But, vision technology falls short. and so does graphics. Image Based Rendering. Ray. Constant radiance. time is fixed. 3D position 2D direction

Size: px
Start display at page:

Download "But, vision technology falls short. and so does graphics. Image Based Rendering. Ray. Constant radiance. time is fixed. 3D position 2D direction"

Transcription

1 Computer Graphics -based rendering Output Michael F. Cohen Microsoft Research Synthetic Camera Model Computer Vision Combined Output Output Model Real Scene Synthetic Camera Model Real Cameras Real Scene Real Cameras 1

2 But, vision technology falls short Output Output and so does graphics. Synthetic Camera Model Real Cameras Real Scene Synthetic Camera Model Real Cameras Real Scene Based Rendering Ray Output Constant radiance time is fixed Synthetic Camera Real Scene s+model Real Cameras -or- Expensive Synthesis 5D 3D position 2D direction 2

3 All Rays Line Plenoptic Function all possible images too much stuff! Infinite line 4D 2D direction 2D position Ray Discretize What is an image? Distance between 2 rays Which is closer together? All rays through a point Panorama? 3

4 plane 2D position of rays has been fixed direction remains 2D position Object plane Light leaving towards eye 2D position 2D just dual of image 4

5 Object Object All light leaving object 4D 2D position 2D direction Object Lumigraph All images How to organize capture render 5

6 Lumigraph - Organization Lumigraph - Organization 2D position 2D direction q s 2D position 2D position s u 2 plane parameterization Lumigraph - Organization Lumigraph - Organization 2D position 2D position t v Hold constant Let vary An image 2 plane parameterization s u 6

7 Lumigraph - Organization Discretization higher res near object if diffuse captures texture lower res away captures directions Lumigraph - Capture Idea 1 Move camera carefully over plane Gantry see Lightfield paper Lumigraph - Capture Lumigraph - Rendering Idea 2 Move camera anywhere Rebinning see Lumigraph paper For each output pixel determine, either find closest discrete RGB interpolate near values 7

8 Lumigraph - Rendering For each output pixel determine, Lumigraph - Rendering Nearest closest s closest u draw it either use closest discrete RGB interpolate near values s u Blend 16 nearest quadrilinear interpolation s u High-Quality Video View Interpolation Using a Layered Representation Larry Zitnick Sing Bing Kang Matt Uyttendaele Simon Winder Rick Szeliski Interactive Visual Media Group Microsoft Research Current practice free viewpoint video Many cameras vs. Motion Jitter 8

9 Current practice free viewpoint video Video view interpolation Many cameras vs. Motion Jitter Fewer cameras and Smooth Motion Automatic Real-time rendering Prior work: IBR (static) Prior work: IBR (dynamic) Plenoptic Modeling McMillan & Bishop, SIGGRAPH 95 Light Field Rendering Levoy & Hanrahan, SIGGRAPH 96 Stanford Multi-Camera Array Project Virtualized Reality TM Kanade et al., IEEE Multimedia 97 Dynamic Light Fields Goldlucke et al., VMV 02 The Lumigraph Gortler et al., SIGGRAPH 96 Concentric Mosaics Shum & He, SIGGRAPH 99 -Based Visual Hulls Matusik et al., SIGGRAPH 00 Free-viewpoint Video of Humans Carranza et al., SIGGRAPH 03 3D TV Matusik & Pfister, SIGGRAPH 04 9

10 System overview cameras OFFLINE Video Capture concentrators hard disks controlling laptop Stereo Representation Compression File ONLINE Selective Decompression Render Calibration Input videos Zhengyou Zhang,

11 Key to view interpolation: Geometry correspondence 1 2 Stereo Geometry 1 2 Leg Correct Good Incorrect Camera 1 Camera 2 Virtual Camera Wall Bad Match Score Match Score Local matching 1 2 Global regularization A Create MRF (Markov Random Field): 1 2 Low texture B C A E D F P Q A S U R T color A color B z A z B Each segment is a node Number z A z P of, zstates Q, z S = number of depth levels 11

12 Iteratively solve MRF Depth through time Matting Background Interpolated view without Surface matting Rendering with matting Foreground Surface No Matting Matting Background Strip Width Background Alpha Foreground Foreground Bayesian Matting Chuang et al Camera 12

13 Representation Main Background Boundary Boundary Layer: Strip Width Foreground Main Layer: Massive Arabesque videoclip Color Color Alpha Depth Depth 13

Image or Object? Is this real?

Image or Object? Is this real? Image or Object? Michael F. Cohen Microsoft Is this real? Photo by Patrick Jennings (patrick@synaptic.bc.ca), Copyright 1995, 96, 97 Whistler B. C. Canada Modeling, Rendering, and Lighting 1 A mental model?

More information

Modeling Light. Michal Havlik : Computational Photography Alexei Efros, CMU, Fall 2007

Modeling Light. Michal Havlik : Computational Photography Alexei Efros, CMU, Fall 2007 Modeling Light Michal Havlik 15-463: Computational Photography Alexei Efros, CMU, Fall 2007 The Plenoptic Function Figure by Leonard McMillan Q: What is the set of all things that we can ever see? A: The

More information

Image-Based Modeling and Rendering

Image-Based Modeling and Rendering Image-Based Modeling and Rendering Richard Szeliski Microsoft Research IPAM Graduate Summer School: Computer Vision July 26, 2013 How far have we come? Light Fields / Lumigraph - 1996 Richard Szeliski

More information

Modeling Light. Slides from Alexei A. Efros and others

Modeling Light. Slides from Alexei A. Efros and others Project 3 Results http://www.cs.brown.edu/courses/cs129/results/proj3/jcmace/ http://www.cs.brown.edu/courses/cs129/results/proj3/damoreno/ http://www.cs.brown.edu/courses/cs129/results/proj3/taox/ Stereo

More information

Image-Based Rendering

Image-Based Rendering Image-Based Rendering COS 526, Fall 2016 Thomas Funkhouser Acknowledgments: Dan Aliaga, Marc Levoy, Szymon Rusinkiewicz What is Image-Based Rendering? Definition 1: the use of photographic imagery to overcome

More information

Modeling Light. Michal Havlik

Modeling Light. Michal Havlik Modeling Light Michal Havlik 15-463: Computational Photography Alexei Efros, CMU, Spring 2010 What is light? Electromagnetic radiation (EMR) moving along rays in space R( ) is EMR, measured in units of

More information

Light Field Spring

Light Field Spring Light Field 2015 Spring Recall: Light is Electromagnetic radiation (EMR) moving along rays in space R(l) is EMR, measured in units of power (watts) l is wavelength Useful things: Light travels in straight

More information

Modeling Light. Michal Havlik : Computational Photography Alexei Efros, CMU, Fall 2011

Modeling Light. Michal Havlik : Computational Photography Alexei Efros, CMU, Fall 2011 Modeling Light Michal Havlik 15-463: Computational Photography Alexei Efros, CMU, Fall 2011 What is light? Electromagnetic radiation (EMR) moving along rays in space R(λ) is EMR, measured in units of power

More information

Modeling Light. Michal Havlik

Modeling Light. Michal Havlik Modeling Light Michal Havlik 15-463: Computational Photography Alexei Efros, CMU, Fall 2007 What is light? Electromagnetic radiation (EMR) moving along rays in space R(λ) is EMR, measured in units of power

More information

Image-based modeling (IBM) and image-based rendering (IBR)

Image-based modeling (IBM) and image-based rendering (IBR) Image-based modeling (IBM) and image-based rendering (IBR) CS 248 - Introduction to Computer Graphics Autumn quarter, 2005 Slides for December 8 lecture The graphics pipeline modeling animation rendering

More information

Real-Time Video-Based Rendering from Multiple Cameras

Real-Time Video-Based Rendering from Multiple Cameras Real-Time Video-Based Rendering from Multiple Cameras Vincent Nozick Hideo Saito Graduate School of Science and Technology, Keio University, Japan E-mail: {nozick,saito}@ozawa.ics.keio.ac.jp Abstract In

More information

More and More on Light Fields. Last Lecture

More and More on Light Fields. Last Lecture More and More on Light Fields Topics in Image-Based Modeling and Rendering CSE291 J00 Lecture 4 Last Lecture Re-review with emphasis on radiometry Mosaics & Quicktime VR The Plenoptic function The main

More information

A Review of Image- based Rendering Techniques Nisha 1, Vijaya Goel 2 1 Department of computer science, University of Delhi, Delhi, India

A Review of Image- based Rendering Techniques Nisha 1, Vijaya Goel 2 1 Department of computer science, University of Delhi, Delhi, India A Review of Image- based Rendering Techniques Nisha 1, Vijaya Goel 2 1 Department of computer science, University of Delhi, Delhi, India Keshav Mahavidyalaya, University of Delhi, Delhi, India Abstract

More information

Modeling Light. On Simulating the Visual Experience

Modeling Light. On Simulating the Visual Experience Modeling Light 15-463: Rendering and Image Processing Alexei Efros On Simulating the Visual Experience Just feed the eyes the right data No one will know the difference! Philosophy: Ancient question: Does

More information

Image-Based Modeling and Rendering

Image-Based Modeling and Rendering Traditional Computer Graphics Image-Based Modeling and Rendering Thomas Funkhouser Princeton University COS 426 Guest Lecture Spring 2003 How would you model and render this scene? (Jensen) How about this

More information

Multi-View Stereo for Static and Dynamic Scenes

Multi-View Stereo for Static and Dynamic Scenes Multi-View Stereo for Static and Dynamic Scenes Wolfgang Burgard Jan 6, 2010 Main references Yasutaka Furukawa and Jean Ponce, Accurate, Dense and Robust Multi-View Stereopsis, 2007 C.L. Zitnick, S.B.

More information

Real-time Generation and Presentation of View-dependent Binocular Stereo Images Using a Sequence of Omnidirectional Images

Real-time Generation and Presentation of View-dependent Binocular Stereo Images Using a Sequence of Omnidirectional Images Real-time Generation and Presentation of View-dependent Binocular Stereo Images Using a Sequence of Omnidirectional Images Abstract This paper presents a new method to generate and present arbitrarily

More information

Real Time Rendering. CS 563 Advanced Topics in Computer Graphics. Songxiang Gu Jan, 31, 2005

Real Time Rendering. CS 563 Advanced Topics in Computer Graphics. Songxiang Gu Jan, 31, 2005 Real Time Rendering CS 563 Advanced Topics in Computer Graphics Songxiang Gu Jan, 31, 2005 Introduction Polygon based rendering Phong modeling Texture mapping Opengl, Directx Point based rendering VTK

More information

Image-Based Modeling and Rendering. Image-Based Modeling and Rendering. Final projects IBMR. What we have learnt so far. What IBMR is about

Image-Based Modeling and Rendering. Image-Based Modeling and Rendering. Final projects IBMR. What we have learnt so far. What IBMR is about Image-Based Modeling and Rendering Image-Based Modeling and Rendering MIT EECS 6.837 Frédo Durand and Seth Teller 1 Some slides courtesy of Leonard McMillan, Wojciech Matusik, Byong Mok Oh, Max Chen 2

More information

A million pixels, a million polygons. Which is heavier? François X. Sillion. imagis* Grenoble, France

A million pixels, a million polygons. Which is heavier? François X. Sillion. imagis* Grenoble, France A million pixels, a million polygons. Which is heavier? François X. Sillion imagis* Grenoble, France *A joint research project of CNRS, INRIA, INPG and UJF MAGIS Why this question? Evolution of processing

More information

Re-live the Movie Matrix : From Harry Nyquist to Image-Based Rendering. Tsuhan Chen Carnegie Mellon University Pittsburgh, USA

Re-live the Movie Matrix : From Harry Nyquist to Image-Based Rendering. Tsuhan Chen Carnegie Mellon University Pittsburgh, USA Re-live the Movie Matrix : From Harry Nyquist to Image-Based Rendering Tsuhan Chen tsuhan@cmu.edu Carnegie Mellon University Pittsburgh, USA Some History IEEE Multimedia Signal Processing (MMSP) Technical

More information

Capturing and View-Dependent Rendering of Billboard Models

Capturing and View-Dependent Rendering of Billboard Models Capturing and View-Dependent Rendering of Billboard Models Oliver Le, Anusheel Bhushan, Pablo Diaz-Gutierrez and M. Gopi Computer Graphics Lab University of California, Irvine Abstract. In this paper,

More information

Announcements. Light. Properties of light. Light. Project status reports on Wednesday. Readings. Today. Readings Szeliski, 2.2, 2.3.

Announcements. Light. Properties of light. Light. Project status reports on Wednesday. Readings. Today. Readings Szeliski, 2.2, 2.3. Announcements Project status reports on Wednesday prepare 5 minute ppt presentation should contain: problem statement (1 slide) description of approach (1 slide) some images (1 slide) current status +

More information

CSCI 1290: Comp Photo

CSCI 1290: Comp Photo CSCI 1290: Comp Photo Fall 2018 @ Brown University James Tompkin Many slides thanks to James Hays old CS 129 course, along with all of its acknowledgements. What do we see? 3D world 2D image Point of observation

More information

Computational Photography

Computational Photography End of Semester is the last lecture of new material Quiz on Friday 4/30 Sample problems are posted on website Computational Photography Final Project Presentations Wednesday May 12 1-5pm, CII 4040 Attendance

More information

Image Base Rendering: An Introduction

Image Base Rendering: An Introduction Image Base Rendering: An Introduction Cliff Lindsay CS563 Spring 03, WPI 1. Introduction Up to this point, we have focused on showing 3D objects in the form of polygons. This is not the only approach to

More information

Light Fields. Johns Hopkins Department of Computer Science Course : Rendering Techniques, Professor: Jonathan Cohen

Light Fields. Johns Hopkins Department of Computer Science Course : Rendering Techniques, Professor: Jonathan Cohen Light Fields Light Fields By Levoy and Hanrahan, SIGGRAPH 96 Representation for sampled plenoptic function stores data about visible light at various positions and directions Created from set of images

More information

Image-based rendering using plane-sweeping modelisation

Image-based rendering using plane-sweeping modelisation Author manuscript, published in "IAPR Machine Vision and Applications MVA2005, Japan (2005)" Image-based rendering using plane-sweeping modelisation Vincent Nozick, Sylvain Michelin and Didier Arquès Marne

More information

VIDEO FOR VIRTUAL REALITY LIGHT FIELD BASICS JAMES TOMPKIN

VIDEO FOR VIRTUAL REALITY LIGHT FIELD BASICS JAMES TOMPKIN VIDEO FOR VIRTUAL REALITY LIGHT FIELD BASICS JAMES TOMPKIN WHAT IS A LIGHT FIELD? Light field seems to have turned into a catch-all term for many advanced camera/display technologies. WHAT IS A LIGHT FIELD?

More information

Image-Based Rendering. Johns Hopkins Department of Computer Science Course : Rendering Techniques, Professor: Jonathan Cohen

Image-Based Rendering. Johns Hopkins Department of Computer Science Course : Rendering Techniques, Professor: Jonathan Cohen Image-Based Rendering Image-Based Rendering What is it? Still a difficult question to answer Uses images (photometric( info) as key component of model representation What s Good about IBR Model acquisition

More information

Morphable 3D-Mosaics: a Hybrid Framework for Photorealistic Walkthroughs of Large Natural Environments

Morphable 3D-Mosaics: a Hybrid Framework for Photorealistic Walkthroughs of Large Natural Environments Morphable 3D-Mosaics: a Hybrid Framework for Photorealistic Walkthroughs of Large Natural Environments Nikos Komodakis and Georgios Tziritas Computer Science Department, University of Crete E-mails: {komod,

More information

Hybrid Rendering for Collaborative, Immersive Virtual Environments

Hybrid Rendering for Collaborative, Immersive Virtual Environments Hybrid Rendering for Collaborative, Immersive Virtual Environments Stephan Würmlin wuermlin@inf.ethz.ch Outline! Rendering techniques GBR, IBR and HR! From images to models! Novel view generation! Putting

More information

A million pixels, a million polygons: which is heavier?

A million pixels, a million polygons: which is heavier? A million pixels, a million polygons: which is heavier? François X. Sillion To cite this version: François X. Sillion. A million pixels, a million polygons: which is heavier?. Eurographics 97, Sep 1997,

More information

Rendering by Manifold Hopping

Rendering by Manifold Hopping International Journal of Computer Vision 50(2), 185 201, 2002 c 2002 Kluwer Academic Publishers. Manufactured in The Netherlands. Rendering by Manifold Hopping HEUNG-YEUNG SHUM, LIFENG WANG, JIN-XIANG

More information

Active Scene Capturing for Image-Based Rendering with a Light Field Setup

Active Scene Capturing for Image-Based Rendering with a Light Field Setup Active Scene Capturing for Image-Based Rendering with a Light Field Setup Cha Zhang and Tsuhan Chen Advanced Multimedia Processing Lab Technical Report AMP 03-02 March 2003 Electrical and Computer Engineering

More information

Multi-view stereo. Many slides adapted from S. Seitz

Multi-view stereo. Many slides adapted from S. Seitz Multi-view stereo Many slides adapted from S. Seitz Beyond two-view stereo The third eye can be used for verification Multiple-baseline stereo Pick a reference image, and slide the corresponding window

More information

Using Shape Priors to Regularize Intermediate Views in Wide-Baseline Image-Based Rendering

Using Shape Priors to Regularize Intermediate Views in Wide-Baseline Image-Based Rendering Using Shape Priors to Regularize Intermediate Views in Wide-Baseline Image-Based Rendering Cédric Verleysen¹, T. Maugey², P. Frossard², C. De Vleeschouwer¹ ¹ ICTEAM institute, UCL (Belgium) ; ² LTS4 lab,

More information

Structure from Motion and Multi- view Geometry. Last lecture

Structure from Motion and Multi- view Geometry. Last lecture Structure from Motion and Multi- view Geometry Topics in Image-Based Modeling and Rendering CSE291 J00 Lecture 5 Last lecture S. J. Gortler, R. Grzeszczuk, R. Szeliski,M. F. Cohen The Lumigraph, SIGGRAPH,

More information

Multiview imaging (MVI) has attracted considerable attention recently due to. Image-Based Rendering and Synthesis

Multiview imaging (MVI) has attracted considerable attention recently due to. Image-Based Rendering and Synthesis [ S.C. Chan, Heung-Yeung Shum, and King-To Ng ] BRAND X PICTURES Image-Based Rendering and Synthesis [Technological advances and challenges] Multiview imaging (MVI) has attracted considerable attention

More information

A unified approach for motion analysis and view synthesis Λ

A unified approach for motion analysis and view synthesis Λ A unified approach for motion analysis and view synthesis Λ Alex Rav-Acha Shmuel Peleg School of Computer Science and Engineering The Hebrew University of Jerusalem 994 Jerusalem, Israel Email: falexis,pelegg@cs.huji.ac.il

More information

Active Rearranged Capturing of Image-Based Rendering Scenes Theory and Practice

Active Rearranged Capturing of Image-Based Rendering Scenes Theory and Practice Active Rearranged Capturing of Image-Based Rendering Scenes Theory and Practice Cha Zhang, Member, IEEE, and Tsuhan Chen, Senior Member, IEEE Abstract In this paper, we propose to capture image-based rendering

More information

Depth Images: Representations and Real-time Rendering

Depth Images: Representations and Real-time Rendering Depth Images: Representations and Real-time Rendering Pooja Verlani, Aditi Goswami, P. J. Narayanan Centre for Visual Information Technology IIIT, Hyderabad 2 INDIA pjn@iiit.ac.in Shekhar Dwivedi GE JFWTC

More information

CSc Topics in Computer Graphics 3D Photography

CSc Topics in Computer Graphics 3D Photography CSc 83010 Topics in Computer Graphics 3D Photography Tuesdays 11:45-1:45 1:45 Room 3305 Ioannis Stamos istamos@hunter.cuny.edu Office: 1090F, Hunter North (Entrance at 69 th bw/ / Park and Lexington Avenues)

More information

Image-Based Rendering. Johns Hopkins Department of Computer Science Course : Rendering Techniques, Professor: Jonathan Cohen

Image-Based Rendering. Johns Hopkins Department of Computer Science Course : Rendering Techniques, Professor: Jonathan Cohen Image-Based Rendering Image-Based Rendering What is it? Still a difficult question to answer Uses images (photometric( info) as key component of model representation What s Good about IBR Model acquisition

More information

A Warping-based Refinement of Lumigraphs

A Warping-based Refinement of Lumigraphs A Warping-based Refinement of Lumigraphs Wolfgang Heidrich, Hartmut Schirmacher, Hendrik Kück, Hans-Peter Seidel Computer Graphics Group University of Erlangen heidrich,schirmacher,hkkueck,seidel@immd9.informatik.uni-erlangen.de

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 12 130228 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Panoramas, Mosaics, Stitching Two View Geometry

More information

View Synthesis for Multiview Video Compression

View Synthesis for Multiview Video Compression View Synthesis for Multiview Video Compression Emin Martinian, Alexander Behrens, Jun Xin, and Anthony Vetro email:{martinian,jxin,avetro}@merl.com, behrens@tnt.uni-hannover.de Mitsubishi Electric Research

More information

ARTICLE IN PRESS. Signal Processing: Image Communication

ARTICLE IN PRESS. Signal Processing: Image Communication Signal Processing: Image Communication 24 (2009) 65 72 Contents lists available at ScienceDirect Signal Processing: Image Communication journal homepage: www.elsevier.com/locate/image View generation with

More information

PAPER Three-Dimensional Scene Walkthrough System Using Multiple Acentric Panorama View (APV) Technique

PAPER Three-Dimensional Scene Walkthrough System Using Multiple Acentric Panorama View (APV) Technique IEICE TRANS. INF. & SYST., VOL.E86 D, NO.1 JANUARY 2003 117 PAPER Three-Dimensional Scene Walkthrough System Using Multiple Acentric Panorama View (APV) Technique Ping-Hsien LIN and Tong-Yee LEE, Nonmembers

More information

Free-viewpoint video renderer

Free-viewpoint video renderer jgt08 2008/9/26 14:24 page 1 #1 Vol. [VOL], No. [ISS]: 1 13 Free-viewpoint video renderer J. Starck, J. Kilner, and A. Hilton Centre for Vision, Speech and Signal Processing, University of Surrey, UK.

More information

3D Image Analysis and Synthesis at MPI Informatik

3D Image Analysis and Synthesis at MPI Informatik Vision, Video, and Graphics (2005) E. Trucco, M. Chantler (Editors) 3D Image Analysis and Synthesis at MPI Informatik Christian Theobalt, Marcus A. Magnor, and Hans-Peter Seidel Max-Planck-Institut für

More information

Efficient Free Form Light Field Rendering

Efficient Free Form Light Field Rendering Efficient Free Form Light Field Rendering Hartmut Schirmacher, Christian Vogelgsang, Hans-Peter Seidel, Günther Greiner Max-Planck-Institut für Informatik Stuhlsatzenhausweg 85, 66123 Saarbrücken Computer

More information

The Plenoptic videos: Capturing, Rendering and Compression. Chan, SC; Ng, KT; Gan, ZF; Chan, KL; Shum, HY.

The Plenoptic videos: Capturing, Rendering and Compression. Chan, SC; Ng, KT; Gan, ZF; Chan, KL; Shum, HY. Title The Plenoptic videos: Capturing, Rendering and Compression Author(s) Chan, SC; Ng, KT; Gan, ZF; Chan, KL; Shum, HY Citation IEEE International Symposium on Circuits and Systems Proceedings, Vancouver,

More information

Player Viewpoint Video Synthesis Using Multiple Cameras

Player Viewpoint Video Synthesis Using Multiple Cameras Player Viewpoint Video Synthesis Using Multiple Cameras Kenji Kimura *, Hideo Saito Department of Information and Computer Science Keio University, Yokohama, Japan * k-kimura@ozawa.ics.keio.ac.jp, saito@ozawa.ics.keio.ac.jp

More information

Computational Photography

Computational Photography Computational Photography Matthias Zwicker University of Bern Fall 2010 Today Light fields Introduction Light fields Signal processing analysis Light field cameras Application Introduction Pinhole camera

More information

An Algorithm for Seamless Image Stitching and Its Application

An Algorithm for Seamless Image Stitching and Its Application An Algorithm for Seamless Image Stitching and Its Application Jing Xing, Zhenjiang Miao, and Jing Chen Institute of Information Science, Beijing JiaoTong University, Beijing 100044, P.R. China Abstract.

More information

Color Source Separation for Enhanced Pixel Manipulations MSR-TR

Color Source Separation for Enhanced Pixel Manipulations MSR-TR Color Source Separation for Enhanced Pixel Manipulations MSR-TR-2-98 C. Lawrence Zitnick Microsoft Research larryz@microsoft.com Devi Parikh Toyota Technological Institute, Chicago (TTIC) dparikh@ttic.edu

More information

Image-Based Rendering and Light Fields

Image-Based Rendering and Light Fields CS194-13: Advanced Computer Graphics Lecture #9 Image-Based Rendering University of California Berkeley Image-Based Rendering and Light Fields Lecture #9: Wednesday, September 30th 2009 Lecturer: Ravi

More information

Layered Depth Panoramas

Layered Depth Panoramas Layered Depth Panoramas Ke Colin Zheng 1, Sing Bing Kang 2 Michael F. Cohen 2, Richard Szeliski 2 1 University of Washington, Seattle, WA 2 Microsoft Research, Redmond, WA Abstract Representations for

More information

Real-time Plane-Sweep with local strategy

Real-time Plane-Sweep with local strategy Real-time Plane-Sweep with local strategy Vincent Nozick Sylvain Michelin Didier Arquès SISAR team, Marne-la-Vallée University, ISIS Laboratory, 6 cours du Danube, France, 77 700 Serris {vnozick,michelin,arques}@univ-mlv.fr

More information

Algorithms for Image-Based Rendering with an Application to Driving Simulation

Algorithms for Image-Based Rendering with an Application to Driving Simulation Algorithms for Image-Based Rendering with an Application to Driving Simulation George Drettakis GRAPHDECO/Inria Sophia Antipolis, Université Côte d Azur http://team.inria.fr/graphdeco Graphics for Driving

More information

New Frontier in Visual Communication and Networking: Multi-View Imaging. Professor Tsuhan Chen 陳祖翰

New Frontier in Visual Communication and Networking: Multi-View Imaging. Professor Tsuhan Chen 陳祖翰 New Frontier in Visual Communication and Networking: Multi-View Imaging Professor Tsuhan Chen 陳祖翰 tsuhan@cmu.edu Carnegie Mellon University Pittsburgh, USA A 10-Year Journey IEEE Multimedia Signal Processing

More information

Polyhedral Visual Hulls for Real-Time Rendering

Polyhedral Visual Hulls for Real-Time Rendering Polyhedral Visual Hulls for Real-Time Rendering Wojciech Matusik Chris Buehler Leonard McMillan MIT Laboratory for Computer Science Abstract. We present new algorithms for creating and rendering visual

More information

Advanced Image Based Rendering Techniques

Advanced Image Based Rendering Techniques Advanced Image Based Rendering Techniques Herbert Grasberger Institute of Computergraphics & Algorithms, TU Vienna, Austria June 13, 2006 Abstract Image Based Rendering is a rendering approach based on

More information

Multi-View Imaging: Capturing and Rendering Interactive Environments

Multi-View Imaging: Capturing and Rendering Interactive Environments Multi-View Imaging: Capturing and Rendering Interactive Environments Cha Zhang Microsoft Research One Microsoft Way, Redmond WA 98052 Email: chazhang@microsoft.com Tsuhan Chen ECE, Carnegie Mellon University

More information

Joint Tracking and Multiview Video Compression

Joint Tracking and Multiview Video Compression Joint Tracking and Multiview Video Compression Cha Zhang and Dinei Florêncio Communication and Collaborations Systems Group Microsoft Research, Redmond, WA, USA 98052 {chazhang,dinei}@microsoft.com ABSTRACT

More information

Volumetric Scene Reconstruction from Multiple Views

Volumetric Scene Reconstruction from Multiple Views Volumetric Scene Reconstruction from Multiple Views Chuck Dyer University of Wisconsin dyer@cs cs.wisc.edu www.cs cs.wisc.edu/~dyer Image-Based Scene Reconstruction Goal Automatic construction of photo-realistic

More information

View Synthesis for Multiview Video Compression

View Synthesis for Multiview Video Compression MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com View Synthesis for Multiview Video Compression Emin Martinian, Alexander Behrens, Jun Xin, and Anthony Vetro TR2006-035 April 2006 Abstract

More information

Lecture 15: Image-Based Rendering and the Light Field. Kayvon Fatahalian CMU : Graphics and Imaging Architectures (Fall 2011)

Lecture 15: Image-Based Rendering and the Light Field. Kayvon Fatahalian CMU : Graphics and Imaging Architectures (Fall 2011) Lecture 15: Image-Based Rendering and the Light Field Kayvon Fatahalian CMU 15-869: Graphics and Imaging Architectures (Fall 2011) Demo (movie) Royal Palace: Madrid, Spain Image-based rendering (IBR) So

More information

Multiple View Geometry

Multiple View Geometry Multiple View Geometry Martin Quinn with a lot of slides stolen from Steve Seitz and Jianbo Shi 15-463: Computational Photography Alexei Efros, CMU, Fall 2007 Our Goal The Plenoptic Function P(θ,φ,λ,t,V

More information

Light Field Techniques for Reflections and Refractions

Light Field Techniques for Reflections and Refractions Light Field Techniques for Reflections and Refractions Wolfgang Heidrich, Hendrik Lensch, Michael F. Cohen, Hans-Peter Seidel Max-Planck-Institute for Computer Science {heidrich,lensch,seidel}@mpi-sb.mpg.de

More information

FAST ALGORITHM FOR CREATING IMAGE-BASED STEREO IMAGES

FAST ALGORITHM FOR CREATING IMAGE-BASED STEREO IMAGES FAST AGRITHM FR CREATING IMAGE-BASED STERE IMAGES Przemysław Kozankiewicz Institute of Computer Science, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, Poland pkozanki@ii.pw.edu.pl

More information

CONVERSION OF FREE-VIEWPOINT 3D MULTI-VIEW VIDEO FOR STEREOSCOPIC DISPLAYS

CONVERSION OF FREE-VIEWPOINT 3D MULTI-VIEW VIDEO FOR STEREOSCOPIC DISPLAYS CONVERSION OF FREE-VIEWPOINT 3D MULTI-VIEW VIDEO FOR STEREOSCOPIC DISPLAYS Luat Do 1, Svitlana Zinger 1, and Peter H. N. de With 1,2 1 Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven,

More information

Traditional Image Generation. Reflectance Fields. The Light Field. The Light Field. The Light Field. The Light Field

Traditional Image Generation. Reflectance Fields. The Light Field. The Light Field. The Light Field. The Light Field Traditional Image Generation Course 10 Realistic Materials in Computer Graphics Surfaces + BRDFs Reflectance Fields USC Institute for Creative Technologies Volumetric scattering, density fields, phase

More information

Approach to Minimize Errors in Synthesized. Abstract. A new paradigm, the minimization of errors in synthesized images, is

Approach to Minimize Errors in Synthesized. Abstract. A new paradigm, the minimization of errors in synthesized images, is VR Models from Epipolar Images: An Approach to Minimize Errors in Synthesized Images Mikio Shinya, Takafumi Saito, Takeaki Mori and Noriyoshi Osumi NTT Human Interface Laboratories Abstract. A new paradigm,

More information

Real-Time Free Viewpoint from Multiple Moving Cameras

Real-Time Free Viewpoint from Multiple Moving Cameras Real-Time Free Viewpoint from Multiple Moving Cameras Vincent Nozick 1,2 and Hideo Saito 2 1 Gaspard Monge Institute, UMR 8049, Marne-la-Vallée University, France 2 Graduate School of Science and Technology,

More information

Image-Based Rendering. Image-Based Rendering

Image-Based Rendering. Image-Based Rendering Image-Based Rendering Image-Based Rendering What is it? Still a difficult question to answer Uses images (photometric info) as key component of model representation 1 What s Good about IBR Model acquisition

More information

Modeling, Combining, and Rendering Dynamic Real-World Events From Image Sequences

Modeling, Combining, and Rendering Dynamic Real-World Events From Image Sequences Modeling, Combining, and Rendering Dynamic Real-World Events From Image s Sundar Vedula, Peter Rander, Hideo Saito, and Takeo Kanade The Robotics Institute Carnegie Mellon University Abstract Virtualized

More information

Jingyi Yu CISC 849. Department of Computer and Information Science

Jingyi Yu CISC 849. Department of Computer and Information Science Digital Photography and Videos Jingyi Yu CISC 849 Light Fields, Lumigraph, and Image-based Rendering Pinhole Camera A camera captures a set of rays A pinhole camera captures a set of rays passing through

More information

The Light Field and Image-Based Rendering

The Light Field and Image-Based Rendering Lecture 11: The Light Field and Image-Based Rendering Visual Computing Systems Demo (movie) Royal Palace: Madrid, Spain Image-based rendering (IBR) So far in course: rendering = synthesizing an image from

More information

Real-Time Video- Based Modeling and Rendering of 3D Scenes

Real-Time Video- Based Modeling and Rendering of 3D Scenes Image-Based Modeling, Rendering, and Lighting Real-Time Video- Based Modeling and Rendering of 3D Scenes Takeshi Naemura Stanford University Junji Tago and Hiroshi Harashima University of Tokyo In research

More information

Projective Texture Mapping with Full Panorama

Projective Texture Mapping with Full Panorama EUROGRAPHICS 2002 / G. Drettakis and H.-P. Seidel Volume 21 (2002), Number 3 (Guest Editors) Projective Texture Mapping with Full Panorama Dongho Kim and James K. Hahn Department of Computer Science, The

More information

IMAGE-BASED RENDERING TECHNIQUES FOR APPLICATION IN VIRTUAL ENVIRONMENTS

IMAGE-BASED RENDERING TECHNIQUES FOR APPLICATION IN VIRTUAL ENVIRONMENTS IMAGE-BASED RENDERING TECHNIQUES FOR APPLICATION IN VIRTUAL ENVIRONMENTS Xiaoyong Sun A Thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for

More information

Towards a Perceptual Method of Blending for Image-Based Models

Towards a Perceptual Method of Blending for Image-Based Models Towards a Perceptual Method of Blending for Image-Based Models Gordon Watson, Patrick O Brien and Mark Wright Edinburgh Virtual Environment Centre University of Edinburgh JCMB, Mayfield Road, Edinburgh

More information

A virtual tour of free viewpoint rendering

A virtual tour of free viewpoint rendering A virtual tour of free viewpoint rendering Cédric Verleysen ICTEAM institute, Université catholique de Louvain, Belgium cedric.verleysen@uclouvain.be Organization of the presentation Context Acquisition

More information

High-Quality Interactive Lumigraph Rendering Through Warping

High-Quality Interactive Lumigraph Rendering Through Warping High-Quality Interactive Lumigraph Rendering Through Warping Hartmut Schirmacher, Wolfgang Heidrich, and Hans-Peter Seidel Max-Planck-Institut für Informatik Saarbrücken, Germany http://www.mpi-sb.mpg.de

More information

Image Based Rendering

Image Based Rendering Image Based Rendering an overview Photographs We have tools that acquire and tools that display photographs at a convincing quality level 2 1 3 4 2 5 6 3 7 8 4 9 10 5 Photographs We have tools that acquire

More information

Pipeline Operations. CS 4620 Lecture 10

Pipeline Operations. CS 4620 Lecture 10 Pipeline Operations CS 4620 Lecture 10 2008 Steve Marschner 1 Hidden surface elimination Goal is to figure out which color to make the pixels based on what s in front of what. Hidden surface elimination

More information

View Generation for Free Viewpoint Video System

View Generation for Free Viewpoint Video System View Generation for Free Viewpoint Video System Gangyi JIANG 1, Liangzhong FAN 2, Mei YU 1, Feng Shao 1 1 Faculty of Information Science and Engineering, Ningbo University, Ningbo, 315211, China 2 Ningbo

More information

Computational Photography: Real Time Plenoptic Rendering

Computational Photography: Real Time Plenoptic Rendering Computational Photography: Real Time Plenoptic Rendering Andrew Lumsdaine, Georgi Chunev Indiana University Todor Georgiev Adobe Systems Who was at the Keynote Yesterday? 2 Overview Plenoptic cameras Rendering

More information

Other approaches to obtaining 3D structure

Other approaches to obtaining 3D structure Other approaches to obtaining 3D structure Active stereo with structured light Project structured light patterns onto the object simplifies the correspondence problem Allows us to use only one camera camera

More information

Augmented and Mixed Reality

Augmented and Mixed Reality Augmented and Mixed Reality Uma Mudenagudi Dept. of Computer Science and Engineering, Indian Institute of Technology Delhi Outline Introduction to Augmented Reality(AR) and Mixed Reality(MR) A Typical

More information

Focal stacks and lightfields

Focal stacks and lightfields Focal stacks and lightfields http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 11 Course announcements Homework 3 is out. - Due October 12 th.

More information

Determining Reflectance Parameters and Illumination Distribution from a Sparse Set of Images for View-dependent Image Synthesis

Determining Reflectance Parameters and Illumination Distribution from a Sparse Set of Images for View-dependent Image Synthesis Determining Reflectance Parameters and Illumination Distribution from a Sparse Set of Images for View-dependent Image Synthesis Ko Nishino, Zhengyou Zhang and Katsushi Ikeuchi Dept. of Info. Science, Grad.

More information

Compression of Lumigraph with Multiple Reference Frame (MRF) Prediction and Just-in-time Rendering

Compression of Lumigraph with Multiple Reference Frame (MRF) Prediction and Just-in-time Rendering Compression of Lumigraph with Multiple Reference Frame (MRF) Prediction and Just-in-time Rendering Cha Zhang * and Jin Li Dept. of Electronic Engineering, Tsinghua University, Beijing 100084, China Microsoft

More information

DATA FORMAT AND CODING FOR FREE VIEWPOINT VIDEO

DATA FORMAT AND CODING FOR FREE VIEWPOINT VIDEO DATA FORMAT AND CODING FOR FREE VIEWPOINT VIDEO P. Kauff, A. Smolic, P. Eisert, C. Fehn. K. Müller, R. Schäfer Fraunhofer Institute for Telecommunications, Heinrich-Hertz-Institut (FhG/HHI), Berlin, Germany

More information

On-line Free-viewpoint Video: From Single to Multiple View Rendering

On-line Free-viewpoint Video: From Single to Multiple View Rendering International Journal of Automation and Computing 05(3), July 2008, 257-267 DOI: 10.1007/s11633-008-0257-y On-line Free-viewpoint Video: From Single to Multiple View Rendering Vincent Nozick Hideo Saito

More information

Efficient View-Dependent Image-Based Rendering with Projective Texture-Mapping

Efficient View-Dependent Image-Based Rendering with Projective Texture-Mapping Efficient View-Dependent Image-Based Rendering with Projective Texture-Mapping Paul Debevec, Yizhou Yu, and George Borshukov Univeristy of California at Berkeley debevec@cs.berkeley.edu Abstract. This

More information

An object-based approach to plenoptic videos. Proceedings - Ieee International Symposium On Circuits And Systems, 2005, p.

An object-based approach to plenoptic videos. Proceedings - Ieee International Symposium On Circuits And Systems, 2005, p. Title An object-based approach to plenoptic videos Author(s) Gan, ZF; Chan, SC; Ng, KT; Shum, HY Citation Proceedings - Ieee International Symposium On Circuits And Systems, 2005, p. 3435-3438 Issued Date

More information

Hardware-accelerated Dynamic Light Field Rendering

Hardware-accelerated Dynamic Light Field Rendering Hardware-accelerated Dynamic Light Field Rendering Bastian Goldlücke, Marcus Magnor, Bennett Wilburn Max-Planck-Institut für Informatik Graphics - Optics - Vision Stuhlsatzenhausweg 85, 66123 Saarbrücken,

More information