You ll use the six trigonometric functions of an angle to do this. In some cases, you will be able to use properties of the = 46


 Randell Martin
 2 years ago
 Views:
Transcription
1 Math 1330 Section 6.2 Section 7.1: RightTriangle Applications In this section, we ll solve right triangles. In some problems you will be asked to find one or two specific pieces of information, but often you ll be asked to solve the triangle, which means that you will find all lengths and measures that were not given. You ll use the six trigonometric functions of an angle to do this. In some cases, you will be able to use properties of the triangles or of Example 1: Calculate x and y from the figure below. y x 100cm 30 o Example 2: In ABC with right angle C, A = 46 and AC = 12. Find BC. Round to the answer to the nearest hundredth. Example 3: Find x and y in the triangle below. 10 ft. y x 40 1
2 Math 1330 Section 6.2 Example 4: Draw a diagram to represent the given situation. Then find the indicated measures to the nearest degree. An isosceles triangle has sides measuring 20 inches, 54 inches and 54 inches. What are the measures of the angle? Angle of Elevation The angle of elevation is an angle that s formed by the horizontal ray and another ray above the horizontal. So when viewing an object at a point above the horizontal, the angle between the line of sight and horizontal is angle of elevation in the figure below. Example 5: Draw a diagram to represent the given situation. The find the indicate measure to the nearest tenth. The angle elevation to the top of a building from a point on the ground 125 feet away from the building is 8. How tall is the building? 2
3 Math 1330 Section 6.2 Example 6: Draw a diagram to represent the given situation. The find the indicate measure to the nearest tenth. A 16foot ladder leans against a building. The ladder forms an angle of 70 with the ground. a) How high up the building does the ladder reach? b) What is the horizontal distance from the foot of the ladder to the base of the building? Angle of Depression The angle of depression is an angle that s formed by the horizontal ray and another ray below the horizontal. So when viewing an object at a point above the horizontal, the angle between the line of sight and horizontal is angle of elevation in the figure below. Example 7: Draw a diagram to represent the given situation. The find the indicate measure to the nearest tenth. Dave is at the top of a hill. He looks down and spots his car at a 61 angle of depression. If the hill is 59 meters high, how far is his car from the base of the hill? 3
4 Math 1330 Section 6.2 Example 8: Mike stands 450 feet from the base of the Empire State Building and sights the top of the building. If the Empire State Building is 1,453 feet tall, approximate the angle of elevation from Mike s perspective as he sights the top of the building. (Disregard Mike s height in your calculations.) 4
5 Math 1330 Section Area of a Triangle In this section, we ll use a familiar formula and a new formula to find the area of a triangle. Given a Recall the area of a triangle is given by 1 A = bh. We normally used this formula when we knew 2 the height of the triangle. However if the height is not given we must solve for it some way. So we solve for the height of the triangle by breaking the given triangle down into right triangles and use our trigonometric function (sine) to solve for the height. Area of a Trangle b 1 A = ab sinθ 2 a, b are the lengths of two sides of a triangle θ is the angle between them. Example 1: Find the exact area of the triangle
6 Math 1330 Section 7.2 Example 2: Find the exact area of the triangle Example 3: Find the area of an isosceles triangle with legs measuring 12 inches and the base angle is 30 degrees each. Example 4: If the area of angle F. EFG is 30 in 2, e = 8 in. and g = 15 in, find all possible measures of
7 Math 1330 Section 7.2 Example 5: A regular hexagon is inscribed in a circle of radius 6m. Find the area of the hexagon. Area of a Segment of a Circle You can also find the area of a segment of a circle. The shaded area of the picture is an example of a segment of a circle. B O A To find the area of a segment, find the area of the sector with central angle θ and radius OA. Then find the area of OAB. Then subtract the area of the triangle from the area of the sector. Area of a sector of a circle = Area of the segment = Area 1 r 2 θ 2 Area sec tor Example 6: Find the area of the segment of the circle with radius 6 meters and central angle 3π measuring. 4 triangle
8 Math 1330 Section 7.3 Section 7.3: Law of Sines and Law of Cosines Sometimes you will need to solve a triangle that is not a right triangle. This type of triangle is called an oblique triangle. To solve an oblique triangle you will not be able to use right triangle trigonometry. Instead, you will use the Law of Sines and/or the Law of Cosines. You will typically be given three parts of the triangle and you will be asked to find the other three. The approach you will take to the problem will depend on the information that is given. If you are given SSS (the lengths of all three sides) or SAS (the lengths of two sides and the measure of the included angle), you will use the Law of Cosines to solve the triangle. If you are given SAA (the measures of two angles and one side) or SSA (the measures of two sides and the measure of an angle that is not the included angle), you will use the Law of Sines to solve the triangle. Recall from your geometry course that SSA does not necessarily determine a triangle. We will need to take special care when this is the given information. Here s the Law of Cosines. In any triangle ABC, = + 2cos = + 2cos = + 2cos The development of one case of this formula is given in detail in the online text. Here s the Law of Sines. In any triangle ABC, sin =sin =sin The development of this formula is given in detail in the online text. Here are some facts about solving triangles that may be helpful in this section. If you are given SSS, SAS or SAA, the information determines a unique triangle. If you are given SSA, the information given may determine 0, 1 or 2 triangles. If this is the information you are given, you will have some additional work to do. Since you will have three pieces of information to find when solving a triangle, it is possible for you to use both the Law of Sines and the Law of Cosines in the same problem. When drawing a triangle, the measure of the largest angle is opposite the longest side; the measure of the middlesized angle is opposite the middlesized side; and the measure of the smallest angle is opposite the shortest side. Suppose a, b and c are suggested to be the lengths of the three sides of a triangle. Suppose that c is the biggest of the three measures. In order for a, b and c to form a triangle, this inequality must be true: a + b > c. So, the sum of the two smaller sides must be greater than the third side. 1
9 Math 1330 Section 7.3 An obtuse triangle is a triangle which has one angle that is greater than 90. An acute triangle is a triangle in which all three angles measure less than 90. If you are given the lengths of the three sides of a triangle, where c > a and c > b, you can determine if the triangle is obtuse or acute using the following: If, the triangle is an acute triangle. If the triangle is an obtuse triangle. Your first task will be to analyze the given information to determine which formula to use. You should sketch the triangle and label it with the given information to help you see what you need to find. If you have a choice, it is Example 1: Find x. 8cm x 120 7cm Example 2: Find A. 5ft 7ft A 8ft 2
10 Math 1330 Section 7.3 Example 3: Find x. 50cm x Example 4: Find x. 60 x 75 20in 3
11 Math 1330 Section 7.3 Example5: Find B. B 8m m Example 6: For triangle ABC, with a 2ft, b 10ft and A= 30, find the length of the other side and the measure of the remaining angles. Example 7: Triangle ABC has angle A = angles. 40, a = 54 m and b = 62 m. Solve for the remaining sides and 4
12 Math 1330 Section 7.3 Example 8: Two sailboats leave the same dock together traveling on courses that have an angle of 135 between them. If each sailboat has traveled 3 miles, how far apart are the sailboats from each other? Example 9: In ABC, B 60 and a = 17 and c = 12. Find the length of AC 5
13 Math 1330 Section 8.1 Section 8.1: The Parabola We already know that a parabola is the graph of a quadratic function. But there is more to be learned about parabolas. For example, when we studied quadratic functions, we saw that the graphs of the functions could open up or down. As we look at conic sections, we ll see that the graphs of these second degree equations can also open left or right. So, not every parabola we ll look at in this section will be a function. A parabola is the set of all points equally distant from a fixed line and a fixed point not on the line. The fixed line is called the directrix. The fixed point is called the focus. The axis, or axis of symmetry, runs through the focus and is perpendicular to the directrix. The vertex is the point halfway between the focus and the directrix. Basic Vertical Parabola: Equation: 4 Focus: 0, Directrix: Focal Width: 4 Coordinates of Focal Chord: 2, p p Basic Horizontal Parabola: Equation: 4 Focus:, 0 Directrix: Focal Width: 4 p p 1
14 Math 1330 Section 8.1 Graphing parabolas with vertex at the origin: When you have an equation, look for or If it has, it s a vertical parabola. If it has, it s a horizontal parabola. Rearrange to look like 4 or 4. In other words, isolate the squared variable. Determine p. Determine the direction it opens. o If p is positive, it opens right or up. o If p is negative, it opens left or down. Starting at the origin, place the focus p units to the inside of the parabola. Place the directrix p units to the outside of the parabola. Use the focal width 4p (2p on each side) to make the parabola the correct width at the focus. Example 1: Graph 20. Vertex: Focus: Focal Width: 2
15 Math 1330 Section 8.1 Example 2: Vertex: Focus: Focal Width: Graphing parabolas with vertex not at the origin: Rearrange (complete the square) to look like 4. Vertex is, Draw it the same way, except start at this vertex. Focus, 0 changes to,. Directrix: changes to the line. Rearrange (complete the square) to look like 4. Focus 0 changes to,. Directrix: changes to the line. Example 3: Find the standard form of the equation, the vertex, the focus, and the directrix for each example: a
16 Math 1330 Section 8.1 b Example 4: Suppose you know that the vertex of a parabola is at 3,5 and its focus is at 1,5. Write an equation for the parabola in standard form. A line through a point that lies on a parabola is tangent to the parabola at the point if the line intersects the parabola only at one point and the line is not parallel to the axis of the parabola. A tangent line to the point, which lies on the parabola with the equation will have slope 2. We can use this information to find the equation of the tangent line. 4
17 Math 1330 Section 8.1 Example 5: Write an equation of the line tangent to the parabola with the equation 2 53 at 2 Example 6: Find the point(s) of intersection of the parabola and the line
You ll use the six trigonometric functions of an angle to do this. In some cases, you will be able to use properties of the = 46
Math 1330 Section 6.2 Section 7.1: RightTriangle Applications In this section, we ll solve right triangles. In some problems you will be asked to find one or two specific pieces of information, but often
More informationSection The Law of Sines and the Law of Cosines
Section 7.3  The Law of Sines and the Law of Cosines Sometimes you will need to solve a triangle that is not a right triangle. This type of triangle is called an oblique triangle. To solve an oblique
More informationChapter Nine Notes SN P U1C9
Chapter Nine Notes SN P UC9 Name Period Section 9.: Applications Involving Right Triangles To evaluate trigonometric functions with a calculator, there are a few important things to know: On your calculator,
More information2.0 Trigonometry Review Date: Pythagorean Theorem: where c is always the.
2.0 Trigonometry Review Date: Key Ideas: The three angles in a triangle sum to. Pythagorean Theorem: where c is always the. In trigonometry problems, all vertices (corners or angles) of the triangle are
More informationGeometry Final Exam  Study Guide
Geometry Final Exam  Study Guide 1. Solve for x. True or False? (questions 25) 2. All rectangles are rhombuses. 3. If a quadrilateral is a kite, then it is a parallelogram. 4. If two parallel lines are
More informationTrigonometric Ratios and Functions
Algebra 2/Trig Unit 8 Notes Packet Name: Date: Period: # Trigonometric Ratios and Functions (1) Worksheet (Pythagorean Theorem and Special Right Triangles) (2) Worksheet (Special Right Triangles) (3) Page
More information7.1/7.2 Apply the Pythagorean Theorem and its Converse
7.1/7.2 Apply the Pythagorean Theorem and its Converse Remember what we know about a right triangle: In a right triangle, the square of the length of the is equal to the sum of the squares of the lengths
More information5.5 Right Triangles. 1. For an acute angle A in right triangle ABC, the trigonometric functions are as follow:
5.5 Right Triangles 1. For an acute angle A in right triangle ABC, the trigonometric functions are as follow: sin A = side opposite hypotenuse cos A = side adjacent hypotenuse B tan A = side opposite side
More informationSemester 2 Review Problems will be sectioned by chapters. The chapters will be in the order by which we covered them.
Semester 2 Review Problems will be sectioned by chapters. The chapters will be in the order by which we covered them. Chapter 9 and 10: Right Triangles and Trigonometric Ratios 1. The hypotenuse of a right
More informationRight Triangle Trigonometry
Right Triangle Trigonometry 1 The six trigonometric functions of a right triangle, with an acute angle, are defined by ratios of two sides of the triangle. hyp opp The sides of the right triangle are:
More informationNonright Triangles: Law of Cosines *
OpenStaxCNX module: m49405 1 Nonright Triangles: Law of Cosines * OpenStax This work is produced by OpenStaxCNX and licensed under the Creative Commons Attribution License 4.0 In this section, you will:
More information3.0 Trigonometry Review
3.0 Trigonometry Review In trigonometry problems, all vertices (corners or angles) of the triangle are labeled with capital letters. The right angle is usually labeled C. Sides are usually labeled with
More informationUNIT 9  RIGHT TRIANGLES AND TRIG FUNCTIONS
UNIT 9  RIGHT TRIANGLES AND TRIG FUNCTIONS Converse of the Pythagorean Theorem Objectives: SWBAT use the converse of the Pythagorean Theorem to solve problems. SWBAT use side lengths to classify triangles
More informationName: Unit 8 Right Triangles and Trigonometry Unit 8 Similarity and Trigonometry. Date Target Assignment Done!
Unit 8 Similarity and Trigonometry Date Target Assignment Done! M 122 8.1a 8.1a Worksheet T 123 8.1b 8.1b Worksheet W 124 8.2a 8.2a Worksheet R 125 8.2b 8.2b Worksheet F 126 Quiz Quiz 8.18.2 M 129
More informationChapter 6 Review. Extending Skills with Trigonometry. Check Your Understanding
hapter 6 Review Extending Skills with Trigonometry heck Your Understanding. Explain why the sine law holds true for obtuse angle triangles as well as acute angle triangles. 2. What dimensions of a triangle
More informationCh 7 & 8 Exam Review. Note: This is only a sample. Anything covered in class or homework may appear on the exam.
Ch 7 & 8 Exam Review Note: This is only a sample. Anything covered in class or homework may appear on the exam. Determine whether there is sufficient information for solving a triangle, with the given
More informationAWM 11 UNIT 4 TRIGONOMETRY OF RIGHT TRIANGLES
AWM 11 UNIT 4 TRIGONOMETRY OF RIGHT TRIANGLES Assignment Title Work to complete Complete 1 Triangles Labelling Triangles 2 Pythagorean Theorem Exploring Pythagorean Theorem 3 More Pythagorean Theorem Using
More informationMATH 1112 Trigonometry Final Exam Review
MATH 1112 Trigonometry Final Exam Review 1. Convert 105 to exact radian measure. 2. Convert 2 to radian measure to the nearest hundredth of a radian. 3. Find the length of the arc that subtends an central
More informationIntroduction to Trigonometry
NAME COMMON CORE GEOMETRY Unit 6 Introduction to Trigonometry DATE PAGE TOPIC HOMEWORK 1/22 24 Lesson 1 : Incredibly Useful Ratios Homework Worksheet 1/23 56 LESSON 2: Using Trigonometry to find missing
More informationAlgebra II. Slide 1 / 92. Slide 2 / 92. Slide 3 / 92. Trigonometry of the Triangle. Trig Functions
Slide 1 / 92 Algebra II Slide 2 / 92 Trigonometry of the Triangle 20150421 www.njctl.org Trig Functions click on the topic to go to that section Slide 3 / 92 Trigonometry of the Right Triangle Inverse
More information: Find the values of the six trigonometric functions for θ. Special Right Triangles:
ALGEBRA 2 CHAPTER 13 NOTES Section 131 Right Triangle Trig Understand and use trigonometric relationships of acute angles in triangles. 12.F.TF.3 CC.9 Determine side lengths of right triangles by using
More informationSemester 2 Review Problems will be sectioned by chapters. The chapters will be in the order by which we covered them.
Semester 2 Review Problems will be sectioned by chapters. The chapters will be in the order by which we covered them. Chapter 9 and 10: Right Triangles and Trigonometric Ratios 1. The hypotenuse of a right
More informationA lg e b ra II. Trig o n o m e try o f th e Tria n g le
1 A lg e b ra II Trig o n o m e try o f th e Tria n g le 20150421 www.njctl.org 2 Trig Functions click on the topic to go to that section Trigonometry of the Right Triangle Inverse Trig Functions Problem
More informationPacket Unit 5 Right Triangles Honors Common Core Math 2 1
Packet Unit 5 Right Triangles Honors Common Core Math 2 1 Day 1 HW Find the value of each trigonometric ratio. Write the ratios for sinp, cosp, and tanp. Remember to simplify! 9. 10. 11. Packet Unit 5
More informationCumulative Review: SOHCAHTOA and Angles of Elevation and Depression
Cumulative Review: SOHCAHTOA and Angles of Elevation and Depression Part 1: Model Problems The purpose of this worksheet is to provide students the opportunity to review the following topics in right triangle
More information5B.4 ~ Calculating Sine, Cosine, Tangent, Cosecant, Secant and Cotangent WB: Pgs :110 Pgs : 17
SECONDARY 2 HONORS ~ UNIT 5B (Similarity, Right Triangle Trigonometry, and Proof) Assignments from your Student Workbook are labeled WB Those from your hardbound Student Resource Book are labeled RB. Do
More informationAW Math 10 UNIT 7 RIGHT ANGLE TRIANGLES
AW Math 10 UNIT 7 RIGHT ANGLE TRIANGLES Assignment Title Work to complete Complete 1 Triangles Labelling Triangles 2 Pythagorean Theorem 3 More Pythagorean Theorem Eploring Pythagorean Theorem Using Pythagorean
More informationUnit 7: Trigonometry Part 1
100 Unit 7: Trigonometry Part 1 Right Triangle Trigonometry Hypotenuse a) Sine sin( α ) = d) Cosecant csc( α ) = α Adjacent Opposite b) Cosine cos( α ) = e) Secant sec( α ) = c) Tangent f) Cotangent tan(
More informationPreview: Correctly fill in the missing side lengths (a, b, c) or the missing angles (α, β, γ) on the following diagrams.
Preview: Correctly fill in the missing side lengths (a, b, c) or the missing angles (α, β, γ) on the following diagrams. γ b a β c α Goal: In chapter 1 we were given information about a right triangle
More informationDAY 1  GEOMETRY FLASHBACK
DAY 1  GEOMETRY FLASHBACK Sine Opposite Hypotenuse Cosine Adjacent Hypotenuse sin θ = opp. hyp. cos θ = adj. hyp. tan θ = opp. adj. Tangent Opposite Adjacent a 2 + b 2 = c 2 csc θ = hyp. opp. sec θ =
More informationTriangle Trigonometry
Honors Finite/Brief: Trigonometry review notes packet Triangle Trigonometry Right Triangles All triangles (including nonright triangles) Law of Sines: a b c sin A sin B sin C Law of Cosines: a b c bccos
More informationPacket Unit 5 Trigonometry Honors Math 2 17
Packet Unit 5 Trigonometry Honors Math 2 17 Homework Day 12 Part 1 Cumulative Review of this unit Show ALL work for the following problems! Use separate paper, if needed. 1) If AC = 34, AB = 16, find sin
More informationYoungstown State University Trigonometry Final Exam Review (Math 1511)
Youngstown State University Trigonometry Final Exam Review (Math 1511) 1. Convert each angle measure to decimal degree form. (Round your answers to thousandths place). a) 75 54 30" b) 145 18". Convert
More informationSolving Right Triangles. How do you solve right triangles?
Solving Right Triangles How do you solve right triangles? The Trigonometric Functions we will be looking at SINE COSINE TANGENT The Trigonometric Functions SINE COSINE TANGENT SINE Pronounced sign TANGENT
More informationGeometry Unit 6 Notes. Simplifying Radicals
Geometry Unit 6 Notes Name: Review: Evaluate the following WITHOUT a calculator. a) 2 2 b) 3 2 c) 4 2 d) 5 2 e) 6 2 f) 7 2 g) 8 2 h) 9 2 i) 10 2 j) 2 2 k) ( 2) 2 l) 2 0 Simplifying Radicals n r Example
More informationWarm Up: please factor completely
Warm Up: please factor completely 1. 2. 3. 4. 5. 6. vocabulary KEY STANDARDS ADDRESSED: MA3A2. Students will use the circle to define the trigonometric functions. a. Define and understand angles measured
More informationReview of Sine, Cosine, and Tangent for Right Triangle
Review of Sine, Cosine, and Tangent for Right Triangle In trigonometry problems, all vertices (corners or angles) of the triangle are labeled with capital letters. The right angle is usually labeled C.
More informationA. 180 B. 108 C. 360 D. 540
Part I  Multiple Choice  Circle your answer: REVIEW FOR FINAL EXAM  GEOMETRY 2 1. Find the area of the shaded sector. Q O 8 P A. 2 π B. 4 π C. 8 π D. 16 π 2. An octagon has sides. A. five B. six C.
More informationLook up partial Decomposition to use for problems #6567 Do Not solve problems #78,79
Franklin Township Summer Assignment 2017 AP calculus AB Summer assignment Students should use the Mathematics summer assignment to identify subject areas that need attention in preparation for the study
More information101. Three Trigonometric Functions. Vocabulary. Lesson
Chapter 10 Lesson 101 Three Trigonometric Functions BIG IDEA The sine, cosine, and tangent of an acute angle are each a ratio of particular sides of a right triangle with that acute angle. Vocabulary
More informationG.8 Right Triangles STUDY GUIDE
G.8 Right Triangles STUDY GUIDE Name Date Block Chapter 7 Right Triangles Review and Study Guide Things to Know (use your notes, homework, quizzes, textbook as well as flashcards at quizlet.com (http://quizlet.com/4216735/geometrychapter7righttrianglesflashcardsflashcards/)).
More informationNAEP Released Items Aligned to the Iowa Core: Geometry
NAEP Released Items Aligned to the Iowa Core: Geometry Congruence GCO Experiment with transformations in the plane 1. Know precise definitions of angle, circle, perpendicular line, parallel line, and
More informationName: Block: What I can do for this unit:
Unit 8: Trigonometry Student Tracking Sheet Math 10 Common Name: Block: What I can do for this unit: After Practice After Review How I Did 81 I can use and understand triangle similarity and the Pythagorean
More informationReview for Spring Final Exam Geometry 1. Classify the figure. Name the vertices, edges, and base.
Name lass ue date Review for Spring Final Exam Geometry 1. lassify the figure. Name the vertices, edges, and base. 4. raw all 6 orthographic views from the given object. ssume there are no hidden cubes.
More informationGeometry First Semester Practice Final (cont)
49. Determine the width of the river, AE, if A. 6.6 yards. 10 yards C. 12.8 yards D. 15 yards Geometry First Semester Practice Final (cont) 50. In the similar triangles shown below, what is the value of
More informationAssignment Guide: Chapter 8 Geometry (L3)
Assignment Guide: Chapter 8 Geometry (L3) (91) 8.1 The Pythagorean Theorem and Its Converse Page 495497 #731 odd, 3747 odd (92) 8.2 Special Right Triangles Page 503504 #712, 1520, 2328 (93) 8.2
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Convert the angle to decimal degrees and round to the nearest hundredth of a degree. 1)
More information4. Describe the correlation shown by the scatter plot. 8. Find the distance between the lines with the equations and.
Integrated Math III Summer Review Packet DUE THE FIRST DAY OF SCHOOL The problems in this packet are designed to help you review topics from previous mathematics courses that are essential to your success
More informationCh. 2 Trigonometry Notes
First Name: Last Name: Block: Ch. Trigonometry Notes.0 PREREQUISITES: SOLVING RIGHT TRIANGLES.1 ANGLES IN STANDARD POSITION 6 Ch..1 HW: p. 83 #1,, 4, 5, 7, 9, 10, 8.  TRIGONOMETRIC FUNCTIONS OF AN ANGLE
More informationUnit 8 Similarity and Trigonometry
Unit 8 Similarity and Trigonometry Target 8.1: Prove and apply properties of similarity in triangles using AA~, SSS~, SAS~ 8.1a Prove Triangles Similar by AA ~, SSS~, SAS~ 8.1b Use Proportionality Theorems
More informationSecond Semester Exam Review Packet
Geometry Name Second Semester Exam Review Packet CHAPTER 7 THE PYTHAGOREAN THEOREM. This theorem is used to find the lengths of the sides of a right triangle. Label the parts of the right triangle. What
More informationChapter 2 Trigonometry
Foundations of Math 11 Chapter 2 Note Package Chapter 2 Lesson 1 Review (No Practice Questions for this Lesson) Page 1 The Beauty of Triangles (No Notes for this Page) Page 2 Pythagoras Review (No Notes
More informationUnit 3 Part 2 1. Tell whether the three lengths are the sides of an acute triangle, a right triangle, or an obtuse triangle.
HONORS Geometry Final Exam Review 2 nd Semester Name: Unit 3 Part 2 1. Tell whether the three lengths are the sides of an acute triangle, a right triangle, or an obtuse triangle. a. 8, 11, 12 b. 24, 45,
More informationWhile you wait: Without consulting any resources or asking your friends write down everthing you remember about the:
While you wait: Without consulting any resources or asking your friends write down everthing you remember about the: Copyright 2007 Pearson Education, Inc. Slide 101 Sec 9.3 The Law of Sines Oblique Triangles
More informationMath2 Lesson 87: Unit 5 Review (Part 2)
Math Lesson 87: Unit 5 Review (Part ) Trigonometric Functions sin cos A A SOHCAHTOA Some old horse caught another horse taking oats away. opposite ( length ) o sin A hypotenuse ( length ) h SOH adjacent
More informationBe sure to label all answers and leave answers in exact simplified form.
Pythagorean Theorem word problems Solve each of the following. Please draw a picture and use the Pythagorean Theorem to solve. Be sure to label all answers and leave answers in exact simplified form. 1.
More informationUnit 5 Day 5: Law of Sines and the Ambiguous Case
Unit 5 Day 5: Law of Sines and the Ambiguous Case Warm Up: Day 5 Draw a picture and solve. Label the picture with numbers and words including the angle of elevation/depression and height/length. 1. The
More informationCLEP PreCalculus. Section 1: Time 30 Minutes 50 Questions. 1. According to the tables for f(x) and g(x) below, what is the value of [f + g]( 1)?
CLEP PreCalculus Section : Time 0 Minutes 50 Questions For each question below, choose the best answer from the choices given. An online graphing calculator (noncas) is allowed to be used for this section..
More informationGeometry Second Semester Review
Class: Date: Geometry Second Semester Review Short Answer 1. Identify the pairs of congruent angles and corresponding sides. 2. Determine whether the rectangles are similar. If so, write the similarity
More informationDay 4 Trig Applications HOMEWORK
Day 4 Trig Applications HOMEWORK 1. In ΔABC, a = 0, b = 1, and mc = 44º a) Find the length of side c to the nearest integer. b) Find the area of ΔABC to the nearest tenth.. In ΔABC, ma = 50º, a = 40, b
More information2. A circle is inscribed in a square of diagonal length 12 inches. What is the area of the circle?
March 24, 2011 1. When a square is cut into two congruent rectangles, each has a perimeter of P feet. When the square is cut into three congruent rectangles, each has a perimeter of P 6 feet. Determine
More information6. If QRSTU is a regular pentagon, what is the measure of T? 1. If STUV is a parallelogram, what are the coordinates of point U?
1. If UV is a parallelogram, what are the coordinates of point U?. If RU is a regular pentagon, what is the measure of? (0, y) U(?,?) (, 0) V( + z, 0) 7. hree siblings are to share an inheritance of $1,0
More informationUNIT 10 Trigonometry UNIT OBJECTIVES 287
UNIT 10 Trigonometry Literally translated, the word trigonometry means triangle measurement. Right triangle trigonometry is the study of the relationships etween the side lengths and angle measures of
More informationMR. JIMENEZ FINAL EXAM REVIEW GEOMETRY 2011
PAGE 1 1. The area of a circle is 25.5 in. 2. Find the circumference of the circle. Round your answers to the nearest tenth. 2. The circumference of a circle is 13.1 in. Find the area of the circle. Round
More informationYear 10 Term 3 Homework
Yimin Math Centre Year 10 Term 3 Homework Student Name: Grade: Date: Score: Table of contents 3 Year 10 Term 3 Week 3 Homework 1 3.1 Further trigonometry................................... 1 3.1.1 Trigonometric
More informationSM 2. Date: Section: Objective: The Pythagorean Theorem: In a triangle, or
SM 2 Date: Section: Objective: The Pythagorean Theorem: In a triangle, or. It doesn t matter which leg is a and which leg is b. The hypotenuse is the side across from the right angle. To find the length
More informationMathematics Placement Assessment
Mathematics Placement Assessment Courage, Humility, and Largeness of Heart Oldfields School Thank you for taking the time to complete this form accurately prior to returning this mathematics placement
More informationCK12 Geometry: Inverse Trigonometric Ratios
CK12 Geometry: Inverse Trigonometric Ratios Learning Objectives Use the inverse trigonometric ratios to find an angle in a right triangle. Solve a right triangle. Apply inverse trigonometric ratios to
More informationLATE AND ABSENT HOMEWORK IS ACCEPTED UP TO THE TIME OF THE CHAPTER TEST ON
Trig/Math Anal Name No LATE AND ABSENT HOMEWORK IS ACCEPTED UP TO THE TIME OF THE CHAPTER TEST ON HW NO. SECTIONS ASSIGNMENT DUE TT 1 1 Practice Set D TT 1 6 TT 1 7 TT TT 1 8 & Application Problems 1 9
More informationSummer Review for Students Entering PreCalculus with Trigonometry. TI84 Plus Graphing Calculator is required for this course.
Summer Review for Students Entering PreCalculus with Trigonometry 1. Using Function Notation and Identifying Domain and Range 2. Multiplying Polynomials and Solving Quadratics 3. Solving with Trig Ratios
More informationMoore Catholic High School Math Department
Moore Catholic High School Math Department Geometry Vocabulary The following is a list of terms and properties which are necessary for success in a Geometry class. You will be tested on these terms during
More informationSummer Review for Students Entering PreCalculus with Trigonometry. TI84 Plus Graphing Calculator is required for this course.
1. Using Function Notation and Identifying Domain and Range 2. Multiplying Polynomials and Solving Quadratics 3. Solving with Trig Ratios and Pythagorean Theorem 4. Multiplying and Dividing Rational Expressions
More informationWe start by looking at a double cone. Think of this as two pointy ice cream cones that are connected at the small tips:
Math 1330 Chapter 8 Conic Sections In this chapter, we will study conic sections (or conics). It is helpful to know exactly what a conic section is. This topic is covered in Chapter 8 of the online text.
More informationGeometry Second Semester Final Exam Review
Name: Class: Date: ID: A Geometry Second Semester Final Exam Review 1. Find the length of the leg of this right triangle. Give an approximation to 3 decimal places. 2. Find the length of the leg of this
More informationPRECALCULUS MATH Trigonometry 912
1. Find angle measurements in degrees and radians based on the unit circle. 1. Students understand the notion of angle and how to measure it, both in degrees and radians. They can convert between degrees
More informationGeometry Summative Review 2008
Geometry Summative Review 2008 Page 1 Name: ID: Class: Teacher: Date: Period: This printed test is for review purposes only. 1. ( 1.67% ) Which equation describes a circle centered at (2,3) and with radius
More informationLesson #64 First Degree Trigonometric Equations
Lesson #64 First Degree Trigonometric Equations A2.A.68 Solve trigonometric equations for all values of the variable from 0 to 360 How is the acronym ASTC used in trigonometry? If I wanted to put the reference
More informationChapter 4: Trigonometry
Chapter 4: Trigonometry Section 41: Radian and Degree Measure INTRODUCTION An angle is determined by rotating a ray about its endpoint. The starting position of the ray is the of the angle, and the position
More informationI. Model Problems II. Practice III. Challenge Problems IV. Answer Key. Sine, Cosine Tangent
On Twitter: twitter.com/engagingmath On FaceBook: www.mathworksheetsgo.com/facebook I. Model Problems II. Practice III. Challenge Problems IV. Answer Key Web Resources Sine, Cosine Tangent www.mathwarehouse.com/trigonometry/sinecosinetangent.html
More information2 nd Semester Final Exam Review
2 nd Semester Final xam Review I. Vocabulary hapter 7 cross products proportion scale factor dilation ratio similar extremes scale similar polygons indirect measurements scale drawing similarity ratio
More information1/2/2018. Unit 4.7: The Law of Sines and The Law of Cosines. WarmUp. Triangle That Just Aren t Right
WarmUp Example 7. A building is 60 ft high. From a distance at point A on the ground, the angle of elevation to the top of the building is 40º. From a little nearer at point B, the angle of elevation
More information5.1 Angles & Their Measures. Measurement of angle is amount of rotation from initial side to terminal side. radians = 60 degrees
.1 Angles & Their Measures An angle is determined by rotating array at its endpoint. Starting side is initial ending side is terminal Endpoint of ray is the vertex of angle. Origin = vertex Standard Position:
More informationGeometry. Cluster: Experiment with transformations in the plane. G.CO.1 G.CO.2. Common Core Institute
Geometry Cluster: Experiment with transformations in the plane. G.CO.1: Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of
More informationUnit 7  Similarity 2. The perimeter of a rectangle is 156 cm. The ratio of the length to the width is 9:4. Find the width of the rectangle.
Geometry B Final Exam Review Spring 2015 Name: 1. The ratio of the measures of the angles of a triangle is 4:5:6. What is the smallest angle s measure? Unit 7  Similarity 2. The perimeter of a rectangle
More informationName Trigonometric Functions 4.2H
TE31 Name Trigonometric Functions 4.H Ready, Set, Go! Ready Topic: Even and odd functions The graphs of even and odd functions make it easy to identify the type of function. Even functions have a line
More informationCCNY Math Review Chapters 5 and 6: Trigonometric functions and graphs
Ch 5. Trigonometry 6. Angles 6. Right triangles 6. Trig funs for general angles 5.: Trigonometric functions and graphs 5.5 Inverse functions CCNY Math Review Chapters 5 and 6: Trigonometric functions and
More informationWe start by looking at a double cone. Think of this as two pointy ice cream cones that are connected at the small tips:
Math 1330 Conic Sections In this chapter, we will study conic sections (or conics). It is helpful to know exactly what a conic section is. This topic is covered in Chapter 8 of the online text. We start
More informationTrigonometry and the Unit Circle. Chapter 4
Trigonometry and the Unit Circle Chapter 4 Topics Demonstrate an understanding of angles in standard position, expressed in degrees and radians. Develop and apply the equation of the unit circle. Solve
More informationGeometry Learning Targets
Geometry Learning Targets 2015 2016 G0. Algebra Prior Knowledge G0a. Simplify algebraic expressions. G0b. Solve a multistep equation. G0c. Graph a linear equation or find the equation of a line. G0d.
More informationChapter 4: Triangle and Trigonometry
Chapter 4: Triangle and Trigonometry Paper 1 & 2B 3.1.3 Triangles 3.1.3 Triangles 2A Understand a proof of Pythagoras Theorem. Understand the converse of Pythagoras Theorem. Use Pythagoras Trigonometry
More information4. Given Quadrilateral HIJG ~ Quadrilateral MNOL, find x and y. x =
Name: DUE: HOUR: 2016 2017 Geometry Final Exam Review 1. Find x. Round to the nearest hundredth. x = 2. Find x. x = 3. Given STU ~ PQR, find x. x = 4. Given Quadrilateral HIJG ~ Quadrilateral MNOL, find
More informationUNIT 5 TRIGONOMETRY Lesson 5.4: Calculating Sine, Cosine, and Tangent. Instruction. Guided Practice 5.4. Example 1
Lesson : Calculating Sine, Cosine, and Tangent Guided Practice Example 1 Leo is building a concrete pathway 150 feet long across a rectangular courtyard, as shown in the following figure. What is the length
More informationhypotenuse adjacent leg Preliminary Information: SOH CAH TOA is an acronym to represent the following three 28 m 28 m opposite leg 13 m
On Twitter: twitter.com/engagingmath On FaceBook: www.mathworksheetsgo.com/facebook I. odel Problems II. Practice Problems III. Challenge Problems IV. Answer ey Web Resources Using the inverse sine, cosine,
More informationExercise 1. Exercise 2. MAT 012 SS218 Worksheet 9 Sections Name: Consider the triangle drawn below. C. c a. A b
Consider the triangle drawn below. C Exercise 1 c a A b B 1. Suppose a = 5 and b = 12. Find c, and then find sin( A), cos( A), tan( A), sec( A), csc( A), and cot( A). 2. Now suppose a = 10 and b = 24.
More informationPrecalculus Chapter 4 Part 1 NAME: P.
Precalculus NAME: P. Date Day Lesson Assigned Due 2/12 Tuesday 4.3 Pg. 284: Vocab: 13. Ex: 1, 2, 713, 2732, 43, 44, 47 ac, 57, 58, 6366 (degrees only), 69, 72, 74, 75, 78, 79, 81, 82, 86, 90, 94,
More informationUNIT 4 MODULE 2: Geometry and Trigonometry
Year 12 Further Mathematics UNIT 4 MODULE 2: Geometry and Trigonometry CHAPTER 8  TRIGONOMETRY This module covers the application of geometric and trigonometric knowledge and techniques to various two
More informationMPM 2DI EXAM REVIEW. Monday, June 25, :30 am 10:00 am ROOM 116 * A PENCIL, SCIENTIFIC CALCULATOR AND RULER ARE REQUIRED *
NAME: MPM DI EXAM REVIEW Monday, June 5, 018 8:30 am 10:00 am ROOM 116 * A PENCIL, SCIENTIFIC CALCULATOR AND RULER ARE REQUIRED * Please Note: Your final mark in this course will be calculated as the better
More informationGEOMETRY SEMESTER 2 REVIEW PACKET 2016
GEOMETRY SEMESTER 2 REVIEW PACKET 2016 Your Geometry Final Exam will take place on Friday, May 27 th, 2016. Below is the list of review problems that will be due in order to prepare you: Assignment # Due
More informationThe Pythagorean Theorem: For a right triangle, the sum of the two leg lengths squared is equal to the length of the hypotenuse squared.
Math 1 TOOLKITS TOOLKIT: Pythagorean Theorem & Its Converse The Pythagorean Theorem: For a right triangle, the sum of the two leg lengths squared is equal to the length of the hypotenuse squared. a 2 +
More informationa. b. c. d. e. f. g. h.
Sec. Right Triangle Trigonometry Right Triangle Trigonometry Sides Find the requested unknown side of the following triangles. Name: a. b. c. d.? 44 8 5? 7? 44 9 58 0? e. f. g. h.?? 4 7 5? 38 44 6 49º?
More information