Computational Design. Stelian Coros

Size: px
Start display at page:

Download "Computational Design. Stelian Coros"

Transcription

1 Computational Design Stelian Coros

2 Schedule for presentations February March April Send me: ASAP: 3 choices for dates + approximate topic (scheduling) 1-2 weeks before your presentation: list of papers you plan to talk about Day before each presentation: 3 questions for one of the papers that will be discussed

3 Next class Visit the Digital Fabrication Lab

4 Mini-assignment

5 Computational Design Need a parameterized model Mathematical formulation that predicts behavior of a system Examples? CAD systems Expose design parameters Use mathematical model to preview outcome What do you want from a CAD system?

6 Computational Design Forward design: direct manipulation of design parameters Level of abstraction Exploration of design spaces Inverse design: automatically infer design parameters from functional specifications Optimization-based

7 Forward Design Editing 3D Models as an example

8 Editing 3D Models Options: Directly edit mesh vertices Finding the right level of abstraction is key!

9 Editing 3D Models Options: Directly edit mesh vertices Finding the right level of abstraction is key! Cage-based editing

10 Cage-based mesh editing Embed 3D model in a coarse mesh (cage) Edit cage vertices, deform model with it automatically

11 Cage-based mesh editing Computing Appropriate Weights Harmonic coordinates, mean value coordinates, bounded biharmonic weights, etc. Want: Smoothness Monotonicity Non-negativity Partition of unity Locality and sparsity Simple approach: Barycentric coordinates (volumetric cages)

12 Barycentric coordinates Ratio of areas (volumes in 3D) Conceptually the same in higher dimensions

13 Cage-based mesh editing can t precisely control surface properties

14 Editing 3D Models Options: Directly edit mesh vertices Finding the right level of abstraction is key! Cage-based editing Skeletal Rigs

15 Skeletal Rigs

16 Skeletal Rigs

17 Skeletal Rigs

18 Skeletal Rigs Recent research aims to automate each step construct rig compute weights choose transforms

19 Skeletal Rigs Recent research aims to automate each step construct rig compute weights choose transforms

20 From shape to skeleton Skeleton implies shape and shape implies skeleton Medial Axis (topological skeleton)

21 Surface flow degenerates to skeleton approximating medial axis

22 Medial axis [Au et al. 2008]

23 Skeletal Rigs Recent research aims to automate each step construct rig compute weights choose transforms

24 Weight computation The closer to a bone a vertex is, the larger the weight should be

25 Weight computation

26 Weight computation Want a measure of distance that is shape-aware!

27 Weight computation

28 Skeletal Rigs Recent research aims to automate each step construct rig compute weights choose transforms

29 Editing 3D Models Options: Directly edit mesh vertices Finding the right level of abstraction is key! Cage-based editing Skeletal Rigs High-level surface editing

30 As-Rigid-As-Possible Surface Modeling (Sorkine & Alexa, 2007) What do we want? Smooth deformations Precise control over specific features As-rigid-as-possible deformations for details Ease of use

31 As-Rigid-As-Possible Surface Modeling (Sorkine & Alexa, 2007) Main idea: Preserve shape of surface patches as much as possible (subject to user constraints) Surface patches should overlap to prevent bending

32 As-Rigid-As-Possible Surface Modeling (Sorkine & Alexa, 2007) Surface patches 1 ring neighbor for each vertex

33 As-Rigid-As-Possible Deformations Approach 1: differential coordinates the relative/differential coordinate vector average of the neighbors

34 Why differential coordinates? They represent the local detail / local shape description The direction approximates the normal The size approximates the mean curvature

35 Reconstruction Reconstruct position of each vertex using differential coordinates and neighborhood positions: Find v i such that as close as possible to

36 Reconstruction Or, in matrix form:

37 Reconstruction

38 Problems? Not rotation invariant!!! Can we do better?

39 v i v j 1 Rotation-invariant deformation energy Ask each 1-ring neighborhood to transform rigidly up to some rotation R v j 2 min ( v i v j ) Ri ( vi v j ) j N () i 2

40 Deformations and Rotations If v, v are known then R i is uniquely defined v j 2 v j2 v i v j1 v i v j1 R i Compute deformation gradient F s.t. V = F V Polar Decomposition: F = R D F = U W T ; R = UW T Positive semi-definite, symmetric matrix representing deformations (stretch, shear)

41 Energy formulation Can formulate overall energy as: n min ( v v ) R ( v v ) v i 1 j N ( i) i j i i j s. t. v c, j C j j 2 v and R treated as separate sets of variables

42 Iterative solver Alternating iterations Given initial guess v 0, find optimal rotations R i Easy to parallelize Keep R i fixed, minimize the energy by finding new v n min ( v v ) R ( v v ) v i 1 j N ( i) i j i i j 2

43 Iterative solver Alternating iterations Given initial guess v 0, find optimal rotations R i Easy to parallelize Keep R i fixed, minimize the energy by finding new v Lv b Uniform mesh Laplacian

44 Iterative solver Each iteration decreases the energy (or at least guarantees not to increase it) The matrix L stays fixed Precompute factorization back-substitute in each iteration (+ the SVD computations) Lv b

45 As-Rigid-As-Possible Surface Modeling

46 Surface vs volumetric models

47 Editing 3D Models Options: Directly edit mesh vertices Finding the right level of abstraction is key! Cage-based editing Skeletal Rigs High-level surface editing

48 Creating new models

49 Creating new models

50 Creating new models Finding the right level of abstraction is key Restrict design space to some extent Trade-off between flexibility and ease of use Alternatives? Explore design space

51 Design Space Exploration

52 Design Space Exploration Sample parameter space Poisson sampling Present design space in a manageable way Cluster similar designs Visualize designs exhibiting greatest variation Hierarchical refinement

53 Design Space Exploration - Examples Eric Brochu, Tyson Brochu and Nando de Freitas. A Bayesian Interactive Optimization Approach to Procedural Animation Design. ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2010

54 Design Space Exploration - Examples Many-Worlds Browsing for Control of Multibody Dynamics Twigg and James, SIGGRAPH 2007

55 Many Worlds Browsing Sampling Plausible Worlds (parameter choices) v t+1 ` v t compute and apply impulse [O Sullivan et al., 2003]

56 Many Worlds Browsing Interactive Browsing various criteria

57 Many Worlds Browsing

58 Questions?

Geometric Modeling and Processing

Geometric Modeling and Processing Geometric Modeling and Processing Tutorial of 3DIM&PVT 2011 (Hangzhou, China) May 16, 2011 6. Mesh Simplification Problems High resolution meshes becoming increasingly available 3D active scanners Computer

More information

10 - ARAP and Linear Blend Skinning

10 - ARAP and Linear Blend Skinning 10 - ARAP and Linear Blend Skinning Acknowledgements: Olga Sorkine-Hornung As Rigid As Possible Demo Libigl demo 405 As-Rigid-As-Possible Deformation Preserve shape of cells covering the surface Ask each

More information

Def De orma f tion orma Disney/Pixar

Def De orma f tion orma Disney/Pixar Deformation Disney/Pixar Deformation 2 Motivation Easy modeling generate new shapes by deforming existing ones 3 Motivation Easy modeling generate new shapes by deforming existing ones 4 Motivation Character

More information

Advanced Computer Graphics

Advanced Computer Graphics G22.2274 001, Fall 2009 Advanced Computer Graphics Project details and tools 1 Project Topics Computer Animation Geometric Modeling Computational Photography Image processing 2 Optimization All projects

More information

Example-Based Skeleton Extraction. Scott Schaefer Can Yuksel

Example-Based Skeleton Extraction. Scott Schaefer Can Yuksel Example-Based Skeleton Extraction Scott Schaefer Can Yuksel Example-Based Deformation Examples Previous Work Mesh-based Inverse Kinematics [Sumner et al. 2005], [Der et al. 2006] Example-based deformation

More information

Skeleton Based As-Rigid-As-Possible Volume Modeling

Skeleton Based As-Rigid-As-Possible Volume Modeling Skeleton Based As-Rigid-As-Possible Volume Modeling Computer Science Department, Rutgers University As-rigid-as-possible (ARAP) shape modeling is a popular technique to obtain natural deformations. There

More information

CSE452 Computer Graphics

CSE452 Computer Graphics CSE452 Computer Graphics Lecture 19: From Morphing To Animation Capturing and Animating Skin Deformation in Human Motion, Park and Hodgins, SIGGRAPH 2006 CSE452 Lecture 19: From Morphing to Animation 1

More information

Easy modeling generate new shapes by deforming existing ones

Easy modeling generate new shapes by deforming existing ones Deformation I Deformation Motivation Easy modeling generate new shapes by deforming existing ones Motivation Easy modeling generate new shapes by deforming existing ones Motivation Character posing for

More information

Free-Form Deformation and Other Deformation Techniques

Free-Form Deformation and Other Deformation Techniques Free-Form Deformation and Other Deformation Techniques Deformation Deformation Basic Definition Deformation: A transformation/mapping of the positions of every particle in the original object to those

More information

CSE 554 Lecture 7: Deformation II

CSE 554 Lecture 7: Deformation II CSE 554 Lecture 7: Deformation II Fall 2011 CSE554 Deformation II Slide 1 Review Rigid-body alignment Non-rigid deformation Intrinsic methods: deforming the boundary points An optimization problem Minimize

More information

Skinning Mesh Animations

Skinning Mesh Animations Doug L. James, Christopher D. Twigg Carnegie Mellon University presented by Johannes Schmid 1 Outline Introduction & Motivation Overview & Details Results Discussion 2 Introduction Mesh sequence: 3 General

More information

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece Parallel Computation of Spherical Parameterizations for Mesh Analysis Th. Athanasiadis and I. Fudos, Greece Introduction Mesh parameterization is a powerful geometry processing tool Applications Remeshing

More information

Animation of 3D surfaces

Animation of 3D surfaces Animation of 3D surfaces 2013-14 Motivations When character animation is controlled by skeleton set of hierarchical joints joints oriented by rotations the character shape still needs to be visible: visible

More information

An Intuitive Framework for Real-Time Freeform Modeling

An Intuitive Framework for Real-Time Freeform Modeling An Intuitive Framework for Real-Time Freeform Modeling Leif Kobbelt Shape Deformation Complex shapes Complex deformations User Interaction Very limited user interface 2D screen & mouse Intuitive metaphor

More information

Animation. CS 4620 Lecture 33. Cornell CS4620 Fall Kavita Bala

Animation. CS 4620 Lecture 33. Cornell CS4620 Fall Kavita Bala Animation CS 4620 Lecture 33 Cornell CS4620 Fall 2015 1 Announcements Grading A5 (and A6) on Monday after TG 4621: one-on-one sessions with TA this Friday w/ prior instructor Steve Marschner 2 Quaternions

More information

SCAPE: Shape Completion and Animation of People

SCAPE: Shape Completion and Animation of People SCAPE: Shape Completion and Animation of People By Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim Rodgers, James Davis From SIGGRAPH 2005 Presentation for CS468 by Emilio Antúnez

More information

12 - Spatial And Skeletal Deformations. CSCI-GA Computer Graphics - Fall 16 - Daniele Panozzo

12 - Spatial And Skeletal Deformations. CSCI-GA Computer Graphics - Fall 16 - Daniele Panozzo 12 - Spatial And Skeletal Deformations Space Deformations Space Deformation Displacement function defined on the ambient space Evaluate the function on the points of the shape embedded in the space Twist

More information

2D Shape Deformation Using Nonlinear Least Squares Optimization

2D Shape Deformation Using Nonlinear Least Squares Optimization 2D Shape Deformation Using Nonlinear Least Squares Optimization Paper ID: 20 Abstract This paper presents a novel 2D shape deformation algorithm based on nonlinear least squares optimization. The algorithm

More information

Parameterization of Meshes

Parameterization of Meshes 2-Manifold Parameterization of Meshes What makes for a smooth manifold? locally looks like Euclidian space collection of charts mutually compatible on their overlaps form an atlas Parameterizations are

More information

Discrete Geometry Processing

Discrete Geometry Processing Non Convex Boundary Convex boundary creates significant distortion Free boundary is better Some slides from the Mesh Parameterization Course (Siggraph Asia 008) 1 Fixed vs Free Boundary Fixed vs Free Boundary

More information

Animation. Motion over time

Animation. Motion over time Animation Animation Motion over time Animation Motion over time Usually focus on character animation but environment is often also animated trees, water, fire, explosions, Animation Motion over time Usually

More information

Mesh-Based Inverse Kinematics

Mesh-Based Inverse Kinematics CS468, Wed Nov 9 th 2005 Mesh-Based Inverse Kinematics R. W. Sumner, M. Zwicker, C. Gotsman, J. Popović SIGGRAPH 2005 The problem 1 General approach Learn from experience... 2 As-rigid-as-possible shape

More information

Question 2: Linear algebra and transformations matrices rotation vectors linear transformation T=U*D*VT

Question 2: Linear algebra and transformations matrices rotation vectors linear transformation T=U*D*VT You must answer all questions. For full credit, an answer must be both correct and well-presented (clear and concise). If you feel a question is ambiguous, state any assumptions that you need to make.

More information

Animation of 3D surfaces.

Animation of 3D surfaces. Animation of 3D surfaces Motivations When character animation is controlled by skeleton set of hierarchical joints joints oriented by rotations the character shape still needs to be visible: visible =

More information

From processing to learning on graphs

From processing to learning on graphs From processing to learning on graphs Patrick Pérez Maths and Images in Paris IHP, 2 March 2017 Signals on graphs Natural graph: mesh, network, etc., related to a real structure, various signals can live

More information

Constructive Solid Geometry and Procedural Modeling. Stelian Coros

Constructive Solid Geometry and Procedural Modeling. Stelian Coros Constructive Solid Geometry and Procedural Modeling Stelian Coros Somewhat unrelated Schedule for presentations February 3 5 10 12 17 19 24 26 March 3 5 10 12 17 19 24 26 30 April 2 7 9 14 16 21 23 28

More information

Registration of Dynamic Range Images

Registration of Dynamic Range Images Registration of Dynamic Range Images Tan-Chi Ho 1,2 Jung-Hong Chuang 1 Wen-Wei Lin 2 Song-Sun Lin 2 1 Department of Computer Science National Chiao-Tung University 2 Department of Applied Mathematics National

More information

Geometric modeling 1

Geometric modeling 1 Geometric Modeling 1 Look around the room. To make a 3D model of a room requires modeling every single object you can see. Leaving out smaller objects (clutter) makes the room seem sterile and unrealistic

More information

Advanced Computer Graphics

Advanced Computer Graphics G22.2274 001, Fall 2010 Advanced Computer Graphics Project details and tools 1 Projects Details of each project are on the website under Projects Please review all the projects and come see me if you would

More information

PERFORMANCE CAPTURE FROM SPARSE MULTI-VIEW VIDEO

PERFORMANCE CAPTURE FROM SPARSE MULTI-VIEW VIDEO Stefan Krauß, Juliane Hüttl SE, SoSe 2011, HU-Berlin PERFORMANCE CAPTURE FROM SPARSE MULTI-VIEW VIDEO 1 Uses of Motion/Performance Capture movies games, virtual environments biomechanics, sports science,

More information

The correspondence problem. A classic problem. A classic problem. Deformation-Drive Shape Correspondence. Fundamental to geometry processing

The correspondence problem. A classic problem. A classic problem. Deformation-Drive Shape Correspondence. Fundamental to geometry processing The correspondence problem Deformation-Drive Shape Correspondence Hao (Richard) Zhang 1, Alla Sheffer 2, Daniel Cohen-Or 3, Qingnan Zhou 2, Oliver van Kaick 1, and Andrea Tagliasacchi 1 July 3, 2008 1

More information

Parameterization of Triangular Meshes with Virtual Boundaries

Parameterization of Triangular Meshes with Virtual Boundaries Parameterization of Triangular Meshes with Virtual Boundaries Yunjin Lee 1;Λ Hyoung Seok Kim 2;y Seungyong Lee 1;z 1 Department of Computer Science and Engineering Pohang University of Science and Technology

More information

Laplacian Meshes. COS 526 Fall 2016 Slides from Olga Sorkine and Yaron Lipman

Laplacian Meshes. COS 526 Fall 2016 Slides from Olga Sorkine and Yaron Lipman Laplacian Meshes COS 526 Fall 2016 Slides from Olga Sorkine and Yaron Lipman Outline Differential surface representation Ideas and applications Compact shape representation Mesh editing and manipulation

More information

CageIK: Dual-Laplacian Cage-Based Inverse Kinematics

CageIK: Dual-Laplacian Cage-Based Inverse Kinematics CageIK: Dual-Laplacian Cage-Based Inverse Kinematics Yann Savoye and Jean-Sébastien Franco LaBRI-INRIA Sud-Ouest, University of Bordeaux {yann.savoye,jean-sebastien.franco}@inria.fr Abstract. Cage-based

More information

Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia

Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia 2008 1 Non-Convex Non Convex Boundary Convex boundary creates significant distortion Free boundary is better 2 Fixed

More information

Gradient-based Shell Generation and Deformation

Gradient-based Shell Generation and Deformation Gradient-based Shell Generation and Deformation Jin Huang hj@cad.zju.edu.cn Qing Wang qwang@cad.zju.edu.cn Xinguo Liu xgliu@cad.zju.edu.cn Hujun Bao bao@cad.zju.edu.cn State Key Lab of CAD&CG, Zhejiang

More information

Surface Reconstruction. Gianpaolo Palma

Surface Reconstruction. Gianpaolo Palma Surface Reconstruction Gianpaolo Palma Surface reconstruction Input Point cloud With or without normals Examples: multi-view stereo, union of range scan vertices Range scans Each scan is a triangular mesh

More information

SM2231 :: 3D Animation I :: Basic. Rigging

SM2231 :: 3D Animation I :: Basic. Rigging SM2231 :: 3D Animation I :: Basic Rigging Object arrangements Hierarchical Hierarchical Separate parts arranged in a hierarchy can be animated without a skeleton Flat Flat Flat hierarchy is usually preferred,

More information

Effective Derivation of Similarity Transformations for Implicit Laplacian Mesh Editing

Effective Derivation of Similarity Transformations for Implicit Laplacian Mesh Editing Volume xx (200y), Number z, pp. 1 12 Effective Derivation of Similarity Transformations for Implicit Laplacian Mesh Editing Hongbo Fu Oscar Kin-Chung Au Chiew-Lan Tai Department of Computer Science and

More information

Deformation Transfer for Detail-Preserving Surface Editing

Deformation Transfer for Detail-Preserving Surface Editing Deformation Transfer for Detail-Preserving Surface Editing Mario Botsch Robert W Sumner 2 Mark Pauly 2 Markus Gross Computer Graphics Laboratory, ETH Zurich 2 Applied Geometry Group, ETH Zurich Abstract

More information

CS 523: Computer Graphics, Spring Shape Modeling. Skeletal deformation. Andrew Nealen, Rutgers, /12/2011 1

CS 523: Computer Graphics, Spring Shape Modeling. Skeletal deformation. Andrew Nealen, Rutgers, /12/2011 1 CS 523: Computer Graphics, Spring 2011 Shape Modeling Skeletal deformation 4/12/2011 1 Believable character animation Computers games and movies Skeleton: intuitive, low-dimensional subspace Clip courtesy

More information

Subdivision. Outline. Key Questions. Subdivision Surfaces. Advanced Computer Graphics (Spring 2013) Video: Geri s Game (outside link)

Subdivision. Outline. Key Questions. Subdivision Surfaces. Advanced Computer Graphics (Spring 2013) Video: Geri s Game (outside link) Advanced Computer Graphics (Spring 03) CS 83, Lecture 7: Subdivision Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs83/sp3 Slides courtesy of Szymon Rusinkiewicz, James O Brien with material from Denis

More information

CoE4TN4 Image Processing

CoE4TN4 Image Processing CoE4TN4 Image Processing Chapter 11 Image Representation & Description Image Representation & Description After an image is segmented into regions, the regions are represented and described in a form suitable

More information

Invariant shape similarity. Invariant shape similarity. Invariant similarity. Equivalence. Equivalence. Equivalence. Equal SIMILARITY TRANSFORMATION

Invariant shape similarity. Invariant shape similarity. Invariant similarity. Equivalence. Equivalence. Equivalence. Equal SIMILARITY TRANSFORMATION 1 Invariant shape similarity Alexer & Michael Bronstein, 2006-2009 Michael Bronstein, 2010 tosca.cs.technion.ac.il/book 2 Invariant shape similarity 048921 Advanced topics in vision Processing Analysis

More information

Scanning Real World Objects without Worries 3D Reconstruction

Scanning Real World Objects without Worries 3D Reconstruction Scanning Real World Objects without Worries 3D Reconstruction 1. Overview Feng Li 308262 Kuan Tian 308263 This document is written for the 3D reconstruction part in the course Scanning real world objects

More information

Animating Characters in Pictures

Animating Characters in Pictures Animating Characters in Pictures Shih-Chiang Dai jeffrey@cmlab.csie.ntu.edu.tw Chun-Tse Hsiao hsiaochm@cmlab.csie.ntu.edu.tw Bing-Yu Chen robin@ntu.edu.tw ABSTRACT Animating pictures is an interesting

More information

Skeleton-Based Shape Deformation using Simplex Transformations

Skeleton-Based Shape Deformation using Simplex Transformations Computer Graphics International 2006 Skeleton-Based Shape Deformation using Simplex Transformations Han-Bing Yan, Shi-Min Hu and Ralph Martin Outline Motivation Introduction Mesh segmentation using skeleton

More information

Introduction and Overview

Introduction and Overview CS 523: Computer Graphics, Spring 2009 Shape Modeling Introduction and Overview 1/28/2009 1 Geometric Modeling To describe any reallife object on the computer must start with shape (2D/3D) Geometry processing

More information

Geometric Modeling and Processing

Geometric Modeling and Processing Geometric Modeling and Processing Tutorial of 3DIM&PVT 2011 (Hangzhou, China) May 16, 2011 4. Geometric Registration 4.1 Rigid Registration Range Scanning: Reconstruction Set of raw scans Reconstructed

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 WRI C225 Lecture 04 130131 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Histogram Equalization Image Filtering Linear

More information

Introduction to Computer Graphics. Animation (1) May 19, 2016 Kenshi Takayama

Introduction to Computer Graphics. Animation (1) May 19, 2016 Kenshi Takayama Introduction to Computer Graphics Animation (1) May 19, 2016 Kenshi Takayama Skeleton-based animation Simple Intuitive Low comp. cost https://www.youtube.com/watch?v=dsonab58qva 2 Representing a pose using

More information

Mesh Processing Pipeline

Mesh Processing Pipeline Mesh Smoothing 1 Mesh Processing Pipeline... Scan Reconstruct Clean Remesh 2 Mesh Quality Visual inspection of sensitive attributes Specular shading Flat Shading Gouraud Shading Phong Shading 3 Mesh Quality

More information

A Developer s Survey of Polygonal Simplification algorithms. CS 563 Advanced Topics in Computer Graphics Fan Wu Mar. 31, 2005

A Developer s Survey of Polygonal Simplification algorithms. CS 563 Advanced Topics in Computer Graphics Fan Wu Mar. 31, 2005 A Developer s Survey of Polygonal Simplification algorithms CS 563 Advanced Topics in Computer Graphics Fan Wu Mar. 31, 2005 Some questions to ask Why simplification? What are my models like? What matters

More information

Shape Modeling and Geometry Processing

Shape Modeling and Geometry Processing 252-0538-00L, Spring 2018 Shape Modeling and Geometry Processing Discrete Differential Geometry Differential Geometry Motivation Formalize geometric properties of shapes Roi Poranne # 2 Differential Geometry

More information

Small Project: Automatic ragdoll creation from 3D models Dion Gerritzen,

Small Project: Automatic ragdoll creation from 3D models Dion Gerritzen, Small Project: Automatic ragdoll creation from 3D models Dion Gerritzen, 3220494 January 23, 2014 1 Introduction This small project was done in collaboration with Robert van Alphen and under supervision

More information

3D Modeling techniques

3D Modeling techniques 3D Modeling techniques 0. Reconstruction From real data (not covered) 1. Procedural modeling Automatic modeling of a self-similar objects or scenes 2. Interactive modeling Provide tools to computer artists

More information

animation computer graphics animation 2009 fabio pellacini 1 animation shape specification as a function of time

animation computer graphics animation 2009 fabio pellacini 1 animation shape specification as a function of time animation computer graphics animation 2009 fabio pellacini 1 animation shape specification as a function of time computer graphics animation 2009 fabio pellacini 2 animation representation many ways to

More information

animation computer graphics animation 2009 fabio pellacini 1

animation computer graphics animation 2009 fabio pellacini 1 animation computer graphics animation 2009 fabio pellacini 1 animation shape specification as a function of time computer graphics animation 2009 fabio pellacini 2 animation representation many ways to

More information

Final Project, Digital Geometry Processing

Final Project, Digital Geometry Processing Final Project, Digital Geometry Processing Shayan Hoshyari Student #: 81382153 December 2016 Introduction In this project an adaptive surface remesher has been developed based on the paper [1]. An algorithm

More information

Lecture 2 Unstructured Mesh Generation

Lecture 2 Unstructured Mesh Generation Lecture 2 Unstructured Mesh Generation MIT 16.930 Advanced Topics in Numerical Methods for Partial Differential Equations Per-Olof Persson (persson@mit.edu) February 13, 2006 1 Mesh Generation Given a

More information

Simulation in Computer Graphics. Deformable Objects. Matthias Teschner. Computer Science Department University of Freiburg

Simulation in Computer Graphics. Deformable Objects. Matthias Teschner. Computer Science Department University of Freiburg Simulation in Computer Graphics Deformable Objects Matthias Teschner Computer Science Department University of Freiburg Outline introduction forces performance collision handling visualization University

More information

Introduction to Computer Graphics. Image Processing (1) June 8, 2017 Kenshi Takayama

Introduction to Computer Graphics. Image Processing (1) June 8, 2017 Kenshi Takayama Introduction to Computer Graphics Image Processing (1) June 8, 2017 Kenshi Takayama Today s topics Edge-aware image processing Gradient-domain image processing 2 Image smoothing using Gaussian Filter Smoothness

More information

Deformation Transfer for Triangle Meshes

Deformation Transfer for Triangle Meshes Deformation Transfer for Triangle Meshes a Paper (SIGGRAPH 2004) by Robert W. Sumner & Jovan Popovic presented by Roni Oeschger Deformation Transfer Source deformed Target deformed 1 Outline of my presentation

More information

Dynamic Geometry Processing

Dynamic Geometry Processing Dynamic Geometry Processing EG 2012 Tutorial Will Chang, Hao Li, Niloy Mitra, Mark Pauly, Michael Wand Tutorial: Dynamic Geometry Processing 1 Articulated Global Registration Introduction and Overview

More information

arxiv: v1 [cs.gr] 16 May 2017

arxiv: v1 [cs.gr] 16 May 2017 Automated Body Structure Extraction from Arbitrary 3D Mesh Yong Khoo, Sang Chung This paper presents an automated method for 3D character skeleton extraction that can be arxiv:1705.05508v1 [cs.gr] 16 May

More information

Skeletal deformation

Skeletal deformation CS 523: Computer Graphics, Spring 2009 Shape Modeling Skeletal deformation 4/22/2009 1 Believable character animation Computers games and movies Skeleton: intuitive, low dimensional subspace Clip courtesy

More information

THIS paper presents the recent advances in mesh deformation

THIS paper presents the recent advances in mesh deformation 1 On Linear Variational Surface Deformation Methods Mario Botsch Computer Graphics Laboratory ETH Zurich Olga Sorkine Computer Graphics Group TU Berlin Abstract This survey reviews the recent advances

More information

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo 05 - Surfaces Acknowledgements: Olga Sorkine-Hornung Reminder Curves Turning Number Theorem Continuous world Discrete world k: Curvature is scale dependent is scale-independent Discrete Curvature Integrated

More information

Correspondence. CS 468 Geometry Processing Algorithms. Maks Ovsjanikov

Correspondence. CS 468 Geometry Processing Algorithms. Maks Ovsjanikov Shape Matching & Correspondence CS 468 Geometry Processing Algorithms Maks Ovsjanikov Wednesday, October 27 th 2010 Overall Goal Given two shapes, find correspondences between them. Overall Goal Given

More information

APPLICATION OF INTERACTIVE DEFORMATION TO ASSEMBLED MESH MODELS FOR CAE ANALYSIS

APPLICATION OF INTERACTIVE DEFORMATION TO ASSEMBLED MESH MODELS FOR CAE ANALYSIS Proceedings of the ASME 007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 007 September 4-7, 007, Las Vegas, Nevada, USA DETC007-34636

More information

Smooth Rotation Enhanced As-Rigid-As-Possible Mesh Animation

Smooth Rotation Enhanced As-Rigid-As-Possible Mesh Animation TVCG-2013-10-0283 1 Smooth Rotation Enhanced As-Rigid-As-Possible Mesh Animation Zohar Levi and Craig Gotsman Abstract In recent years, the As-Rigid-As-Possible (ARAP) shape deformation and shape interpolation

More information

Images from 3D Creative Magazine. 3D Modelling Systems

Images from 3D Creative Magazine. 3D Modelling Systems Images from 3D Creative Magazine 3D Modelling Systems Contents Reference & Accuracy 3D Primitives Transforms Move (Translate) Rotate Scale Mirror Align 3D Booleans Deforms Bend Taper Skew Twist Squash

More information

T6: Position-Based Simulation Methods in Computer Graphics. Jan Bender Miles Macklin Matthias Müller

T6: Position-Based Simulation Methods in Computer Graphics. Jan Bender Miles Macklin Matthias Müller T6: Position-Based Simulation Methods in Computer Graphics Jan Bender Miles Macklin Matthias Müller Jan Bender Organizer Professor at the Visual Computing Institute at Aachen University Research topics

More information

Applications. Oversampled 3D scan data. ~150k triangles ~80k triangles

Applications. Oversampled 3D scan data. ~150k triangles ~80k triangles Mesh Simplification Applications Oversampled 3D scan data ~150k triangles ~80k triangles 2 Applications Overtessellation: E.g. iso-surface extraction 3 Applications Multi-resolution hierarchies for efficient

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/4/1/eaao7005/dc1 Supplementary Materials for Computational discovery of extremal microstructure families The PDF file includes: Desai Chen, Mélina Skouras, Bo Zhu,

More information

Topology-Invariant Similarity and Diffusion Geometry

Topology-Invariant Similarity and Diffusion Geometry 1 Topology-Invariant Similarity and Diffusion Geometry Lecture 7 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 Intrinsic

More information

Preparation Meeting. Recent Advances in the Analysis of 3D Shapes. Emanuele Rodolà Matthias Vestner Thomas Windheuser Daniel Cremers

Preparation Meeting. Recent Advances in the Analysis of 3D Shapes. Emanuele Rodolà Matthias Vestner Thomas Windheuser Daniel Cremers Preparation Meeting Recent Advances in the Analysis of 3D Shapes Emanuele Rodolà Matthias Vestner Thomas Windheuser Daniel Cremers What You Will Learn in the Seminar Get an overview on state of the art

More information

Motivation. Freeform Shape Representations for Efficient Geometry Processing. Operations on Geometric Objects. Functional Representations

Motivation. Freeform Shape Representations for Efficient Geometry Processing. Operations on Geometric Objects. Functional Representations Motivation Freeform Shape Representations for Efficient Geometry Processing Eurographics 23 Granada, Spain Geometry Processing (points, wireframes, patches, volumes) Efficient algorithms always have to

More information

Surface Topology ReebGraph

Surface Topology ReebGraph Sub-Topics Compute bounding box Compute Euler Characteristic Estimate surface curvature Line description for conveying surface shape Extract skeletal representation of shapes Morse function and surface

More information

Large Mesh Deformation Using the Volumetric Graph Laplacian

Large Mesh Deformation Using the Volumetric Graph Laplacian Large Mesh Deformation Using the Volumetric Graph Laplacian Kun Zhou1 Jin Huang2 John Snyder3 Xinguo Liu1 Hujun Bao2 Baining Guo1 Heung-Yeung Shum1 1 Microsoft Research Asia 2 Zhejiang University 3 Microsoft

More information

Inverse Kinematics for Reduced Deformable Models

Inverse Kinematics for Reduced Deformable Models Inverse Kinematics for Reduced Deformable Models Kevin G. Der Robert W. Sumner Jovan Popović Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology ETH Zürich Examples

More information

Deforming Objects. Deformation Techniques. Deforming Objects. Examples

Deforming Objects. Deformation Techniques. Deforming Objects. Examples Deforming Objects Deformation Techniques CMPT 466 Computer Animation Torsten Möller Non-Uniform Scale Global Deformations Skeletal Deformations Grid Deformations Free-Form Deformations (FFDs) Morphing

More information

Real-Time Shape Editing using Radial Basis Functions

Real-Time Shape Editing using Radial Basis Functions Real-Time Shape Editing using Radial Basis Functions, Leif Kobbelt RWTH Aachen Boundary Constraint Modeling Prescribe irregular constraints Vertex positions Constrained energy minimization Optimal fairness

More information

Semi-Supervised Hierarchical Models for 3D Human Pose Reconstruction

Semi-Supervised Hierarchical Models for 3D Human Pose Reconstruction Semi-Supervised Hierarchical Models for 3D Human Pose Reconstruction Atul Kanaujia, CBIM, Rutgers Cristian Sminchisescu, TTI-C Dimitris Metaxas,CBIM, Rutgers 3D Human Pose Inference Difficulties Towards

More information

Geometric Modeling in Graphics

Geometric Modeling in Graphics Geometric Modeling in Graphics Part 10: Surface reconstruction Martin Samuelčík www.sccg.sk/~samuelcik samuelcik@sccg.sk Curve, surface reconstruction Finding compact connected orientable 2-manifold surface

More information

计算机图形学. Computer Graphics 刘利刚.

计算机图形学. Computer Graphics 刘利刚. 计算机图形学 Computer Graphics 刘利刚 lgliu@ustc.edu.cn http://staff.ustc.edu.cn/~lgliu Computer Animation Skinning and Enveloping The slide are from Durand from MIT. Before getting started One more word about

More information

Research Article Polygon Morphing and Its Application in Orebody Modeling

Research Article Polygon Morphing and Its Application in Orebody Modeling Mathematical Problems in Engineering Volume 212, Article ID 732365, 9 pages doi:1.1155/212/732365 Research Article Polygon Morphing and Its Application in Orebody Modeling Hacer İlhan and Haşmet Gürçay

More information

Lecture 8 Object Descriptors

Lecture 8 Object Descriptors Lecture 8 Object Descriptors Azadeh Fakhrzadeh Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University 2 Reading instructions Chapter 11.1 11.4 in G-W Azadeh Fakhrzadeh

More information

ixcube 4-10 Brief introduction for membrane and cable systems.

ixcube 4-10 Brief introduction for membrane and cable systems. ixcube 4-10 Brief introduction for membrane and cable systems. ixcube is the evolution of 20 years of R&D in the field of membrane structures so it takes a while to understand the basic features. You must

More information

Subdivision Surfaces. Course Syllabus. Course Syllabus. Modeling. Equivalence of Representations. 3D Object Representations

Subdivision Surfaces. Course Syllabus. Course Syllabus. Modeling. Equivalence of Representations. 3D Object Representations Subdivision Surfaces Adam Finkelstein Princeton University COS 426, Spring 2003 Course Syllabus I. Image processing II. Rendering III. Modeling IV. Animation Image Processing (Rusty Coleman, CS426, Fall99)

More information

CS 231. Deformation simulation (and faces)

CS 231. Deformation simulation (and faces) CS 231 Deformation simulation (and faces) Deformation BODY Simulation Discretization Spring-mass models difficult to model continuum properties Simple & fast to implement and understand Finite Element

More information

Locally Injective Mappings

Locally Injective Mappings 8/6/ Locally Injective Mappings Christian Schüller 1 Ladislav Kavan 2 Daniele Panozzo 1 Olga Sorkine-Hornung 1 1 ETH Zurich 2 University of Pennsylvania Locally Injective Mappings Popular tasks in geometric

More information

Geometry Representations with Unsupervised Feature Learning

Geometry Representations with Unsupervised Feature Learning Geometry Representations with Unsupervised Feature Learning Yeo-Jin Yoon 1, Alexander Lelidis 2, A. Cengiz Öztireli 3, Jung-Min Hwang 1, Markus Gross 3 and Soo-Mi Choi 1 1 Department of Computer Science

More information

Specification and Computation of Warping and Morphing Transformations. Bruno Costa da Silva Microsoft Corp.

Specification and Computation of Warping and Morphing Transformations. Bruno Costa da Silva Microsoft Corp. Specification and Computation of Warping and Morphing Transformations Bruno Costa da Silva Microsoft Corp. Morphing Transformations Representation of Transformations Specification of Transformations Specification

More information

Geometric Modeling Assignment 5: Shape Deformation

Geometric Modeling Assignment 5: Shape Deformation Geometric Modeling Assignment 5: Shape Deformation Acknowledgements: Olga Diamanti, Julian Panetta Shape Deformation Step 1: Select and Deform Handle Regions Draw vertex selection with mouse H 2 Move one

More information

Inverse Kinematics for Reduced Deformable Models

Inverse Kinematics for Reduced Deformable Models To appear in SIGGRAPH 2006. Inverse Kinematics for Reduced Deformable Models Robert W. Sumner Kevin G. Der ETH Zu rich Examples Computer Science and Artificial Intelligence Laboratory Massachusetts Institute

More information

Facial Expression Analysis for Model-Based Coding of Video Sequences

Facial Expression Analysis for Model-Based Coding of Video Sequences Picture Coding Symposium, pp. 33-38, Berlin, September 1997. Facial Expression Analysis for Model-Based Coding of Video Sequences Peter Eisert and Bernd Girod Telecommunications Institute, University of

More information

Cloning Skeleton-driven Animation to Other Models

Cloning Skeleton-driven Animation to Other Models Cloning Skeleton-driven Animation to Other Models Wan-Chi Luo Jian-Bin Huang Bing-Yu Chen Pin-Chou Liu National Taiwan University {maggie, azar, toby}@cmlab.csie.ntu.edu.tw robin@ntu.edu.tw Abstract-3D

More information

Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications

Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications Per-Olof Persson (persson@mit.edu) Department of Mathematics Massachusetts Institute of Technology http://www.mit.edu/

More information

Geometric Registration for Deformable Shapes 2.2 Deformable Registration

Geometric Registration for Deformable Shapes 2.2 Deformable Registration Geometric Registration or Deormable Shapes 2.2 Deormable Registration Variational Model Deormable ICP Variational Model What is deormable shape matching? Example? What are the Correspondences? Eurographics

More information