source: NVIDIA P3DSJ Real Time

More information

Subdivision Of Triangular Terrain Mesh Breckon, Chenney, Hobbs, Hoppe, Watts

Subdivision Of Triangular Terrain Mesh Breckon, Chenney, Hobbs, Hoppe, Watts Subdivision Of Triangular Terrain Mesh Breckon, Chenney, Hobbs, Hoppe, Watts MSc Computer Games and Entertainment Maths & Graphics II 2013 Lecturer(s): FFL (with Gareth Edwards) Fractal Terrain Based on

More information

Interactive View-Dependent Rendering with Conservative Occlusion Culling in Complex Environments

Interactive View-Dependent Rendering with Conservative Occlusion Culling in Complex Environments Interactive View-Dependent Rendering with Conservative Occlusion Culling in Complex Environments Sung-Eui Yoon Brian Salomon Dinesh Manocha University of North Carolina at Chapel Hill http://gamma.cs.unc.edu/vdr

More information

Computer Graphics. - Ray-Tracing II - Hendrik Lensch. Computer Graphics WS07/08 Ray Tracing II

Computer Graphics. - Ray-Tracing II - Hendrik Lensch. Computer Graphics WS07/08 Ray Tracing II Computer Graphics - Ray-Tracing II - Hendrik Lensch Overview Last lecture Ray tracing I Basic ray tracing What is possible? Recursive ray tracing algorithm Intersection computations Today Advanced acceleration

More information

Comparison of hierarchies for occlusion culling based on occlusion queries

Comparison of hierarchies for occlusion culling based on occlusion queries Comparison of hierarchies for occlusion culling based on occlusion queries V.I. Gonakhchyan pusheax@ispras.ru Ivannikov Institute for System Programming of the RAS, Moscow, Russia Efficient interactive

More information

Anti-aliased and accelerated ray tracing. University of Texas at Austin CS384G - Computer Graphics

Anti-aliased and accelerated ray tracing. University of Texas at Austin CS384G - Computer Graphics Anti-aliased and accelerated ray tracing University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell eading! equired:! Watt, sections 12.5.3 12.5.4, 14.7! Further reading:! A. Glassner.

More information

Project Gotham Racing 2 (Xbox) Real-Time Rendering. Microsoft Flighsimulator. Halflife 2

Project Gotham Racing 2 (Xbox) Real-Time Rendering. Microsoft Flighsimulator. Halflife 2 Project Gotham Racing 2 (Xbox) Real-Time Rendering Microsoft Flighsimulator Halflife 2 1 Motivation (1) Many graphics applications are dynamic Simulators (surgery, flight simulators, ) 3D computer games

More information

Razor: An Architecture for Dynamic Multiresolution Ray Tracing

Razor: An Architecture for Dynamic Multiresolution Ray Tracing Razor: An Architecture for Dynamic Multiresolution Ray Tracing Gordon Stoll*, William R. Mark**, Peter Djeu**, Rui Wang***, Ikrima Elhassan** University of Texas at Austin Department of Computer Sciences

More information

Ray-Box Culling for Tree Structures

Ray-Box Culling for Tree Structures JOURNAL OF INFORMATION SCIENCE AND ENGINEERING XX, XXX-XXX (2012) Ray-Box Culling for Tree Structures JAE-HO NAH 1, WOO-CHAN PARK 2, YOON-SIG KANG 1, AND TACK-DON HAN 1 1 Department of Computer Science

More information

COMP 4801 Final Year Project. Ray Tracing for Computer Graphics. Final Project Report FYP Runjing Liu. Advised by. Dr. L.Y.

COMP 4801 Final Year Project. Ray Tracing for Computer Graphics. Final Project Report FYP Runjing Liu. Advised by. Dr. L.Y. COMP 4801 Final Year Project Ray Tracing for Computer Graphics Final Project Report FYP 15014 by Runjing Liu Advised by Dr. L.Y. Wei 1 Abstract The goal of this project was to use ray tracing in a rendering

More information

Real-time ray tracing

Real-time ray tracing Lecture 10: Real-time ray tracing (and opportunities for hardware acceleration) Visual Computing Systems Recent push towards real-time ray tracing Image credit: NVIDIA (this ray traced image can be rendered

More information

Improving Memory Space Efficiency of Kd-tree for Real-time Ray Tracing Byeongjun Choi, Byungjoon Chang, Insung Ihm

Improving Memory Space Efficiency of Kd-tree for Real-time Ray Tracing Byeongjun Choi, Byungjoon Chang, Insung Ihm Improving Memory Space Efficiency of Kd-tree for Real-time Ray Tracing Byeongjun Choi, Byungjoon Chang, Insung Ihm Department of Computer Science and Engineering Sogang University, Korea Improving Memory

More information

ICS RESEARCH TECHNICAL TALK DRAKE TETREAULT, ICS H197 FALL 2013

ICS RESEARCH TECHNICAL TALK DRAKE TETREAULT, ICS H197 FALL 2013 ICS RESEARCH TECHNICAL TALK DRAKE TETREAULT, ICS H197 FALL 2013 TOPIC: RESEARCH PAPER Title: Data Management for SSDs for Large-Scale Interactive Graphics Applications Authors: M. Gopi, Behzad Sajadi,

More information

Deferred Splatting. Gaël GUENNEBAUD Loïc BARTHE Mathias PAULIN IRIT UPS CNRS TOULOUSE FRANCE.

Deferred Splatting. Gaël GUENNEBAUD Loïc BARTHE Mathias PAULIN IRIT UPS CNRS TOULOUSE FRANCE. Deferred Splatting Gaël GUENNEBAUD Loïc BARTHE Mathias PAULIN IRIT UPS CNRS TOULOUSE FRANCE http://www.irit.fr/~gael.guennebaud Plan Complex Scenes: Triangles or Points? High Quality Splatting: Really

More information

Motivation. Culling Don t draw what you can t see! What can t we see? Low-level Culling

Motivation. Culling Don t draw what you can t see! What can t we see? Low-level Culling Motivation Culling Don t draw what you can t see! Thomas Larsson Mälardalen University April 7, 2016 Image correctness Rendering speed One day we will have enough processing power!? Goals of real-time

More information

Ray Tracing III. Wen-Chieh (Steve) Lin National Chiao-Tung University

Ray Tracing III. Wen-Chieh (Steve) Lin National Chiao-Tung University Ray Tracing III Wen-Chieh (Steve) Lin National Chiao-Tung University Shirley, Fundamentals of Computer Graphics, Chap 10 Doug James CG slides, I-Chen Lin s CG slides Ray-tracing Review For each pixel,

More information

Computer Graphics. - Ray Tracing I - Marcus Magnor Philipp Slusallek. Computer Graphics WS05/06 Ray Tracing I

Computer Graphics. - Ray Tracing I - Marcus Magnor Philipp Slusallek. Computer Graphics WS05/06 Ray Tracing I Computer Graphics - Ray Tracing I - Marcus Magnor Philipp Slusallek Overview Last Lecture Introduction Today Ray tracing I Background Basic ray tracing What is possible? Recursive ray tracing algorithm

More information

Computer Graphics Ray Casting. Matthias Teschner

Computer Graphics Ray Casting. Matthias Teschner Computer Graphics Ray Casting Matthias Teschner Outline Context Implicit surfaces Parametric surfaces Combined objects Triangles Axis-aligned boxes Iso-surfaces in grids Summary University of Freiburg

More information

Interactive View-Dependent Rendering with Conservative Occlusion Culling in Complex Environments

Interactive View-Dependent Rendering with Conservative Occlusion Culling in Complex Environments Interactive View-Dependent Rendering with Conservative Occlusion Culling in Complex Environments Sung-Eui Yoon Brian Salomon Dinesh Manocha University of North Carolina at Chapel Hill {sungeui,salomon,dm}@cs.unc.edu

More information

FRUSTUM-TRACED RASTER SHADOWS: REVISITING IRREGULAR Z-BUFFERS

FRUSTUM-TRACED RASTER SHADOWS: REVISITING IRREGULAR Z-BUFFERS FRUSTUM-TRACED RASTER SHADOWS: REVISITING IRREGULAR Z-BUFFERS Chris Wyman, Rama Hoetzlein, Aaron Lefohn 2015 Symposium on Interactive 3D Graphics & Games CONTRIBUTIONS Full scene, fully dynamic alias-free

More information

Intro to Ray-Tracing & Ray-Surface Acceleration

Intro to Ray-Tracing & Ray-Surface Acceleration Lecture 12 & 13: Intro to Ray-Tracing & Ray-Surface Acceleration Computer Graphics and Imaging UC Berkeley Course Roadmap Rasterization Pipeline Core Concepts Sampling Antialiasing Transforms Geometric

More information

Lecture 11: Ray tracing (cont.)

Lecture 11: Ray tracing (cont.) Interactive Computer Graphics Ray tracing - Summary Lecture 11: Ray tracing (cont.) Graphics Lecture 10: Slide 1 Some slides adopted from H. Pfister, Harvard Graphics Lecture 10: Slide 2 Ray tracing -

More information

Spatial Data Structures. Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017

Spatial Data Structures. Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017 Spatial Data Structures Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017 Ray Intersections We can roughly estimate the time to render an image as being proportional to the number of ray-triangle

More information

CS580: Ray Tracing. Sung-Eui Yoon ( 윤성의 ) Course URL:

CS580: Ray Tracing. Sung-Eui Yoon ( 윤성의 ) Course URL: CS580: Ray Tracing Sung-Eui Yoon ( 윤성의 ) Course URL: http://sglab.kaist.ac.kr/~sungeui/gcg/ Recursive Ray Casting Gained popularity in when Turner Whitted (1980) recognized that recursive ray casting could

More information

A distributed rendering architecture for ray tracing large scenes on commodity hardware. FlexRender. Bob Somers Zoe J.

A distributed rendering architecture for ray tracing large scenes on commodity hardware. FlexRender. Bob Somers Zoe J. FlexRender A distributed rendering architecture for ray tracing large scenes on commodity hardware. GRAPP 2013 Bob Somers Zoe J. Wood Increasing Geometric Complexity Normal Maps artifacts on silhouette

More information

SUMMARY. CS380: Introduction to Computer Graphics Ray tracing Chapter 20. Min H. Kim KAIST School of Computing 18/05/29. Modeling

SUMMARY. CS380: Introduction to Computer Graphics Ray tracing Chapter 20. Min H. Kim KAIST School of Computing 18/05/29. Modeling CS380: Introduction to Computer Graphics Ray tracing Chapter 20 Min H. Kim KAIST School of Computing Modeling SUMMARY 2 1 Types of coordinate function Explicit function: Line example: Implicit function:

More information

Ray Tracing with Sparse Boxes

Ray Tracing with Sparse Boxes Ray Tracing with Sparse Boxes Vlastimil Havran Czech Technical University Jiří Bittner Czech Technical University Vienna University of Technology Figure : (left) A ray casted view of interior of a larger

More information

Acceleration Structure for Animated Scenes. Copyright 2010 by Yong Cao

Acceleration Structure for Animated Scenes. Copyright 2010 by Yong Cao t min X X Y 1 B C Y 1 Y 2 A Y 2 D A B C D t max t min X X Y 1 B C Y 2 Y 1 Y 2 A Y 2 D A B C D t max t min X X Y 1 B C Y 1 Y 2 A Y 2 D A B C D t max t min A large tree structure change. A totally new tree!

More information

Single Scattering in Refractive Media with Triangle Mesh Boundaries

Single Scattering in Refractive Media with Triangle Mesh Boundaries Single Scattering in Refractive Media with Triangle Mesh Boundaries Bruce Walter Shuang Zhao Nicolas Holzschuch Kavita Bala Cornell Univ. Cornell Univ. Grenoble Univ. Cornell Univ. Presented at SIGGRAPH

More information

Scene Management. Video Game Technologies 11498: MSc in Computer Science and Engineering 11156: MSc in Game Design and Development

Scene Management. Video Game Technologies 11498: MSc in Computer Science and Engineering 11156: MSc in Game Design and Development Video Game Technologies 11498: MSc in Computer Science and Engineering 11156: MSc in Game Design and Development Chap. 5 Scene Management Overview Scene Management vs Rendering This chapter is about rendering

More information

Effects needed for Realism. Computer Graphics (Fall 2008) Ray Tracing. Ray Tracing: History. Outline

Effects needed for Realism. Computer Graphics (Fall 2008) Ray Tracing. Ray Tracing: History. Outline Computer Graphics (Fall 2008) COMS 4160, Lecture 15: Ray Tracing http://www.cs.columbia.edu/~cs4160 Effects needed for Realism (Soft) Shadows Reflections (Mirrors and Glossy) Transparency (Water, Glass)

More information

Frédo Durand, George Drettakis, Joëlle Thollot and Claude Puech

Frédo Durand, George Drettakis, Joëlle Thollot and Claude Puech Frédo Durand, George Drettakis, Joëlle Thollot and Claude Puech imagis-gravir/imag-inria (Grenoble, France) Laboratory for Computer Science MIT (USA) Special thanks Leo Guibas Mark de Berg Introduction

More information

FRUSTUM-TRACED RASTER SHADOWS: REVISITING IRREGULAR Z-BUFFERS

FRUSTUM-TRACED RASTER SHADOWS: REVISITING IRREGULAR Z-BUFFERS FRUSTUM-TRACED RASTER SHADOWS: REVISITING IRREGULAR Z-BUFFERS Chris Wyman, Rama Hoetzlein, Aaron Lefohn 2015 Symposium on Interactive 3D Graphics & Games CONTRIBUTIONS Full scene, fully dynamic alias-free

More information

Acceleration Data Structures

Acceleration Data Structures CT4510: Computer Graphics Acceleration Data Structures BOCHANG MOON Ray Tracing Procedure for Ray Tracing: For each pixel Generate a primary ray (with depth 0) While (depth < d) { Find the closest intersection

More information

Spatial Data Structures and Speed-Up Techniques. Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology

Spatial Data Structures and Speed-Up Techniques. Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology Spatial Data Structures and Speed-Up Techniques Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology Spatial data structures What is it? Data structure that organizes

More information

Building a Fast Ray Tracer

Building a Fast Ray Tracer Abstract Ray tracing is often used in renderers, as it can create very high quality images at the expense of run time. It is useful because of its ability to solve many different problems in image rendering.

More information

Realtime Ray Tracing

Realtime Ray Tracing Realtime Ray Tracing Meinrad Recheis Vienna University of Technology Figure 1: Images rendered in realtime with OpenRT on PC clusters at resolution 640 480. a) A Mercedes C-Class model consisting of 320.000

More information

Fast Hard and Soft Shadow Generation on Complex Models using Selective Ray Tracing

Fast Hard and Soft Shadow Generation on Complex Models using Selective Ray Tracing Fast Hard and Soft Shadow Generation on Complex Models using Selective Ray Tracing UNC CS Technical Report TR09-004, January 2009 Christian Lauterbach University of North Carolina at Chapel Hill Qi Mo

More information

S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T

S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T Copyright 2018 Sung-eui Yoon, KAIST freely available on the internet http://sglab.kaist.ac.kr/~sungeui/render

More information

Spatial Data Structures

Spatial Data Structures 15-462 Computer Graphics I Lecture 17 Spatial Data Structures Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees Constructive Solid Geometry (CSG) April 1, 2003 [Angel 9.10] Frank Pfenning Carnegie

More information

Enabling immersive gaming experiences Intro to Ray Tracing

Enabling immersive gaming experiences Intro to Ray Tracing Enabling immersive gaming experiences Intro to Ray Tracing Overview What is Ray Tracing? Why Ray Tracing? PowerVR Wizard Architecture Example Content Unity Hybrid Rendering Demonstration 3 What is Ray

More information

Spatial Data Structures

Spatial Data Structures Spatial Data Structures Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees Constructive Solid Geometry (CSG) [Angel 9.10] Outline Ray tracing review what rays matter? Ray tracing speedup faster

More information

Interactive Isosurface Ray Tracing of Large Octree Volumes

Interactive Isosurface Ray Tracing of Large Octree Volumes Interactive Isosurface Ray Tracing of Large Octree Volumes Aaron Knoll, Ingo Wald, Steven Parker, and Charles Hansen Scientific Computing and Imaging Institute University of Utah 2006 IEEE Symposium on

More information

Effects needed for Realism. Ray Tracing. Ray Tracing: History. Outline. Foundations of Computer Graphics (Spring 2012)

Effects needed for Realism. Ray Tracing. Ray Tracing: History. Outline. Foundations of Computer Graphics (Spring 2012) Foundations of omputer Graphics (Spring 202) S 84, Lecture 5: Ray Tracing http://inst.eecs.berkeley.edu/~cs84 Effects needed for Realism (Soft) Shadows Reflections (Mirrors and Glossy) Transparency (Water,

More information

Cache-Efficient Layouts of Bounding Volume Hierarchies

Cache-Efficient Layouts of Bounding Volume Hierarchies EUROGRAPHICS 2006 / E. Gröller and L. Szirmay-Kalos (Guest Editors) Volume 25 (2006), Number 3 Cache-Efficient Layouts of Bounding Volume Hierarchies Sung-Eui Yoon 1 Dinesh Manocha 2 1 Lawrence Livermore

More information

S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T

S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T Copyright 2018 Sung-eui Yoon, KAIST freely available on the internet http://sglab.kaist.ac.kr/~sungeui/render

More information

Accelerating Shadow Rays Using Volumetric Occluders and Modified kd-tree Traversal

Accelerating Shadow Rays Using Volumetric Occluders and Modified kd-tree Traversal Accelerating Shadow Rays Using Volumetric Occluders and Modified kd-tree Traversal Peter Djeu*, Sean Keely*, and Warren Hunt * University of Texas at Austin Intel Labs Shadow Rays Shadow rays are often

More information

Spatial Data Structures

Spatial Data Structures 15-462 Computer Graphics I Lecture 17 Spatial Data Structures Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees Constructive Solid Geometry (CSG) March 28, 2002 [Angel 8.9] Frank Pfenning Carnegie

More information

Point based Rendering

Point based Rendering Point based Rendering CS535 Daniel Aliaga Current Standards Traditionally, graphics has worked with triangles as the rendering primitive Triangles are really just the lowest common denominator for surfaces

More information

Ray tracing. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd 3/19/07 1

Ray tracing. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd 3/19/07 1 Ray tracing Computer Graphics COMP 770 (236) Spring 2007 Instructor: Brandon Lloyd 3/19/07 1 From last time Hidden surface removal Painter s algorithm Clipping algorithms Area subdivision BSP trees Z-Buffer

More information

Out-Of-Core Sort-First Parallel Rendering for Cluster-Based Tiled Displays

Out-Of-Core Sort-First Parallel Rendering for Cluster-Based Tiled Displays Out-Of-Core Sort-First Parallel Rendering for Cluster-Based Tiled Displays Wagner T. Corrêa James T. Klosowski Cláudio T. Silva Princeton/AT&T IBM OHSU/AT&T EG PGV, Germany September 10, 2002 Goals Render

More information

Ray Tracing Acceleration Data Structures

Ray Tracing Acceleration Data Structures Ray Tracing Acceleration Data Structures Sumair Ahmed October 29, 2009 Ray Tracing is very time-consuming because of the ray-object intersection calculations. With the brute force method, each ray has

More information

Logistics. CS 586/480 Computer Graphics II. Questions from Last Week? Slide Credits

Logistics. CS 586/480 Computer Graphics II. Questions from Last Week? Slide Credits CS 586/480 Computer Graphics II Dr. David Breen Matheson 408 Thursday 6PM Æ 8:50PM Presentation 4 10/28/04 Logistics Read research paper and prepare summary and question P. Hanrahan, "Ray Tracing Algebraic

More information

Spatial Data Structures

Spatial Data Structures CSCI 420 Computer Graphics Lecture 17 Spatial Data Structures Jernej Barbic University of Southern California Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees [Angel Ch. 8] 1 Ray Tracing Acceleration

More information

A Hardware Pipeline for Accelerating Ray Traversal Algorithms on Streaming Processors

A Hardware Pipeline for Accelerating Ray Traversal Algorithms on Streaming Processors A Hardware Pipeline for Accelerating Ray Traversal Algorithms on Streaming Processors Michael Steffen Electrical and Computer Engineering Iowa State University steffma@iastate.edu Joseph Zambreno Electrical

More information

Real-Time Reyes: Programmable Pipelines and Research Challenges. Anjul Patney University of California, Davis

Real-Time Reyes: Programmable Pipelines and Research Challenges. Anjul Patney University of California, Davis Real-Time Reyes: Programmable Pipelines and Research Challenges Anjul Patney University of California, Davis Real-Time Reyes-Style Adaptive Surface Subdivision Anjul Patney and John D. Owens SIGGRAPH Asia

More information

Announcements. Written Assignment2 is out, due March 8 Graded Programming Assignment2 next Tuesday

Announcements. Written Assignment2 is out, due March 8 Graded Programming Assignment2 next Tuesday Announcements Written Assignment2 is out, due March 8 Graded Programming Assignment2 next Tuesday 1 Spatial Data Structures Hierarchical Bounding Volumes Grids Octrees BSP Trees 11/7/02 Speeding Up Computations

More information

Spatial Data Structures

Spatial Data Structures CSCI 480 Computer Graphics Lecture 7 Spatial Data Structures Hierarchical Bounding Volumes Regular Grids BSP Trees [Ch. 0.] March 8, 0 Jernej Barbic University of Southern California http://www-bcf.usc.edu/~jbarbic/cs480-s/

More information

A Developer s Survey of Polygonal Simplification algorithms. CS 563 Advanced Topics in Computer Graphics Fan Wu Mar. 31, 2005

A Developer s Survey of Polygonal Simplification algorithms. CS 563 Advanced Topics in Computer Graphics Fan Wu Mar. 31, 2005 A Developer s Survey of Polygonal Simplification algorithms CS 563 Advanced Topics in Computer Graphics Fan Wu Mar. 31, 2005 Some questions to ask Why simplification? What are my models like? What matters

More information

Acceleration Data Structures for Ray Tracing

Acceleration Data Structures for Ray Tracing Acceleration Data Structures for Ray Tracing Travis Fischer and Nong Li (2007) Andries van Dam November 10, 2009 Acceleration Data Structures 1/35 Outline Introduction/Motivation Bounding Volume Hierarchy

More information

6.837 Introduction to Computer Graphics Final Exam Tuesday, December 20, :05-12pm Two hand-written sheet of notes (4 pages) allowed 1 SSD [ /17]

6.837 Introduction to Computer Graphics Final Exam Tuesday, December 20, :05-12pm Two hand-written sheet of notes (4 pages) allowed 1 SSD [ /17] 6.837 Introduction to Computer Graphics Final Exam Tuesday, December 20, 2011 9:05-12pm Two hand-written sheet of notes (4 pages) allowed NAME: 1 / 17 2 / 12 3 / 35 4 / 8 5 / 18 Total / 90 1 SSD [ /17]

More information

MSBVH: An Efficient Acceleration Data Structure for Ray Traced Motion Blur

MSBVH: An Efficient Acceleration Data Structure for Ray Traced Motion Blur MSBVH: An Efficient Acceleration Data Structure for Ray Traced Motion Blur Leonhard Grünschloß Martin Stich Sehera Nawaz Alexander Keller August 6, 2011 Principles of Accelerated Ray Tracing Hierarchical

More information

Geometric Modeling. Bing-Yu Chen National Taiwan University The University of Tokyo

Geometric Modeling. Bing-Yu Chen National Taiwan University The University of Tokyo Geometric Modeling Bing-Yu Chen National Taiwan University The University of Tokyo Surface Simplification Motivation Basic Idea of LOD Discrete LOD Continuous LOD Simplification Problem Characteristics

More information

3/1/2010. Acceleration Techniques V1.2. Goals. Overview. Based on slides from Celine Loscos (v1.0)

3/1/2010. Acceleration Techniques V1.2. Goals. Overview. Based on slides from Celine Loscos (v1.0) Acceleration Techniques V1.2 Anthony Steed Based on slides from Celine Loscos (v1.0) Goals Although processor can now deal with many polygons (millions), the size of the models for application keeps on

More information

LOD and Occlusion Christian Miller CS Fall 2011

LOD and Occlusion Christian Miller CS Fall 2011 LOD and Occlusion Christian Miller CS 354 - Fall 2011 Problem You want to render an enormous island covered in dense vegetation in realtime [Crysis] Scene complexity Many billions of triangles Many gigabytes

More information

Real-Time Graphics Architecture. Kurt Akeley Pat Hanrahan. Ray Tracing.

Real-Time Graphics Architecture. Kurt Akeley Pat Hanrahan.  Ray Tracing. Real-Time Graphics Architecture Kurt Akeley Pat Hanrahan http://www.graphics.stanford.edu/courses/cs448a-01-fall Ray Tracing with Tim Purcell 1 Topics Why ray tracing? Interactive ray tracing on multicomputers

More information

Sung-Eui Yoon ( 윤성의 )

Sung-Eui Yoon ( 윤성의 ) CS380: Computer Graphics Clipping and Culling Sung-Eui Yoon ( 윤성의 ) Course URL: http://sglab.kaist.ac.kr/~sungeui/cg/ Class Objectives Understand clipping and culling Understand view-frustum, back-face

More information

Massive model visualization: An investigation into spatial partitioning

Massive model visualization: An investigation into spatial partitioning Graduate Theses and Dissertations Graduate College 2009 Massive model visualization: An investigation into spatial partitioning Jeremy S. Bennett Iowa State University Follow this and additional works

More information

INFOGR Computer Graphics. J. Bikker - April-July Lecture 11: Acceleration. Welcome!

INFOGR Computer Graphics. J. Bikker - April-July Lecture 11: Acceleration. Welcome! INFOGR Computer Graphics J. Bikker - April-July 2015 - Lecture 11: Acceleration Welcome! Today s Agenda: High-speed Ray Tracing Acceleration Structures The Bounding Volume Hierarchy BVH Construction BVH

More information

Rendering. Converting a 3D scene to a 2D image. Camera. Light. Rendering. View Plane

Rendering. Converting a 3D scene to a 2D image. Camera. Light. Rendering. View Plane Rendering Pipeline Rendering Converting a 3D scene to a 2D image Rendering Light Camera 3D Model View Plane Rendering Converting a 3D scene to a 2D image Basic rendering tasks: Modeling: creating the world

More information