Parallelizing the dual revised simplex method

Size: px
Start display at page:

Download "Parallelizing the dual revised simplex method"

Transcription

1 Parallelizing the dual revised simplex method Qi Huangfu 1 Julian Hall 2 1 FICO 2 School of Mathematics, University of Edinburgh Birmingham 9 September 2016

2 Overview Background Two parallel schemes Single iteration parallelism Multiple iteration parallelism An open source parallel simplex solver Qi Huangfu and Julian Hall Parallelizing the dual revised simplex method 2 / 20

3 Linear programming (LP) minimize c T x subject to Ax = b x 0 Background Fundamental model in optimal decision-making Solution techniques Simplex method (1947) Interior point methods (1984) Large problems have variables constraints Matrix A is (usually) sparse Example STAIR: 356 rows, 467 columns and 3856 nonzeros Qi Huangfu and Julian Hall Parallelizing the dual revised simplex method 3 / 20

4 Solving LP problems minimize f P = c T x maximize f D = b T y subject to Ax = b x 0 (P) subject to A T y + s = c s 0 (D) Optimality conditions For a partition B N of the variable set with nonsingular basis matrix B in [ ] [ ] [ ] B T s Bx B + Nx N = b for (P) and y + B c = B for (D) N T with x N = 0 and s B = 0 Primal basic variables x B given by b = B 1 b Dual non-basic variables s N given by T ĉ N = c T N c T B B 1 N Partition is optimal if there is Primal feasibility b 0 Dual feasibility ĉ N 0 s N c N Qi Huangfu and Julian Hall Parallelizing the dual revised simplex method 4 / 20

5 Simplex algorithm: Each iteration N RHS B â q â pq â T p b bp ĉ q ĉ T N Dual algorithm: Assume ĉ N 0 Seek b 0 Scan b i, i B, for a good candidate p to leave B Scan ĉ j /â pj, j N, for a good candidate q to leave N CHUZR CHUZC Update: Exchange p and q between B and N Update b := b θ p âq θ p = b p /â pq UPDATE-PRIMAL Update ĉ T N := ĉ T N θ d â T p θ d = ĉ q /â pq UPDATE-DUAL Qi Huangfu and Julian Hall Parallelizing the dual revised simplex method 5 / 20

6 Simplex method: Computation Standard simplex method: Major computational component Update of tableau: where N = B 1 N N := N 1 â pq âqâ T p Hopelessly inefficient for sparse LP problems Prohibitively expensive for large LP problems Revised simplex method: Major computational components π T p = e T p B 1 BTRAN â T p = π T p N PRICE âq = B 1 aq FTRAN Invert B INVERT Qi Huangfu and Julian Hall Parallelizing the dual revised simplex method 6 / 20

7 Simplex method: Algorithmic enhancements Row selection: Dual steepest edge (DSE) Weight b i by w i : measure of B T ei 2 Requires additional FTRAN but can reduce iteration count significantly Column selection: Bound-flipping ratio test (BFRT) Minimizes the dual objective whilst remaining dual feasible Dual variables may change sign if corresponding primal variables can flip bounds Requires additional FTRAN but can reduce iteration count significantly Qi Huangfu and Julian Hall Parallelizing the dual revised simplex method 7 / 20

8 Exploiting parallelism: Background Data parallel standard simplex method Good parallel efficiency of N := N 1 Only relevant for dense LP problems â pq âqâ T p was achieved Data parallel revised simplex method Only immediate parallelism is in forming π T p N When n m significant speed-up was achieved Bixby and Martin (2000) Task parallel revised simplex method Overlap computational components for different iterations Wunderling (1996), H and McKinnon ( ) Modest speed-up was achieved on general sparse LP problems Qi Huangfu and Julian Hall Parallelizing the dual revised simplex method 8 / 20

9 Single iteration parallelism: Dual revised simplex method Computational components appear sequential Each has highly-tuned sparsity-exploiting serial implementation Exploit slack in data dependencies Qi Huangfu and Julian Hall Parallelizing the dual revised simplex method 9 / 20

10 Single iteration parallelism: Computational scheme Parallel PRICE to form â T p = π T p N Other computational components serial Overlap any independent calculations Only four worthwhile threads unless n m so PRICE dominates More than Bixby and Martin (2000) Better than Forrest (2012) Huangfu and H (2014) Qi Huangfu and Julian Hall Parallelizing the dual revised simplex method 10 / 20

11 Single iteration parallelism: clp vs hsol vs sip clp hsol sip (8 cores) Performance on spectrum of 30 significant LP test problems sip on 8 cores is 1.15 times faster than hsol hsol (sip on 8 cores) is 2.29 (2.64) times faster than clp Qi Huangfu and Julian Hall Parallelizing the dual revised simplex method 11 / 20

12 Multiple iteration parallelism sip has too little work to be performed in parallel to get good speedup Perform standard dual simplex minor iterations for rows in set P ( P m) Suggested by Rosander (1975) but never implemented efficiently in serial N RHS B â T P b bp ĉ T N Task-parallel multiple BTRAN to form π P = B 1 ep Data-parallel PRICE to form â T p (as required) Task-parallel multiple FTRAN for primal, dual and weight updates Huangfu and H ( ) Qi Huangfu and Julian Hall Parallelizing the dual revised simplex method 12 / 20

13 Multiple iteration parallelism: cplex vs pami vs hsol cplex pami (8 cores) hsol pami pami is less efficient than hsol in serial pami speedup more than compensates pami performance approaching cplex Qi Huangfu and Julian Hall Parallelizing the dual revised simplex method 13 / 20

14 Multiple iteration parallelism: cplex vs xpress cplex xpress xpress (8 cores) pami ideas incorporated in FICO Xpress (Huangfu 2014) Qi Huangfu and Julian Hall Parallelizing the dual revised simplex method 14 / 20

15 hsol: An open source parallel simplex solver hsol and its variants (sip and pami) are high performance codes Useful open-source resource? Reliable? Well-written? Better than clp? Limitations No presolve No crash No advanced basis start Qi Huangfu and Julian Hall Parallelizing the dual revised simplex method 15 / 20

16 hsol: Performance and reliability Extended testing using 159 test problems 98 Netlib 16 Kennington 4 Industrial 41 Mittelmann Exclude 7 which are hard Reliability on 152 test problems hsol, sip and pami fail on cycle pami with 8 threads fails on stat96v1 Qi Huangfu and Julian Hall Parallelizing the dual revised simplex method 16 / 20

17 hsol: Performance and reliability Performance Benchmark against clp (v1.16) and cplex (v12.5) Dual simplex No presolve No crash Ignore results for 82 LPs with minimum solution time below 0.1s Qi Huangfu and Julian Hall Parallelizing the dual revised simplex method 17 / 20

18 hsol: Performance and reliability clp hsol sip8 pami8 cplex Qi Huangfu and Julian Hall Parallelizing the dual revised simplex method 18 / 20

19 hsol: Addressing limitations Presolve Prototype implementation of a full range of presolve techniques Galabova (2016) Crash Standard crash procedures are simple to implement Questionable value for dual simplex: dual steepest edge is expensive to initialise when B I Advanced basis start Essential for hsol to be used in MIP and SLP solvers Only complication is dual steepest edge Qi Huangfu and Julian Hall Parallelizing the dual revised simplex method 19 / 20

20 Conclusions Two parallel schemes for general LP problems Meaningful performance improvement Have led to publicised advances in a leading commercial solver High performance open-source parallel simplex solver in preparation Slides: 16/ Paper: Q. Huangfu and J. A. J. Hall Parallelizing the dual revised simplex method Technical Report ERGO , School of Mathematics, University of Edinburgh, 2014 Accepted for publication in Mathematical Programming Computation Qi Huangfu and Julian Hall Parallelizing the dual revised simplex method 20 / 20

High performance computing and the simplex method

High performance computing and the simplex method Julian Hall, Qi Huangfu and Edmund Smith School of Mathematics University of Edinburgh 12th April 2011 The simplex method for LP Not... Nonlinear programming... Integer programming... Stochastic programming......

More information

What is linear programming (LP)? NATCOR Convex Optimization Linear Programming 1. Solving LP problems: The standard simplex method

What is linear programming (LP)? NATCOR Convex Optimization Linear Programming 1. Solving LP problems: The standard simplex method NATCOR Convex Optimization Linear Programming 1 Julian Hall School of Mathematics University of Edinburgh jajhall@ed.ac.uk 14 June 2016 What is linear programming (LP)? The most important model used in

More information

NATCOR Convex Optimization Linear Programming 1

NATCOR Convex Optimization Linear Programming 1 NATCOR Convex Optimization Linear Programming 1 Julian Hall School of Mathematics University of Edinburgh jajhall@ed.ac.uk 5 June 2018 What is linear programming (LP)? The most important model used in

More information

J.A.J.Hall, K.I.M.McKinnon. September 1996

J.A.J.Hall, K.I.M.McKinnon. September 1996 PARSMI, a parallel revised simplex algorithm incorporating minor iterations and Devex pricing J.A.J.Hall, K.I.M.McKinnon September 1996 MS 96-012 Supported by EPSRC research grant GR/J0842 Presented at

More information

Computational issues in linear programming

Computational issues in linear programming Computational issues in linear programming Julian Hall School of Mathematics University of Edinburgh 15th May 2007 Computational issues in linear programming Overview Introduction to linear programming

More information

High performance simplex solver. Qi Huangfu

High performance simplex solver. Qi Huangfu High performance simplex solver Qi Huangfu Doctor of Philosophy University of Edinburgh 2013 Abstract The dual simplex method is frequently the most efficient technique for solving linear programming

More information

Aim. Structure and matrix sparsity: Part 1 The simplex method: Exploiting sparsity. Structure and matrix sparsity: Overview

Aim. Structure and matrix sparsity: Part 1 The simplex method: Exploiting sparsity. Structure and matrix sparsity: Overview Aim Structure and matrix sparsity: Part 1 The simplex method: Exploiting sparsity Julian Hall School of Mathematics University of Edinburgh jajhall@ed.ac.uk What should a 2-hour PhD lecture on structure

More information

Julian Hall School of Mathematics University of Edinburgh. June 15th Parallel matrix inversion for the revised simplex method - a study

Julian Hall School of Mathematics University of Edinburgh. June 15th Parallel matrix inversion for the revised simplex method - a study Parallel matrix inversion for the revised simplex method - A study Julian Hall School of Mathematics University of Edinburgh June 5th 006 Parallel matrix inversion for the revised simplex method - a study

More information

Crash-Starting the Simplex Method

Crash-Starting the Simplex Method Crash-Starting the Simplex Method Ivet Galabova Julian Hall School of Mathematics, University of Edinburgh Optimization Methods and Software December 2017 Ivet Galabova, Julian Hall Crash-Starting Simplex

More information

Parallel distributed-memory simplex for large-scale stochastic LP problems

Parallel distributed-memory simplex for large-scale stochastic LP problems Parallel distributed-memory simplex for large-scale stochastic LP problems Miles Lubin J. A. Julian Hall Cosmin G. Petra Mihai Anitescu 17 April 2012 Technical Report ERGO-12-005 1 Abstract We present

More information

The Ascendance of the Dual Simplex Method: A Geometric View

The Ascendance of the Dual Simplex Method: A Geometric View The Ascendance of the Dual Simplex Method: A Geometric View Robert Fourer 4er@ampl.com AMPL Optimization Inc. www.ampl.com +1 773-336-AMPL U.S.-Mexico Workshop on Optimization and Its Applications Huatulco

More information

Matrix-free IPM with GPU acceleration

Matrix-free IPM with GPU acceleration Matrix-free IPM with GPU acceleration Julian Hall, Edmund Smith and Jacek Gondzio School of Mathematics University of Edinburgh jajhall@ed.ac.uk 29th June 2011 Linear programming theory Primal-dual pair

More information

ASYNPLEX, an asynchronous parallel revised simplex algorithm J. A. J. Hall K. I. M. McKinnon 15 th July 1997 Abstract This paper describes ASYNPLEX, a

ASYNPLEX, an asynchronous parallel revised simplex algorithm J. A. J. Hall K. I. M. McKinnon 15 th July 1997 Abstract This paper describes ASYNPLEX, a ASYNPLEX, an asynchronous parallel revised simplex algorithm J.A.J. Hall K.I.M. McKinnon July 1997 MS 95-050a Supported by EPSRC research grant GR/J08942 Presented at APMOD95 Brunel University 3rd April

More information

DEGENERACY AND THE FUNDAMENTAL THEOREM

DEGENERACY AND THE FUNDAMENTAL THEOREM DEGENERACY AND THE FUNDAMENTAL THEOREM The Standard Simplex Method in Matrix Notation: we start with the standard form of the linear program in matrix notation: (SLP) m n we assume (SLP) is feasible, and

More information

Linear & Integer Programming: A Decade of Computation

Linear & Integer Programming: A Decade of Computation Linear & Integer Programming: A Decade of Computation Robert E. Bixby, Mary Fenelon, Zongao Gu, Irv Lustig, Ed Rothberg, Roland Wunderling 1 Outline Progress in computing machines Linear programming (LP)

More information

VARIANTS OF THE SIMPLEX METHOD

VARIANTS OF THE SIMPLEX METHOD C H A P T E R 6 VARIANTS OF THE SIMPLEX METHOD By a variant of the Simplex Method (in this chapter) we mean an algorithm consisting of a sequence of pivot steps in the primal system using alternative rules

More information

Some Advanced Topics in Linear Programming

Some Advanced Topics in Linear Programming Some Advanced Topics in Linear Programming Matthew J. Saltzman July 2, 995 Connections with Algebra and Geometry In this section, we will explore how some of the ideas in linear programming, duality theory,

More information

Simulation. Lecture O1 Optimization: Linear Programming. Saeed Bastani April 2016

Simulation. Lecture O1 Optimization: Linear Programming. Saeed Bastani April 2016 Simulation Lecture O Optimization: Linear Programming Saeed Bastani April 06 Outline of the course Linear Programming ( lecture) Integer Programming ( lecture) Heuristics and Metaheursitics (3 lectures)

More information

The Gurobi Optimizer. Bob Bixby

The Gurobi Optimizer. Bob Bixby The Gurobi Optimizer Bob Bixby Outline Gurobi Introduction Company Products Benchmarks Gurobi Technology Rethinking MIP MIP as a bag of tricks 8-Jul-11 2010 Gurobi Optimization 2 Gurobi Optimization Incorporated

More information

Heuristics in Commercial MIP Solvers Part I (Heuristics in IBM CPLEX)

Heuristics in Commercial MIP Solvers Part I (Heuristics in IBM CPLEX) Andrea Tramontani CPLEX Optimization, IBM CWI, Amsterdam, June 12, 2018 Heuristics in Commercial MIP Solvers Part I (Heuristics in IBM CPLEX) Agenda CPLEX Branch-and-Bound (B&B) Primal heuristics in CPLEX

More information

Solving Linear and Integer Programs

Solving Linear and Integer Programs Solving Linear and Integer Programs Robert E. Bixby Gurobi Optimization, Inc. and Rice University Overview Linear Programming: Example and introduction to basic LP, including duality Primal and dual simplex

More information

Math Models of OR: The Simplex Algorithm: Practical Considerations

Math Models of OR: The Simplex Algorithm: Practical Considerations Math Models of OR: The Simplex Algorithm: Practical Considerations John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA September 2018 Mitchell Simplex Algorithm: Practical Considerations

More information

Welcome to the Webinar. What s New in Gurobi 7.5

Welcome to the Webinar. What s New in Gurobi 7.5 Welcome to the Webinar What s New in Gurobi 7.5 Speaker Introduction Dr. Tobias Achterberg Director of R&D at Gurobi Optimization Formerly a developer at ILOG, where he worked on CPLEX 11.0 to 12.6 Obtained

More information

Exploiting Degeneracy in MIP

Exploiting Degeneracy in MIP Exploiting Degeneracy in MIP Tobias Achterberg 9 January 2018 Aussois Performance Impact in Gurobi 7.5+ 35% 32.0% 30% 25% 20% 15% 14.6% 10% 5.7% 7.9% 6.6% 5% 0% 2.9% 1.2% 0.1% 2.6% 2.6% Time limit: 10000

More information

Outline. Column Generation: Cutting Stock A very applied method. Introduction to Column Generation. Given an LP problem

Outline. Column Generation: Cutting Stock A very applied method. Introduction to Column Generation. Given an LP problem Column Generation: Cutting Stock A very applied method thst@man.dtu.dk Outline History The Simplex algorithm (re-visited) Column Generation as an extension of the Simplex algorithm A simple example! DTU-Management

More information

Column Generation: Cutting Stock

Column Generation: Cutting Stock Column Generation: Cutting Stock A very applied method thst@man.dtu.dk DTU-Management Technical University of Denmark 1 Outline History The Simplex algorithm (re-visited) Column Generation as an extension

More information

Gurobi Guidelines for Numerical Issues February 2017

Gurobi Guidelines for Numerical Issues February 2017 Gurobi Guidelines for Numerical Issues February 2017 Background Models with numerical issues can lead to undesirable results: slow performance, wrong answers or inconsistent behavior. When solving a model

More information

Pivot and Gomory Cut. A MIP Feasibility Heuristic NSERC

Pivot and Gomory Cut. A MIP Feasibility Heuristic NSERC Pivot and Gomory Cut A MIP Feasibility Heuristic Shubhashis Ghosh Ryan Hayward shubhashis@randomknowledge.net hayward@cs.ualberta.ca NSERC CGGT 2007 Kyoto Jun 11-15 page 1 problem given a MIP, find a feasible

More information

Solving Linear Programs Using the Simplex Method (Manual)

Solving Linear Programs Using the Simplex Method (Manual) Solving Linear Programs Using the Simplex Method (Manual) GáborRétvári E-mail: retvari@tmit.bme.hu The GNU Octave Simplex Solver Implementation As part of the course material two simple GNU Octave/MATLAB

More information

Part 4. Decomposition Algorithms Dantzig-Wolf Decomposition Algorithm

Part 4. Decomposition Algorithms Dantzig-Wolf Decomposition Algorithm In the name of God Part 4. 4.1. Dantzig-Wolf Decomposition Algorithm Spring 2010 Instructor: Dr. Masoud Yaghini Introduction Introduction Real world linear programs having thousands of rows and columns.

More information

Section Notes 5. Review of Linear Programming. Applied Math / Engineering Sciences 121. Week of October 15, 2017

Section Notes 5. Review of Linear Programming. Applied Math / Engineering Sciences 121. Week of October 15, 2017 Section Notes 5 Review of Linear Programming Applied Math / Engineering Sciences 121 Week of October 15, 2017 The following list of topics is an overview of the material that was covered in the lectures

More information

Linear Programming. Linear programming provides methods for allocating limited resources among competing activities in an optimal way.

Linear Programming. Linear programming provides methods for allocating limited resources among competing activities in an optimal way. University of Southern California Viterbi School of Engineering Daniel J. Epstein Department of Industrial and Systems Engineering ISE 330: Introduction to Operations Research - Deterministic Models Fall

More information

Generalized Network Flow Programming

Generalized Network Flow Programming Appendix C Page Generalized Network Flow Programming This chapter adapts the bounded variable primal simplex method to the generalized minimum cost flow problem. Generalized networks are far more useful

More information

MATLAB Solution of Linear Programming Problems

MATLAB Solution of Linear Programming Problems MATLAB Solution of Linear Programming Problems The simplex method is included in MATLAB using linprog function. All is needed is to have the problem expressed in the terms of MATLAB definitions. Appendix

More information

Reliable Outer Bounds for the Dual Simplex Algorithm with Interval Right-hand Side

Reliable Outer Bounds for the Dual Simplex Algorithm with Interval Right-hand Side Reliable Outer Bounds for the Dual Simplex Algorithm with Interval Right-hand Side Christoph Fünfzig Fraunhofer Institute for Industrial Mathematics Kaiserslautern, Germany Email: c.fuenfzig@gmx.de Dominique

More information

The full tableau is redundant (identity matrix!) and may contain very many non-basic columns (all of them are

The full tableau is redundant (identity matrix!) and may contain very many non-basic columns (all of them are 28 5. The revised simplex algorithm... 29 5.2 Algorithmic consequences of the revised simplex algorithm... 3... 3 5.4 The simplex algorithmus with lower and upper bounds... 32 5.5 A special case: the network

More information

Outline. CS38 Introduction to Algorithms. Linear programming 5/21/2014. Linear programming. Lecture 15 May 20, 2014

Outline. CS38 Introduction to Algorithms. Linear programming 5/21/2014. Linear programming. Lecture 15 May 20, 2014 5/2/24 Outline CS38 Introduction to Algorithms Lecture 5 May 2, 24 Linear programming simplex algorithm LP duality ellipsoid algorithm * slides from Kevin Wayne May 2, 24 CS38 Lecture 5 May 2, 24 CS38

More information

Section Notes 4. Duality, Sensitivity, and the Dual Simplex Algorithm. Applied Math / Engineering Sciences 121. Week of October 8, 2018

Section Notes 4. Duality, Sensitivity, and the Dual Simplex Algorithm. Applied Math / Engineering Sciences 121. Week of October 8, 2018 Section Notes 4 Duality, Sensitivity, and the Dual Simplex Algorithm Applied Math / Engineering Sciences 121 Week of October 8, 2018 Goals for the week understand the relationship between primal and dual

More information

Chapter II. Linear Programming

Chapter II. Linear Programming 1 Chapter II Linear Programming 1. Introduction 2. Simplex Method 3. Duality Theory 4. Optimality Conditions 5. Applications (QP & SLP) 6. Sensitivity Analysis 7. Interior Point Methods 1 INTRODUCTION

More information

The MIP-Solving-Framework SCIP

The MIP-Solving-Framework SCIP The MIP-Solving-Framework SCIP Timo Berthold Zuse Institut Berlin DFG Research Center MATHEON Mathematics for key technologies Berlin, 23.05.2007 What Is A MIP? Definition MIP The optimization problem

More information

Addressing degeneracy in the dual simplex algorithm using a decompositon approach

Addressing degeneracy in the dual simplex algorithm using a decompositon approach Addressing degeneracy in the dual simplex algorithm using a decompositon approach Ambros Gleixner, Stephen J Maher, Matthias Miltenberger Zuse Institute Berlin Berlin, Germany 16th July 2015 @sj_maher

More information

COLUMN GENERATION IN LINEAR PROGRAMMING

COLUMN GENERATION IN LINEAR PROGRAMMING COLUMN GENERATION IN LINEAR PROGRAMMING EXAMPLE: THE CUTTING STOCK PROBLEM A certain material (e.g. lumber) is stocked in lengths of 9, 4, and 6 feet, with respective costs of $5, $9, and $. An order for

More information

Motivation for Heuristics

Motivation for Heuristics MIP Heuristics 1 Motivation for Heuristics Why not wait for branching? Produce feasible solutions as quickly as possible Often satisfies user demands Avoid exploring unproductive sub trees Better reduced

More information

Applied Mixed Integer Programming: Beyond 'The Optimum'

Applied Mixed Integer Programming: Beyond 'The Optimum' Applied Mixed Integer Programming: Beyond 'The Optimum' 14 Nov 2016, Simons Institute, Berkeley Pawel Lichocki Operations Research Team, Google https://developers.google.com/optimization/ Applied Mixed

More information

The Gurobi Solver V1.0

The Gurobi Solver V1.0 The Gurobi Solver V1.0 Robert E. Bixby Gurobi Optimization & Rice University Ed Rothberg, Zonghao Gu Gurobi Optimization 1 1 Oct 09 Overview Background Rethinking the MIP solver Introduction Tree of Trees

More information

Introduction to Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Introduction to Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Introduction to Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Module - 05 Lecture - 24 Solving LPs with mixed type of constraints In the

More information

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 2 Review Dr. Ted Ralphs IE316 Quiz 2 Review 1 Reading for The Quiz Material covered in detail in lecture Bertsimas 4.1-4.5, 4.8, 5.1-5.5, 6.1-6.3 Material

More information

Cloud Branching MIP workshop, Ohio State University, 23/Jul/2014

Cloud Branching MIP workshop, Ohio State University, 23/Jul/2014 Cloud Branching MIP workshop, Ohio State University, 23/Jul/2014 Timo Berthold Xpress Optimization Team Gerald Gamrath Zuse Institute Berlin Domenico Salvagnin Universita degli Studi di Padova This presentation

More information

arxiv: v1 [cs.dc] 21 Feb 2018

arxiv: v1 [cs.dc] 21 Feb 2018 Received , ; Revised , ; Accepted , DOI: xxx/xxxx ARTICLE TYPE Simultaneous Solving of Batched Linear Programs on a GPU Amit Gurung* 1 Rajarshi

More information

CHAPTER 3 REVISED SIMPLEX METHOD AND DATA STRUCTURES

CHAPTER 3 REVISED SIMPLEX METHOD AND DATA STRUCTURES 46 CHAPTER 3 REVISED SIMPLEX METHOD AND DATA STRUCTURES 3.1 INTRODUCTION While solving a linear programming problem, a systematic search is made to find a non-negative vector X which extremizes a linear

More information

The Affine Scaling Method

The Affine Scaling Method MA33 Linear Programming W. J. Martin October 9, 8 The Affine Scaling Method Overview Given a linear programming problem in equality form with full rank constraint matrix and a strictly positive feasible

More information

CASE STUDY. fourteen. Animating The Simplex Method. case study OVERVIEW. Application Overview and Model Development.

CASE STUDY. fourteen. Animating The Simplex Method. case study OVERVIEW. Application Overview and Model Development. CASE STUDY fourteen Animating The Simplex Method case study OVERVIEW CS14.1 CS14.2 CS14.3 CS14.4 CS14.5 CS14.6 CS14.7 Application Overview and Model Development Worksheets User Interface Procedures Re-solve

More information

3 Interior Point Method

3 Interior Point Method 3 Interior Point Method Linear programming (LP) is one of the most useful mathematical techniques. Recent advances in computer technology and algorithms have improved computational speed by several orders

More information

Part 1. The Review of Linear Programming The Revised Simplex Method

Part 1. The Review of Linear Programming The Revised Simplex Method In the name of God Part 1. The Review of Linear Programming 1.4. Spring 2010 Instructor: Dr. Masoud Yaghini Introduction Outline in Tableau Format Comparison Between the Simplex and the Revised Simplex

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

LECTURE 6: INTERIOR POINT METHOD. 1. Motivation 2. Basic concepts 3. Primal affine scaling algorithm 4. Dual affine scaling algorithm

LECTURE 6: INTERIOR POINT METHOD. 1. Motivation 2. Basic concepts 3. Primal affine scaling algorithm 4. Dual affine scaling algorithm LECTURE 6: INTERIOR POINT METHOD 1. Motivation 2. Basic concepts 3. Primal affine scaling algorithm 4. Dual affine scaling algorithm Motivation Simplex method works well in general, but suffers from exponential-time

More information

A New Product Form of the Inverse

A New Product Form of the Inverse Applied Mathematical Sciences, Vol 6, 2012, no 93, 4641-4650 A New Product Form of the Inverse Souleymane Sarr Department of mathematics and computer science University Cheikh Anta Diop Dakar, Senegal

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms

MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms Ann-Brith Strömberg 2018 04 24 Lecture 9 Linear and integer optimization with applications

More information

Linear Programming MT 4.0

Linear Programming MT 4.0 Linear Programming MT 4.0 for GAUSS TM Mathematical and Statistical System Aptech Systems, Inc. Information in this document is subject to change without notice and does not represent a commitment on the

More information

4.1 The original problem and the optimal tableau

4.1 The original problem and the optimal tableau Chapter 4 Sensitivity analysis The sensitivity analysis is performed after a given linear problem has been solved, with the aim of studying how changes to the problem affect the optimal solution In particular,

More information

Introduction. Linear because it requires linear functions. Programming as synonymous of planning.

Introduction. Linear because it requires linear functions. Programming as synonymous of planning. LINEAR PROGRAMMING Introduction Development of linear programming was among the most important scientific advances of mid-20th cent. Most common type of applications: allocate limited resources to competing

More information

1. Introduction. Consider the linear programming (LP) problem in the standard. minimize subject to Ax = b, x 0,

1. Introduction. Consider the linear programming (LP) problem in the standard. minimize subject to Ax = b, x 0, A FAST SIMPLEX ALGORITHM FOR LINEAR PROGRAMMING PING-QI PAN Abstract. Recently, computational results demonstrated the superiority of a so-called largestdistance rule and nested pricing rule to other major

More information

Linear Optimization. Andongwisye John. November 17, Linkoping University. Andongwisye John (Linkoping University) November 17, / 25

Linear Optimization. Andongwisye John. November 17, Linkoping University. Andongwisye John (Linkoping University) November 17, / 25 Linear Optimization Andongwisye John Linkoping University November 17, 2016 Andongwisye John (Linkoping University) November 17, 2016 1 / 25 Overview 1 Egdes, One-Dimensional Faces, Adjacency of Extreme

More information

Introduction to CPLEX. Some very convenient solvers for most students include those with Excel and Matlab.

Introduction to CPLEX. Some very convenient solvers for most students include those with Excel and Matlab. 1.0 Overview Introduction to CPLEX There are a number of commercial grade LP solvers available. An excellent survey of such surveys can be found at http://lionhrtpub.com/orms/surveys/lp/lp-survey.html.

More information

An FPGA Implementation of the Simplex Algorithm

An FPGA Implementation of the Simplex Algorithm An FPGA Implementation of the Simplex Algorithm Samuel Bayliss #1,Christos-S.Bouganis #2, George A. Constantinides #3,WayneLuk 4 # Department of Electrical and Electronic Engineering Imperial College London

More information

Using Multiple Machines to Solve Models Faster with Gurobi 6.0

Using Multiple Machines to Solve Models Faster with Gurobi 6.0 Using Multiple Machines to Solve Models Faster with Gurobi 6.0 Distributed Algorithms in Gurobi 6.0 Gurobi 6.0 includes 3 distributed algorithms Distributed concurrent LP (new in 6.0) MIP Distributed MIP

More information

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs Introduction to Mathematical Programming IE496 Final Review Dr. Ted Ralphs IE496 Final Review 1 Course Wrap-up: Chapter 2 In the introduction, we discussed the general framework of mathematical modeling

More information

Department of Mathematics Oleg Burdakov of 30 October Consider the following linear programming problem (LP):

Department of Mathematics Oleg Burdakov of 30 October Consider the following linear programming problem (LP): Linköping University Optimization TAOP3(0) Department of Mathematics Examination Oleg Burdakov of 30 October 03 Assignment Consider the following linear programming problem (LP): max z = x + x s.t. x x

More information

Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding

Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding B. O Donoghue E. Chu N. Parikh S. Boyd Convex Optimization and Beyond, Edinburgh, 11/6/2104 1 Outline Cone programming Homogeneous

More information

GPU acceleration of the matrix-free interior point method

GPU acceleration of the matrix-free interior point method GPU acceleration of the matrix-free interior point method E. Smith, J. Gondzio and J. A. J. Hall School of Mathematics and Maxwell Institute for Mathematical Sciences The University of Edinburgh Mayfield

More information

5. DUAL LP, SOLUTION INTERPRETATION, AND POST-OPTIMALITY

5. DUAL LP, SOLUTION INTERPRETATION, AND POST-OPTIMALITY 5. DUAL LP, SOLUTION INTERPRETATION, AND POST-OPTIMALITY 5.1 DUALITY Associated with every linear programming problem (the primal) is another linear programming problem called its dual. If the primal involves

More information

Math 414 Lecture 30. The greedy algorithm provides the initial transportation matrix.

Math 414 Lecture 30. The greedy algorithm provides the initial transportation matrix. Math Lecture The greedy algorithm provides the initial transportation matrix. matrix P P Demand W ª «2 ª2 «W ª «W ª «ª «ª «Supply The circled x ij s are the initial basic variables. Erase all other values

More information

A Sparse QP-Solver Implementation in CGAL. Yves Brise,

A Sparse QP-Solver Implementation in CGAL. Yves Brise, A Sparse QP-Solver Implementation in CGAL Yves Brise, 20090904 Problem min s.t. c T x + x T Dx Ax = b x 0 c, x R n b R m D R n n A R m n 2 Problem min s.t. c T x + x T Dx Ax = b x 0 c, x R n b R m D R

More information

Fundamentals of Integer Programming

Fundamentals of Integer Programming Fundamentals of Integer Programming Di Yuan Department of Information Technology, Uppsala University January 2018 Outline Definition of integer programming Formulating some classical problems with integer

More information

AM 121: Intro to Optimization Models and Methods Fall 2017

AM 121: Intro to Optimization Models and Methods Fall 2017 AM 121: Intro to Optimization Models and Methods Fall 2017 Lecture 10: Dual Simplex Yiling Chen SEAS Lesson Plan Interpret primal simplex in terms of pivots on the corresponding dual tableau Dictionaries

More information

COT 6936: Topics in Algorithms! Giri Narasimhan. ECS 254A / EC 2443; Phone: x3748

COT 6936: Topics in Algorithms! Giri Narasimhan. ECS 254A / EC 2443; Phone: x3748 COT 6936: Topics in Algorithms! Giri Narasimhan ECS 254A / EC 2443; Phone: x3748 giri@cs.fiu.edu http://www.cs.fiu.edu/~giri/teach/cot6936_s12.html https://moodle.cis.fiu.edu/v2.1/course/view.php?id=174

More information

Issues In Implementing The Primal-Dual Method for SDP. Brian Borchers Department of Mathematics New Mexico Tech Socorro, NM

Issues In Implementing The Primal-Dual Method for SDP. Brian Borchers Department of Mathematics New Mexico Tech Socorro, NM Issues In Implementing The Primal-Dual Method for SDP Brian Borchers Department of Mathematics New Mexico Tech Socorro, NM 87801 borchers@nmt.edu Outline 1. Cache and shared memory parallel computing concepts.

More information

Constraint Branching and Disjunctive Cuts for Mixed Integer Programs

Constraint Branching and Disjunctive Cuts for Mixed Integer Programs Constraint Branching and Disunctive Cuts for Mixed Integer Programs Constraint Branching and Disunctive Cuts for Mixed Integer Programs Michael Perregaard Dash Optimization Constraint Branching and Disunctive

More information

3 INTEGER LINEAR PROGRAMMING

3 INTEGER LINEAR PROGRAMMING 3 INTEGER LINEAR PROGRAMMING PROBLEM DEFINITION Integer linear programming problem (ILP) of the decision variables x 1,..,x n : (ILP) subject to minimize c x j j n j= 1 a ij x j x j 0 x j integer n j=

More information

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming algorithms Ann-Brith Strömberg 2009 04 15 Methods for ILP: Overview (Ch. 14.1) Enumeration Implicit enumeration: Branch and bound Relaxations Decomposition methods:

More information

An Introduction to Dual Ascent Heuristics

An Introduction to Dual Ascent Heuristics An Introduction to Dual Ascent Heuristics Introduction A substantial proportion of Combinatorial Optimisation Problems (COPs) are essentially pure or mixed integer linear programming. COPs are in general

More information

Linear programming and duality theory

Linear programming and duality theory Linear programming and duality theory Complements of Operations Research Giovanni Righini Linear Programming (LP) A linear program is defined by linear constraints, a linear objective function. Its variables

More information

Civil Engineering Systems Analysis Lecture XIV. Instructor: Prof. Naveen Eluru Department of Civil Engineering and Applied Mechanics

Civil Engineering Systems Analysis Lecture XIV. Instructor: Prof. Naveen Eluru Department of Civil Engineering and Applied Mechanics Civil Engineering Systems Analysis Lecture XIV Instructor: Prof. Naveen Eluru Department of Civil Engineering and Applied Mechanics Today s Learning Objectives Dual 2 Linear Programming Dual Problem 3

More information

Read: H&L chapters 1-6

Read: H&L chapters 1-6 Viterbi School of Engineering Daniel J. Epstein Department of Industrial and Systems Engineering ISE 330: Introduction to Operations Research Fall 2006 (Oct 16): Midterm Review http://www-scf.usc.edu/~ise330

More information

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini DM545 Linear and Integer Programming Lecture 2 The Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 3. 4. Standard Form Basic Feasible Solutions

More information

Linear programming on Cell/BE

Linear programming on Cell/BE Norwegian University of Science and Technology Faculty of Information Technology, Mathematics and Electrical Engineering Department of Computer and Information Science Master Thesis Linear programming

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 36 CS 473: Algorithms, Spring 2018 LP Duality Lecture 20 April 3, 2018 Some of the

More information

A Dual Variant of. Benson s Outer Approximation Algorithm. for Multiple Objective Linear Programs

A Dual Variant of. Benson s Outer Approximation Algorithm. for Multiple Objective Linear Programs A Dual Variant of Benson s Outer Approximation Algorithm for Multiple Objective Linear Programs Matthias Ehrgott 1, Andreas Löhne 2 und Lizhen Shao 3 1,3 University of Auckland, New Zealand 2 Martin-Luther-Universität

More information

Solving a Challenging Quadratic 3D Assignment Problem

Solving a Challenging Quadratic 3D Assignment Problem Solving a Challenging Quadratic 3D Assignment Problem Hans Mittelmann Arizona State University Domenico Salvagnin DEI - University of Padova Quadratic 3D Assignment Problem Quadratic 3D Assignment Problem

More information

Linear and Integer Programming :Algorithms in the Real World. Related Optimization Problems. How important is optimization?

Linear and Integer Programming :Algorithms in the Real World. Related Optimization Problems. How important is optimization? Linear and Integer Programming 15-853:Algorithms in the Real World Linear and Integer Programming I Introduction Geometric Interpretation Simplex Method Linear or Integer programming maximize z = c T x

More information

Acknowledgements. iii

Acknowledgements. iii Abstract (TODO: ) i Acknowledgements (TODO: Natvig, Elster, Mujahed, Chris, Henrik Andersson, Marielle Christiansen, the people at Ugle, my parents for thorough proofreading and moral support) iii Contents

More information

Comparison of Vector Operations of Open-Source Linear Optimization Kernels

Comparison of Vector Operations of Open-Source Linear Optimization Kernels Acta Polytechnica Hungarica Vol. 15, No. 1, 2018 Comparison of Vector Operations of Open-Source Linear Optimization Kernels Péter Böröcz, Péter Tar, István Maros University of Pannonia 10. Egyetem Str.,

More information

SDPA Project: Solving Large-scale Semidefinite Programs

SDPA Project: Solving Large-scale Semidefinite Programs SDPA Project: Solving Large-scale Semidefinite Programs 12/May/2008 Katsuki Fujisawa Chuo University, Japan Masakazu Kojima & Mituhiro Fukuda & Kazuhide Nakata & Makoto Yamashita Tokyo Institute of Technology,

More information

Exact solutions to mixed-integer linear programming problems

Exact solutions to mixed-integer linear programming problems Exact solutions to mixed-integer linear programming problems Dan Steffy Zuse Institute Berlin and Oakland University Joint work with Bill Cook, Thorsten Koch and Kati Wolter November 18, 2011 Mixed-Integer

More information

BCN Decision and Risk Analysis. Syed M. Ahmed, Ph.D.

BCN Decision and Risk Analysis. Syed M. Ahmed, Ph.D. Linear Programming Module Outline Introduction The Linear Programming Model Examples of Linear Programming Problems Developing Linear Programming Models Graphical Solution to LP Problems The Simplex Method

More information

Linear Programming. Revised Simplex Method, Duality of LP problems and Sensitivity analysis

Linear Programming. Revised Simplex Method, Duality of LP problems and Sensitivity analysis Linear Programming Revised Simple Method, Dualit of LP problems and Sensitivit analsis Introduction Revised simple method is an improvement over simple method. It is computationall more efficient and accurate.

More information

Heuristic Optimization Today: Linear Programming. Tobias Friedrich Chair for Algorithm Engineering Hasso Plattner Institute, Potsdam

Heuristic Optimization Today: Linear Programming. Tobias Friedrich Chair for Algorithm Engineering Hasso Plattner Institute, Potsdam Heuristic Optimization Today: Linear Programming Chair for Algorithm Engineering Hasso Plattner Institute, Potsdam Linear programming Let s first define it formally: A linear program is an optimization

More information

Ellipsoid Algorithm :Algorithms in the Real World. Ellipsoid Algorithm. Reduction from general case

Ellipsoid Algorithm :Algorithms in the Real World. Ellipsoid Algorithm. Reduction from general case Ellipsoid Algorithm 15-853:Algorithms in the Real World Linear and Integer Programming II Ellipsoid algorithm Interior point methods First polynomial-time algorithm for linear programming (Khachian 79)

More information

Very Large-scale Linear. Programming: A Case Study. Exploiting Both Parallelism and. Distributed Memory. Anne Kilgore. December, 1993.

Very Large-scale Linear. Programming: A Case Study. Exploiting Both Parallelism and. Distributed Memory. Anne Kilgore. December, 1993. Very Large-scale Linear Programming: A Case Study Exploiting Both Parallelism and Distributed Memory Anne Kilgore CRPC-TR93354-S December, 1993 Center for Research on Parallel Computation Rice University

More information

5.4 Pure Minimal Cost Flow

5.4 Pure Minimal Cost Flow Pure Minimal Cost Flow Problem. Pure Minimal Cost Flow Networks are especially convenient for modeling because of their simple nonmathematical structure that can be easily portrayed with a graph. This

More information