Curvelet-based non-linear adaptive subtraction with sparseness constraints. Felix J Herrmann, Peyman P Moghaddam (EOS-UBC)

Size: px
Start display at page:

Download "Curvelet-based non-linear adaptive subtraction with sparseness constraints. Felix J Herrmann, Peyman P Moghaddam (EOS-UBC)"

Transcription

1 Curvelet-based non-linear adaptive subtraction with sparseness constraints Felix J Herrmann, Peyman P Moghaddam (EOS-UBC)

2 Context Spiky/minimal structure deconvolution (Claerbout, Ulrych, Oldenburg, Sacchi, Trad etc.) Sparse Radon (Ulrych, Sacchi, Trad, etc.) FFT/Focus transform-based Interpolation (Duyndam, Zwartjes, Verschuur, Berkhout) Redundant dictonaries/morphological component separation/pursuits (Mallat, Chen, Donoho, Starck, Elad) L2-migration (Nemeth, Chavent, de Hoop, Hu, Kuehl) 2-D/3-D Curvelets Non-linear synthesis (Durand, Starck, Candes, Demanet, Ying) Anisotropic Diffusion (Osher)

3 Goals Processing & imaging scheme increases resolution & SNR preserves edges = freq. content works with and extends existing noise removal/signal separation imaging schemes Develop the right language to deal with SNR 0...

4 General Framework Divide-and-conquer approach: 1. Sparseness with thresholding 2. Continuity with constrained optimization Main focus: use of Curvelets as optimal Frames (iterative) thresholding

5 Appetizer &#!!!! #!!!! &#!!!! #!!!! &#!!!! #!!! " " # # $ $ % %!"##"$%&'()(&*")+&!,-)".-/#!"#$%&#!'()*$%&*$!"!"#$%&#!'(%)*#$+*!"

6 Wish list Seek a transform domain that is relative insensitive to local phase sparse & local (position/dip) optimal for curved events well-behaved under operators near diagonalizes Covariance Aim to bring out those high frequencies with ultra-low SNR<0!

7 Why curvelets Nonseparable Local in 2-D space Local in 2-D Fourier Anisotropic 2 j 2 2j Multiscale Almost orthogonal Tight frame B T B = I Optimal

8 Thanks to Demanet & Ying 3-D Curvelets

9 Thanks to Demanet & Ying 3-D Curvelets

10 Thanks to Demanet & Ying 3-D Curvelets

11 Why curvelets W j = {!, 2 j! 2 j+1, " " J # 2 j/2 } Fourier/SVD/KL f f m F m 1/2, m Wavelet f f W m m 1, m second dyadic partitioning Optimal data adaptive f f A m m 2, m Close to optimal Curvelet source: Candes 01, Stein 90 f f C m C m 2 (log m) 3, m

12 Why curvelets! $!! %!! "! #!!!"#$%&%'()*(+,-./01)*

13 Denoising Input data with noise Curvelet transform Threshold Bd Curvelet coeff. data S λ (Bd) λ λ Inv. curvelet transform denoised Curvelet coeff. Filtered input data

14 Denoising

15 Denoising

16 Wavelets

17 Curvelets

18 Coherent noise suppression Filtered input data with curvelets Bd Curvelet transform Curvelet coeff. data Input data with noise Threshold Γ Bˆn predicted noise Curvelet coeff. pred. noise Inv. curvelet transform Curvelet coeff. model S λγ (Bd)

19 Multiple suppression with curvelets Input with multiples

20 Multiple suppression with curvelets Output curvelet filtering with stronger threshold Preserved primaries

21 Denoising Denoising signal separation Multiple & Ground-roll removal 4-D difference cubes Migration denoising (H & M 04) Model noise Strategies: Weighted thresholding Iterated weighted thresholding

22 L2/L1-matched filter denoised {}}{ ˆn Matched filter: : min Φ = d }{{} noisy data p=1 enhances sparseness residue is the denoised data risk of over fitting matched filter {}}{ Φ t m }{{} pred. noise p Guitton& Verschuur 04 Loose primary reflection events...

23 Colored denoising Denoising: noisy data {}}{ d = m }{{} noise-free + col. noise {}}{ n ˆm = arg min m 1 2 C 1/2 n (d m) J(m) with covariance C n E{nn T } and both m, n related to PDE

24 Ground-roll removal with curvelets Radon 1000 Iterations=3

25 Weighted thresholding Covariance model & noise near diagonal: For ortho basis and app. noise prediction: equivalent to BC n or m B T Γ 2 ˆm = B T S λγ (Bd) ˆm = B T 1 ( d ) arg min m 2 Γ 1 m near diagonal m 1,λ d = Bd, m = Bm and Γ = [diag{diag{bˆn}}] 1/2

26 Multiple suppression with curvelets Output curvelet filtering with stronger threshold Preserved primaries

27 4-D difference

28 ! 3-D Curvelets! "! #!! #"! "! #!! #"!

29 Iterative thresholding Curvelets are Frames: redundant (factor 7.5-4) thresholding does not solve: ˆm = B T 1 ( d ) arg min m 2 Γ 1 m Alternative formulation by iterative thresholding! m 1,λ

30 Starck et al.; Daubechies et al., Donoho 2004 (also Zwartjes, Sacchi, Trad & Ulrich) Iterative thresholding Solves signal-separation problem: by minimizing LP-program with s = s 1 + s 2 + n and s = s 1 + s 2 ˆx = arg min x s Φx x 1 w1,1 + x 2 w2,1 x = [ x 1 x 2 ] T and Φ = [ Φ 1 Φ 2 ]

31 Example shallow water environment Leakage of L.S. subtraction Input data with multiples Result L.S. subtraction

32 Example shallow water environment Input data with multiples Result curvelet-based subtraction

33 Example shallow water environment Input data with multiples True primaries

34 Example shallow water environment Input data with multiples and noise Result curvelet-based subtraction

35 Global optimization After thresholding: remove artifacts & miss fires normal operator (inversion) Impose additional penalty functional prior information sparseness & continuity Defining the right norm is crucial...

36 Global optimization Formulate constrained optimization: ˆm : min m J(m) s.t. m ˆ m 0 µ e µ, µ with ( d ) ˆm 0 = B Θ λγ and with e µ threshold and noisedependent tolerance on curvelet coeff.

37 Imaging with Curvelets Least-squares migrated Image Constrained Optimization

38 Penalty functionals Anisotropic diffusion for imaging: J(m) = Λ 1/2 m p with 1 Λ[ c] = c 2 + 2β 2 {( ) x2 c ( x2 c ) x1 c + β 2 I} x1 c. brings out wavefront set.

39 Denoising!" #"" #!" $"" $!" %""!" #"" #!" $"" $!" %"" %!"

40 Denoising!" #"" #!" $"" $!" %""!" #"" #!" $"" $!" %"" %!"

41 Denoising!" #"" #!" $"" $!" %""!" #"" #!" $"" $!" %"" %!"

42 Denoising!" #"" #!" $"" $!" %""!" #"" #!" $"" $!" %"" %!"

43 Conclusions Presented a framework that Stable signal separation via thresholding: Ground-roll & Multiple removal (Wednesday) Compute 4-D difference Cubes improves imaging & inversion: deals with incoherent noise & missing data extended to 3-D sparseness constrained imaging (H & P 04)

44 Acknowledgements Candes, Donoho, Demanet, Ying for making their Curvelet code available. Partially supported by a NSERC Grant.

Curvelet-domain multiple elimination with sparseness constraints. Felix J Herrmann (EOS-UBC) and Eric J. Verschuur (Delphi, TUD)

Curvelet-domain multiple elimination with sparseness constraints. Felix J Herrmann (EOS-UBC) and Eric J. Verschuur (Delphi, TUD) Curvelet-domain multiple elimination with sparseness constraints Felix J Herrmann (EOS-UBC) and Eric J. Verschuur (Delphi, TUD) Context SRME (Verschuur, Guitton, Berkhout, Weglein, Innanen) Sparse Radon

More information

Incoherent noise suppression with curvelet-domain sparsity Vishal Kumar, EOS-UBC and Felix J. Herrmann, EOS-UBC

Incoherent noise suppression with curvelet-domain sparsity Vishal Kumar, EOS-UBC and Felix J. Herrmann, EOS-UBC Incoherent noise suppression with curvelet-domain sparsity Vishal Kumar, EOS-UBC and Felix J. Herrmann, EOS-UBC SUMMARY The separation of signal and noise is a key issue in seismic data processing. By

More information

Robust Seismic Image Amplitude Recovery Using Curvelets

Robust Seismic Image Amplitude Recovery Using Curvelets Robust Seismic Image Amplitude Recovery Using Curvelets Peyman P. Moghaddam Joint work with Felix J. Herrmann and Christiaan C. Stolk UNIVERSITY OF BRITISH COLUMBIA University of Twente References Curvelets

More information

SUMMARY. forward/inverse discrete curvelet transform matrices (defined by the fast discrete curvelet transform, FDCT, with wrapping

SUMMARY. forward/inverse discrete curvelet transform matrices (defined by the fast discrete curvelet transform, FDCT, with wrapping Seismic data processing with curvelets: a multiscale and nonlinear approach Felix J. Herrmann, EOS-UBC, Deli Wang, Jilin University and Gilles Hennenfent and Peyman Moghaddam SUMMARY In this abstract,

More information

Curvelet-domain matched filtering Felix J. Herrmann and Peyman P. Moghaddam EOS-UBC, and Deli Wang, Jilin University

Curvelet-domain matched filtering Felix J. Herrmann and Peyman P. Moghaddam EOS-UBC, and Deli Wang, Jilin University Curvelet-domain matched filtering Felix J. Herrmann and Peyman P. Moghaddam EOS-UBC, and Deli Wang, Jilin University SUMMARY Matching seismic wavefields and images lies at the heart of many pre-/post-processing

More information

Mostafa Naghizadeh and Mauricio D. Sacchi

Mostafa Naghizadeh and Mauricio D. Sacchi Ground-roll elimination by scale and direction guided curvelet transform Mostafa Naghizadeh and Mauricio D. Sacchi Summary We propose a curvelet domain strategy to subtract ground-roll from seismic records.

More information

Randomized sampling strategies

Randomized sampling strategies Randomized sampling strategies Felix J. Herrmann SLIM Seismic Laboratory for Imaging and Modeling the University of British Columbia SLIM Drivers & Acquisition costs impediments Full-waveform inversion

More information

Deconvolution with curvelet-domain sparsity Vishal Kumar, EOS-UBC and Felix J. Herrmann, EOS-UBC

Deconvolution with curvelet-domain sparsity Vishal Kumar, EOS-UBC and Felix J. Herrmann, EOS-UBC Deconvolution with curvelet-domain sparsity Vishal Kumar, EOS-UBC and Felix J. Herrmann, EOS-UBC SUMMARY We use the recently introduced multiscale and multidirectional curvelet transform to exploit the

More information

Seismic wavefield inversion with curvelet-domain sparsity promotion Felix J. Herrmann, EOS-UBC and Deli Wang, Jilin University

Seismic wavefield inversion with curvelet-domain sparsity promotion Felix J. Herrmann, EOS-UBC and Deli Wang, Jilin University Seismic wavefield inversion with curvelet-domain sparsity promotion Felix J. Herrmann, EOS-UBC and Deli Wang, Jilin University SUMMARY Inverting seismic wavefields lies at the heart of seismic data processing

More information

Removing blended sources interference using Stolt operator Amr Ibrahim, Department of Physics, University of Alberta,

Removing blended sources interference using Stolt operator Amr Ibrahim, Department of Physics, University of Alberta, Removing blended sources interference using Stolt operator Amr Ibrahim, Department of Physics, University of Alberta, amr.ibrahim@ualberta.ca Summary We use Stolt migration/de-migration operator to remove

More information

Inverse Problems in Astrophysics

Inverse Problems in Astrophysics Inverse Problems in Astrophysics Part 1: Introduction inverse problems and image deconvolution Part 2: Introduction to Sparsity and Compressed Sensing Part 3: Wavelets in Astronomy: from orthogonal wavelets

More information

Main Menu. Summary. sampled) f has a sparse representation transform domain S with. in certain. f S x, the relation becomes

Main Menu. Summary. sampled) f has a sparse representation transform domain S with. in certain. f S x, the relation becomes Preliminary study on Dreamlet based compressive sensing data recovery Ru-Shan Wu*, Yu Geng 1 and Lingling Ye, Modeling and Imaging Lab, Earth & Planetary Sciences/IGPP, University of California, Santa

More information

SEG/New Orleans 2006 Annual Meeting

SEG/New Orleans 2006 Annual Meeting and its implications for the curvelet design Hervé Chauris, Ecole des Mines de Paris Summary This paper is a first attempt towards the migration of seismic data in the curvelet domain for heterogeneous

More information

Removal of linear events with combined radon transforms

Removal of linear events with combined radon transforms Stanford Exploration Project, Report 120, May 3, 2005, pages 395 406 Removal of linear events with combined radon transforms Brad Artman and Antoine Guitton 1 ABSTRACT We explore the classic signal and

More information

Removal of linear events with combined radon transforms Brad Artman and Antoine Guitton

Removal of linear events with combined radon transforms Brad Artman and Antoine Guitton Removal of linear events with combined radon transforms Brad Artman and Antoine Guitton brad@sep.stanford.edu, antoine@sep.stanford.edu ABSTRACT We explore the classic signal and noise separation problem

More information

SUMMARY. In combination with compressive sensing, a successful reconstruction

SUMMARY. In combination with compressive sensing, a successful reconstruction Higher dimensional blue-noise sampling schemes for curvelet-based seismic data recovery Gang Tang, Tsinghua University & UBC-Seismic Laboratory for Imaging and Modeling (UBC-SLIM), Reza Shahidi, UBC-SLIM,

More information

3D Image Restoration with the Curvelet Transform

3D Image Restoration with the Curvelet Transform 3D Image Restoration with the Curvelet Transform A. Woiselle 1,2,3, J-L. Starck 1,2, J. Fadili 4 (1) CEA, IRFU, SEDI-Service d Astrophysique, F-91191 GIF-Sur-YVETTE, France. (2) Laboratoire Astrophysique

More information

Recent developments in curvelet-based seismic processing

Recent developments in curvelet-based seismic processing 0000 Recent developments in curvelet-based seismic processing Felix J. Herrmann (fherrmann@eos.ubc.ca) Seismic Laboratory for Imaging and Modeling Department of Earth and Ocean Sciences The University

More information

One-norm regularized inversion: learning from the Pareto curve

One-norm regularized inversion: learning from the Pareto curve One-norm regularized inversion: learning from the Pareto curve Gilles Hennenfent and Felix J. Herrmann, Earth & Ocean Sciences Dept., the University of British Columbia ABSTRACT Geophysical inverse problems

More information

Practical implementation of SRME for land multiple attenuation

Practical implementation of SRME for land multiple attenuation Practical implementation of SRME for land multiple attenuation Juefu Wang* and Shaowu Wang, CGGVeritas, Calgary, Canada juefu.wang@cggveritas.com Summary We present a practical implementation of Surface

More information

Seismic Data Reconstruction via Shearlet-Regularized Directional Inpainting

Seismic Data Reconstruction via Shearlet-Regularized Directional Inpainting Seismic Data Reconstruction via Shearlet-Regularized Directional Inpainting Sören Häuser and Jianwei Ma May 15, 2012 We propose a new method for seismic data reconstruction by directional weighted shearlet-regularized

More information

Least squares Kirchhoff depth migration: important details

Least squares Kirchhoff depth migration: important details Least squares Kirchhoff depth migration: important details Daniel Trad CREWES-University of Calgary Summary Least squares migration has been an important research topic in the academia for about two decades,

More information

Apex Shifted Radon Transform

Apex Shifted Radon Transform Apex Shifted Radon Transform Daniel Trad* Veritas DGC Inc., Calgary, Alberta, Canada dtrad@veritasdgc.com ABSTRACT The Apex Shifted Radon transform (ASRT) is an extension of the standard hyperbolic RT,

More information

Hierarchical scale curvelet interpolation of aliased seismic data Mostafa Naghizadeh and Mauricio Sacchi

Hierarchical scale curvelet interpolation of aliased seismic data Mostafa Naghizadeh and Mauricio Sacchi Hierarchical scale curvelet interpolation of aliased seismic data Mostafa Naghizadeh and Mauricio Sacchi SUMMARY We propose a robust interpolation scheme for aliased regularly sampled seismic data that

More information

Sub-Nyquist sampling and sparsity: getting more information from fewer samples

Sub-Nyquist sampling and sparsity: getting more information from fewer samples Sub-Nyquist sampling and sparsity: getting more information from fewer samples Felix J. Herrmann SLIM Seismic Laboratory for Imaging and Modeling the University of British Columbia SLIM Drivers Our incessant

More information

Randomized sampling and sparsity: getting more information from fewer samples

Randomized sampling and sparsity: getting more information from fewer samples Randomized sampling and sparsity: getting more information from fewer samples Felix J. Herrmann 1 ABSTRACT Many seismic exploration techniques rely on the collection of massive data volumes that are subsequently

More information

Summary. Introduction. Source separation method

Summary. Introduction. Source separation method Separability of simultaneous source data based on distribution of firing times Jinkun Cheng, Department of Physics, University of Alberta, jinkun@ualberta.ca Summary Simultaneous source acquisition has

More information

Iterative deblending of simultaneous-source seismic data using seislet-domain shaping regularization a

Iterative deblending of simultaneous-source seismic data using seislet-domain shaping regularization a Iterative deblending of simultaneous-source seismic data using seislet-domain shaping regularization a a Published in Geophysics, 79, no. 5, V179-V189, (2014) Yangkang Chen, Sergey Fomel, and Jingwei Hu

More information

Seismic data interpolation and de-noising in the frequency-wavenumber domain

Seismic data interpolation and de-noising in the frequency-wavenumber domain Seismic data interpolation and de-noising in the frequency-wavenumber domain Mostafa Naghizadeh ABSTRACT I introduce a unified approach for de-noising and interpolation of seismic data in the frequency-wavenumber

More information

3D Discrete Curvelet Transform

3D Discrete Curvelet Transform 3D Discrete Curvelet Transform Lexing Ying, Laurent Demanet and Emmanuel Candès Applied and Computational Mathematics, MC 217-50, Caltech, Pasadena, CA ABSTRACT In this paper, we present the first 3D discrete

More information

Sparsity and image processing

Sparsity and image processing Sparsity and image processing Aurélie Boisbunon INRIA-SAM, AYIN March 6, Why sparsity? Main advantages Dimensionality reduction Fast computation Better interpretability Image processing pattern recognition

More information

Beyond alias hierarchical scale curvelet interpolation of regularly and irregularly sampled seismic data

Beyond alias hierarchical scale curvelet interpolation of regularly and irregularly sampled seismic data Beyond alias hierarchical scale curvelet interpolation of regularly and irregularly sampled seismic data Mostafa Naghizadeh and Mauricio D. Sacchi University of Alberta, Department of Physics Edmonton,

More information

Simultaneous source separation via robust time variant Radon operators

Simultaneous source separation via robust time variant Radon operators Simultaneous source separation via robust time variant Radon operators Summary Amr Ibrahim, University of Alberta, Edmonton, Canada amr.ibrahim@ualberta.ca and Mauricio D. Sacchi, University of Alberta,

More information

Curvelet-Based Migration Amplitude Recovery

Curvelet-Based Migration Amplitude Recovery Curvelet-Based Migration Amplitude Recovery by Peyman P. Moghaddam B.Sc. in Electrical Engineering, Amirkabir University of Technology, Tehran, Iran, 1995 M.Sc. in Electrical Engineering, Amirkabir University

More information

Seismic data interpolation using nonlinear shaping regularization a

Seismic data interpolation using nonlinear shaping regularization a Seismic data interpolation using nonlinear shaping regularization a a Published in Journal of Seismic Exploration, 24, no. 5, 327-342, (2015) Yangkang Chen, Lele Zhang and Le-wei Mo ABSTRACT Seismic data

More information

Compressive sensing in seismic exploration: an outlook on a new paradigm

Compressive sensing in seismic exploration: an outlook on a new paradigm Compressive sensing in seismic exploration: an outlook on a new paradigm Felix J. Herrmann 1, Haneet Wason 1, and Tim T.Y. Lin 1 ABSTRACT Many seismic exploration techniques rely on the collection of massive

More information

Signal Reconstruction from Sparse Representations: An Introdu. Sensing

Signal Reconstruction from Sparse Representations: An Introdu. Sensing Signal Reconstruction from Sparse Representations: An Introduction to Compressed Sensing December 18, 2009 Digital Data Acquisition Suppose we want to acquire some real world signal digitally. Applications

More information

Seismic Noise Attenuation Using Curvelet Transform and Dip Map Data Structure

Seismic Noise Attenuation Using Curvelet Transform and Dip Map Data Structure Seismic Noise Attenuation Using Curvelet Transform and Dip Map Data Structure T. Nguyen* (PGS), Y.J. Liu (PGS) Summary The curvelet transform is a known tool used in the attenuation of coherent and incoherent

More information

Curvelet Transform with Adaptive Tiling

Curvelet Transform with Adaptive Tiling Curvelet Transform with Adaptive Tiling Hasan Al-Marzouqi and Ghassan AlRegib School of Electrical and Computer Engineering Georgia Institute of Technology, Atlanta, GA, 30332-0250 {almarzouqi, alregib}@gatech.edu

More information

Reweighted thresholding and orthogonal projections for simultaneous source separation Satyakee Sen*, Zhaojun Liu, James Sheng, and Bin Wang, TGS

Reweighted thresholding and orthogonal projections for simultaneous source separation Satyakee Sen*, Zhaojun Liu, James Sheng, and Bin Wang, TGS Reweighted thresholding and orthogonal projections for simultaneous source separation Satyakee Sen*, Zhaojun Liu, James Sheng, and Bin Wang, TGS Summary The key to success for simultaneous source separation

More information

Amplitude and kinematic corrections of migrated images for non-unitary imaging operators

Amplitude and kinematic corrections of migrated images for non-unitary imaging operators Stanford Exploration Project, Report 113, July 8, 2003, pages 349 363 Amplitude and kinematic corrections of migrated images for non-unitary imaging operators Antoine Guitton 1 ABSTRACT Obtaining true-amplitude

More information

Image denoising using curvelet transform: an approach for edge preservation

Image denoising using curvelet transform: an approach for edge preservation Journal of Scientific & Industrial Research Vol. 3469, January 00, pp. 34-38 J SCI IN RES VOL 69 JANUARY 00 Image denoising using curvelet transform: an approach for edge preservation Anil A Patil * and

More information

Numerical Methods on the Image Processing Problems

Numerical Methods on the Image Processing Problems Numerical Methods on the Image Processing Problems Department of Mathematics and Statistics Mississippi State University December 13, 2006 Objective Develop efficient PDE (partial differential equations)

More information

SUMMARY METHOD. d(t 2 = τ 2 + x2

SUMMARY METHOD. d(t 2 = τ 2 + x2 Yujin Liu, Zhi Peng, William W. Symes and Wotao Yin, China University of Petroleum (Huadong), Rice University SUMMARY The Radon transform suffers from the typical problems of loss of resolution and aliasing

More information

Image Denoising Using Sparse Representations

Image Denoising Using Sparse Representations Image Denoising Using Sparse Representations SeyyedMajid Valiollahzadeh 1,,HamedFirouzi 1, Massoud Babaie-Zadeh 1, and Christian Jutten 2 1 Department of Electrical Engineering, Sharif University of Technology,

More information

Interpolation with pseudo-primaries: revisited

Interpolation with pseudo-primaries: revisited Stanford Exploration Project, Report 129, May 6, 2007, pages 85 94 Interpolation with pseudo-primaries: revisited William Curry ABSTRACT Large gaps may exist in marine data at near offsets. I generate

More information

Curvelet-based migration preconditioning and scaling

Curvelet-based migration preconditioning and scaling migration preconditioning 2 Curvelet-based migration preconditioning and scaling Felix J. Herrmann 1, Cody. Brown 1, Yogi A. Erlangga 1, and Peyman P. Moghaddam 11 ABSTACT The extremely large size of typical

More information

Contourlets: Construction and Properties

Contourlets: Construction and Properties Contourlets: Construction and Properties Minh N. Do Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign www.ifp.uiuc.edu/ minhdo minhdo@uiuc.edu Joint work with

More information

Five Dimensional Interpolation:exploring different Fourier operators

Five Dimensional Interpolation:exploring different Fourier operators Five Dimensional Interpolation:exploring different Fourier operators Daniel Trad CREWES-University of Calgary Summary Five-Dimensional interpolation has become a very popular method to pre-condition data

More information

A Wavelet Tour of Signal Processing The Sparse Way

A Wavelet Tour of Signal Processing The Sparse Way A Wavelet Tour of Signal Processing The Sparse Way Stephane Mallat with contributions from Gabriel Peyre AMSTERDAM BOSTON HEIDELBERG LONDON NEWYORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY»TOKYO

More information

Convex or non-convex: which is better?

Convex or non-convex: which is better? Sparsity Amplified Ivan Selesnick Electrical and Computer Engineering Tandon School of Engineering New York University Brooklyn, New York March 7 / 4 Convex or non-convex: which is better? (for sparse-regularized

More information

EARTH SCIENCES RESEARCH JOURNAL

EARTH SCIENCES RESEARCH JOURNAL EARTH SCIENCES RESEARCH JOURNAL Earth Sci. Res. J. Vol. 10, No. 2 (December 2006): 117-129 ATTENUATION OF DIFFRACTED MULTIPLES WITH AN APEX-SHIFTED TANGENT- SQUARED RADON TRANSFORM IN IMAGE SPACE Gabriel

More information

Attenuation of diffracted multiples with an apex-shifted tangent-squared radon transform in image space

Attenuation of diffracted multiples with an apex-shifted tangent-squared radon transform in image space Attenuation of diffracted multiples with an apex-shifted tangent-squared radon transform in image space Gabriel Alvarez, Biondo Biondi, and Antoine Guitton 1 ABSTRACT We propose to attenuate diffracted

More information

Simply denoise: wavefield reconstruction via jittered undersampling

Simply denoise: wavefield reconstruction via jittered undersampling Simply denoise: wavefield reconstruction via jittered undersampling Gilles Hennenfent 1 and Felix J. Herrmann 1 ABSTRACT In this paper, we present a new discrete undersampling scheme designed to favor

More information

Random noise attenuation using local signal-and-noise orthogonalization a

Random noise attenuation using local signal-and-noise orthogonalization a Random noise attenuation using local signal-and-noise orthogonalization a a Published in Geophysics, 80, no. 6, WD1-WD9, (2015) Yangkang Chen and Sergey Fomel ABSTRACT We propose a novel approach to attenuate

More information

ELEG Compressive Sensing and Sparse Signal Representations

ELEG Compressive Sensing and Sparse Signal Representations ELEG 867 - Compressive Sensing and Sparse Signal Representations Gonzalo R. Arce Depart. of Electrical and Computer Engineering University of Delaware Fall 211 Compressive Sensing G. Arce Fall, 211 1 /

More information

Journal of Applied Geophysics

Journal of Applied Geophysics Journal of Applied Geophysics 19 (214) 256 265 Contents lists available at ScienceDirect Journal of Applied Geophysics journal homepage: www.elsevier.com/locate/jappgeo Dreamlet-based interpolation using

More information

SUMMARY. Pursuit De-Noise (BPDN) problem, Chen et al., 2001; van den Berg and Friedlander, 2008):

SUMMARY. Pursuit De-Noise (BPDN) problem, Chen et al., 2001; van den Berg and Friedlander, 2008): Controlling linearization errors in l 1 regularized inversion by rerandomization Ning Tu, Xiang Li and Felix J. Herrmann, Earth and Ocean Sciences, University of British Columbia SUMMARY Linearized inversion

More information

Adaptive Reconstruction Methods for Low-Dose Computed Tomography

Adaptive Reconstruction Methods for Low-Dose Computed Tomography Adaptive Reconstruction Methods for Low-Dose Computed Tomography Joseph Shtok Ph.D. supervisors: Prof. Michael Elad, Dr. Michael Zibulevsky. Technion IIT, Israel, 011 Ph.D. Talk, Apr. 01 Contents of this

More information

IMAGE DENOISING TO ESTIMATE THE GRADIENT HISTOGRAM PRESERVATION USING VARIOUS ALGORITHMS

IMAGE DENOISING TO ESTIMATE THE GRADIENT HISTOGRAM PRESERVATION USING VARIOUS ALGORITHMS IMAGE DENOISING TO ESTIMATE THE GRADIENT HISTOGRAM PRESERVATION USING VARIOUS ALGORITHMS P.Mahalakshmi 1, J.Muthulakshmi 2, S.Kannadhasan 3 1,2 U.G Student, 3 Assistant Professor, Department of Electronics

More information

Optimized Compressed Sensing for Curvelet-based. Seismic Data Reconstruction

Optimized Compressed Sensing for Curvelet-based. Seismic Data Reconstruction Optimized Compressed Sensing for Curvelet-based Seismic Data Reconstruction Wen Tang 1, Jianwei Ma 1, Felix J. Herrmann 2 1 Institute of Seismic Exploration, School of Aerospace, Tsinghua University, Beijing

More information

A pattern-based technique for ground-roll and multiple attenuation

A pattern-based technique for ground-roll and multiple attenuation Stanford Exploration Project, Report 108, April 29, 2001, pages 1?? A pattern-based technique for ground-roll and multiple attenuation Antoine Guitton, Morgan Brown, James Rickett, and Robert Clapp 1 ABSTRACT

More information

Interpolation using asymptote and apex shifted hyperbolic Radon transform

Interpolation using asymptote and apex shifted hyperbolic Radon transform Interpolation using asymptote and apex shifted hyperbolic Radon transform Amr Ibrahim, Paolo Terenghi and Mauricio D. Sacchi Department of Physics, University of Alberta PGS Abstract The asymptote and

More information

Collaborative Sparsity and Compressive MRI

Collaborative Sparsity and Compressive MRI Modeling and Computation Seminar February 14, 2013 Table of Contents 1 T2 Estimation 2 Undersampling in MRI 3 Compressed Sensing 4 Model-Based Approach 5 From L1 to L0 6 Spatially Adaptive Sparsity MRI

More information

Seislet-based morphological component analysis using scale-dependent exponential shrinkage a

Seislet-based morphological component analysis using scale-dependent exponential shrinkage a Seislet-based morphological component analysis using scale-dependent exponential shrinkage a a Published in Journal of Applied Geophysics, doi: 10.1016/j.jappgeo.2015.04.003 (2015) Pengliang Yang and Sergey

More information

G009 Scale and Direction-guided Interpolation of Aliased Seismic Data in the Curvelet Domain

G009 Scale and Direction-guided Interpolation of Aliased Seismic Data in the Curvelet Domain G009 Scale and Direction-guided Interpolation of Aliased Seismic Data in the Curvelet Domain M. Naghizadeh* (University of Alberta) & M. Sacchi (University of Alberta) SUMMARY We propose a robust interpolation

More information

Introduction. Wavelets, Curvelets [4], Surfacelets [5].

Introduction. Wavelets, Curvelets [4], Surfacelets [5]. Introduction Signal reconstruction from the smallest possible Fourier measurements has been a key motivation in the compressed sensing (CS) research [1]. Accurate reconstruction from partial Fourier data

More information

Detection Performance of Radar Compressive Sensing in Noisy Environments

Detection Performance of Radar Compressive Sensing in Noisy Environments Detection Performance of Radar Compressive Sensing in Noisy Environments Asmita Korde a,damon Bradley b and Tinoosh Mohsenin a a Department of Computer Science and Electrical Engineering, University of

More information

DENOISING OF COMPUTER TOMOGRAPHY IMAGES USING CURVELET TRANSFORM

DENOISING OF COMPUTER TOMOGRAPHY IMAGES USING CURVELET TRANSFORM VOL. 2, NO. 1, FEBRUARY 7 ISSN 1819-6608 6-7 Asian Research Publishing Network (ARPN). All rights reserved. DENOISING OF COMPUTER TOMOGRAPHY IMAGES USING CURVELET TRANSFORM R. Sivakumar Department of Electronics

More information

Conjugate guided gradient (CGG) method for robust inversion and its application to velocity-stack inversion a

Conjugate guided gradient (CGG) method for robust inversion and its application to velocity-stack inversion a Conjugate guided gradient (CGG) method for robust inversion and its application to velocity-stack inversion a a Published in Geophysics, 71, no. 4, R59-R67, (2006) Jun Ji ABSTRACT This paper proposes a

More information

Geophysical Journal International

Geophysical Journal International Geophysical Journal International Geophys. J. Int. 215) 21, 118 1192 GJI Marine geosciences and applied geophysics doi: 1.193/gji/ggv72 Simultaneous seismic data interpolation and denoising with a new

More information

Image reconstruction based on back propagation learning in Compressed Sensing theory

Image reconstruction based on back propagation learning in Compressed Sensing theory Image reconstruction based on back propagation learning in Compressed Sensing theory Gaoang Wang Project for ECE 539 Fall 2013 Abstract Over the past few years, a new framework known as compressive sampling

More information

SUMMARY. These two projections are illustrated in the equation

SUMMARY. These two projections are illustrated in the equation Mitigating artifacts in Projection Onto Convex Sets interpolation Aaron Stanton*, University of Alberta, Mauricio D. Sacchi, University of Alberta, Ray Abma, BP, and Jaime A. Stein, Geotrace Technologies

More information

Markov Networks in Computer Vision

Markov Networks in Computer Vision Markov Networks in Computer Vision Sargur Srihari srihari@cedar.buffalo.edu 1 Markov Networks for Computer Vision Some applications: 1. Image segmentation 2. Removal of blur/noise 3. Stereo reconstruction

More information

Seismic Trace Interpolation Using Adaptive Prediction Filters

Seismic Trace Interpolation Using Adaptive Prediction Filters Seismic Trace Interpolation Using Adaptive Prediction Filters Mostafa Naghizadeh and Mauricio Sacchi Signal Analysis and Imaging Group (SAIG) Department of Physics University of Alberta CSEG 2008 Calgary

More information

G Practical Magnetic Resonance Imaging II Sackler Institute of Biomedical Sciences New York University School of Medicine. Compressed Sensing

G Practical Magnetic Resonance Imaging II Sackler Institute of Biomedical Sciences New York University School of Medicine. Compressed Sensing G16.4428 Practical Magnetic Resonance Imaging II Sackler Institute of Biomedical Sciences New York University School of Medicine Compressed Sensing Ricardo Otazo, PhD ricardo.otazo@nyumc.org Compressed

More information

Least squares Kirchhoff depth migration with. preconditioning

Least squares Kirchhoff depth migration with. preconditioning Least squares Kirchhoff depth migration with preconditioning Aaron Stanton University of Alberta, Department of Physics, 4-83 CCIS, Edmonton AB T6G E (April, 3) Running head: Least Squares Migration ABSTRACT

More information

The Benefit of Tree Sparsity in Accelerated MRI

The Benefit of Tree Sparsity in Accelerated MRI The Benefit of Tree Sparsity in Accelerated MRI Chen Chen and Junzhou Huang Department of Computer Science and Engineering, The University of Texas at Arlington, TX, USA 76019 Abstract. The wavelet coefficients

More information

Markov Networks in Computer Vision. Sargur Srihari

Markov Networks in Computer Vision. Sargur Srihari Markov Networks in Computer Vision Sargur srihari@cedar.buffalo.edu 1 Markov Networks for Computer Vision Important application area for MNs 1. Image segmentation 2. Removal of blur/noise 3. Stereo reconstruction

More information

Sparse wavelet expansions for seismic tomography: Methods and algorithms

Sparse wavelet expansions for seismic tomography: Methods and algorithms Sparse wavelet expansions for seismic tomography: Methods and algorithms Ignace Loris Université Libre de Bruxelles International symposium on geophysical imaging with localized waves 24 28 July 2011 (Joint

More information

Iterative CT Reconstruction Using Curvelet-Based Regularization

Iterative CT Reconstruction Using Curvelet-Based Regularization Iterative CT Reconstruction Using Curvelet-Based Regularization Haibo Wu 1,2, Andreas Maier 1, Joachim Hornegger 1,2 1 Pattern Recognition Lab (LME), Department of Computer Science, 2 Graduate School in

More information

Two-dimensional fast generalized Fourier interpolation of seismic records

Two-dimensional fast generalized Fourier interpolation of seismic records 2D FGFT interpolation Two-dimensional fast generalized Fourier interpolation of seismic records Mostafa Naghizadeh and Kris Innanen ABSTRACT The fast generalized Fourier transform (FGFT) algorithm is extended

More information

A new sparse representation of seismic data using adaptive easy-path wavelet transform

A new sparse representation of seismic data using adaptive easy-path wavelet transform A new sparse representation of seismic data using adaptive easy-path wavelet transform Jianwei Ma 1,3, Gerlind Plonka 2, Hervé Chauris 3 1 Institute of Seismic Exploration, School of Aerospace, Tsinghua

More information

Compressed-Sensing Recovery of Images and Video Using Multihypothesis Predictions

Compressed-Sensing Recovery of Images and Video Using Multihypothesis Predictions Using Compressed-Sensing Recovery of Video Using Multihypothesis Chen Eric W. Tramel, and James E. Department of Electrical & Computer Engineering Geosystems Research Institute Mississippi State University,

More information

Image Restoration. Diffusion Denoising Deconvolution Super-resolution Tomographic Reconstruction

Image Restoration. Diffusion Denoising Deconvolution Super-resolution Tomographic Reconstruction Image Restoration Image Restoration Diffusion Denoising Deconvolution Super-resolution Tomographic Reconstruction Diffusion Term Consider only the regularization term E-L equation: (Laplace equation) Steepest

More information

Sparse Reconstruction / Compressive Sensing

Sparse Reconstruction / Compressive Sensing Sparse Reconstruction / Compressive Sensing Namrata Vaswani Department of Electrical and Computer Engineering Iowa State University Namrata Vaswani Sparse Reconstruction / Compressive Sensing 1/ 20 The

More information

Multicomponent f-x seismic random noise attenuation via vector autoregressive operators

Multicomponent f-x seismic random noise attenuation via vector autoregressive operators Multicomponent f-x seismic random noise attenuation via vector autoregressive operators Mostafa Naghizadeh and Mauricio Sacchi ABSTRACT We propose an extension of the traditional frequency-space (f-x)

More information

Learning Adapted Dictionaries for Geometry and Texture Separation

Learning Adapted Dictionaries for Geometry and Texture Separation Author manuscript, published in "SPIE Wavelets XII, San Diego, CA : États-Unis d'amérique (2007)" a CEREMADE, Université Paris Dauphine, Pl. De Lattre De Tassigny 75775 Paris Cedex 6 (FRANCE) Learning

More information

Full-waveform inversion using seislet regularization a

Full-waveform inversion using seislet regularization a 1 Full-waveform inversion using seislet regularization a a Published in Geophysics, 82, no. 5, A43-A49, (2017) Zhiguang Xue 1, Hejun Zhu 2 and Sergey Fomel 1 ABSTRACT Because of inaccurate, incomplete

More information

We LHR2 08 Simultaneous Source Separation Using an Annihilation Filter Approach

We LHR2 08 Simultaneous Source Separation Using an Annihilation Filter Approach We LHR2 08 Simultaneous Source Separation Using an Annihilation Filter Approach J. Rohnke* (CGG) & G. Poole (CGG) SUMMARY Simultaneous shooting increases acquisition efficiency by activating more than

More information

Ripplet: A New Transform for Image Processing

Ripplet: A New Transform for Image Processing Ripplet: A New Transform for Image Processing Jun Xu, Lei Yang and Dapeng Wu 1 Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA Abstract Efficient representation

More information

Image Interpolation Using Multiscale Geometric Representations

Image Interpolation Using Multiscale Geometric Representations Image Interpolation Using Multiscale Geometric Representations Nickolaus Mueller, Yue Lu and Minh N. Do Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign ABSTRACT

More information

3D Segmentation of Retinal Cysts from SD-OCT Images by the Use of three dimensional curvelet based K-SVD

3D Segmentation of Retinal Cysts from SD-OCT Images by the Use of three dimensional curvelet based K-SVD 3D Segmentation of Retinal Cysts from SD-OCT Images by the Use of three dimensional curvelet based K-SVD Mahdad Esmaeili 1, Alireza Mehri Dehnavi 1, Hossein Rabbani 1, Fedra Hajizadeh 2 1 Isfahan University

More information

Z Z Z Z 4 2 Y

Z Z Z Z 4 2 Y Very High Quality Image Restoration by Combining Wavelets and Curvelets a J.-L. Starck a, D.L. Donoho b and E.J. Cand es c DAPNIA/SEI-SAP, CEA/Saclay, 91191 Gif sur Yvette, France b Statistics Department,

More information

Seismic data interpolation beyond aliasing using regularized nonstationary autoregression a

Seismic data interpolation beyond aliasing using regularized nonstationary autoregression a Seismic data interpolation beyond aliasing using regularized nonstationary autoregression a a Published in Geophysics, 76, V69-V77, (2011) Yang Liu, Sergey Fomel ABSTRACT Seismic data are often inadequately

More information

Total Variation Denoising with Overlapping Group Sparsity

Total Variation Denoising with Overlapping Group Sparsity 1 Total Variation Denoising with Overlapping Group Sparsity Ivan W. Selesnick and Po-Yu Chen Polytechnic Institute of New York University Brooklyn, New York selesi@poly.edu 2 Abstract This paper describes

More information

Hyper-parameter selection in non-quadratic regularization-based radar image formation

Hyper-parameter selection in non-quadratic regularization-based radar image formation Hyper-parameter selection in non-quadratic regularization-based radar image formation Özge Batu a and Müjdat Çetin a,b a Faculty of Engineering and Natural Sciences, Sabancı University, Orhanlı, Tuzla

More information

Image Restoration with Compound Regularization Using a Bregman Iterative Algorithm

Image Restoration with Compound Regularization Using a Bregman Iterative Algorithm Image Restoration with Compound Regularization Using a Bregman Iterative Algorithm Manya V. Afonso, José M. Bioucas-Dias, Mario A. T. Figueiredo To cite this version: Manya V. Afonso, José M. Bioucas-Dias,

More information

Image Denoising via Group Sparse Eigenvectors of Graph Laplacian

Image Denoising via Group Sparse Eigenvectors of Graph Laplacian Image Denoising via Group Sparse Eigenvectors of Graph Laplacian Yibin Tang, Ying Chen, Ning Xu, Aimin Jiang, Lin Zhou College of IOT Engineering, Hohai University, Changzhou, China School of Information

More information

High-resolution Moveout Transform; a robust technique for modeling stackable seismic events Hassan Masoomzadeh* and Anthony Hardwick, TGS

High-resolution Moveout Transform; a robust technique for modeling stackable seismic events Hassan Masoomzadeh* and Anthony Hardwick, TGS High-resolution Moveout Transform; a robust technique for modeling stackable seismic events Hassan Masoomzadeh* and Anthony Hardwick, TGS Summary We propose a time-domain approach to transform a gather

More information