Compressive Single Pixel Imaging Andrew Thompson University of Edinburgh. 2 nd IMA Conference on Mathematics in Defence

Size: px
Start display at page:

Download "Compressive Single Pixel Imaging Andrew Thompson University of Edinburgh. 2 nd IMA Conference on Mathematics in Defence"

Transcription

1 Compressive Single Piel Imaging Andrew Thompson University of Edinburgh 2 nd IMA Conference on Mathematics in Defence

2 About the project Collaboration between the University of Edinburgh and SELEX Galileo Ltd. Jared Tanner and Coralia Cartis (UoE/E CoS) David Humphreys and Robert Lamb (SELEX)

3 About the project Collaboration between the University of Edinburgh and SELEX Galileo Ltd. Jared Tanner and Coralia Cartis (UoE/E CoS) David Humphreys and Robert Lamb (SELEX) Partly funded by the Underpinning Defence Mathematics (UDM) programme of the MoD Facilitated by the Knowledge Transfer Network

4 Outline of presentation Background The Rice single piel camera design A mathemacal model Compressed Sensing

5 Outline of presentation Background The Rice single piel camera design A mathemacal model Compressed Sensing Research undertaken Reconstruction algorithms investigated Results of numerical tests Etension to 3D dynamic images

6 Outline of presentation Background The Rice single piel camera design A mathemacal model Compressed Sensing Research undertaken Reconstruction algorithms investigated Results of numerical tests Etension to 3D dynamic images Design issues and key findings

7 The Compressed Sensing Single Piel Camera (Rice University, )

8 A sampling model Model light incident on DMD as an N piel image Represent as a vector of dimension N

9 A sampling model , , y i i Model light incident on DMD as an N piel image Represent as a vector of dimension N Model each measurement as an inner product with a random basis vector

10 A sampling model , , y i i Model light incident on DMD as an N piel image Represent as a vector of dimension N Model each measurement as an inner product with a random basis vector Model photon counting noise and quantization error as Gaussian noise Take n < N samples e y T n T T 2 1 e

11 The Compressed Sensing paradigm CS: We can recover signals from undersampling if we sample incoherently (e.g. randomly) the signal has low information content

12 The Compressed Sensing paradigm CS: We can recover signals from undersampling if we sample incoherently (e.g. randomly) the signal has low information content Images are often compressible in some transform domain: information can be captured in relatively few coefficients

13 The Compressed Sensing paradigm CS: We can recover signals from undersampling if we sample incoherently (e.g. randomly) the signal has low information content Images are often compressible in some transform domain: information can be captured in relatively few coefficients Reconstruction by solving an optimization problem min y where z is k 2 -sparse

14 Algorithm options Adapted three algorithms for the problem: l 1 projection (based on SPGL1) Normalized Iterative Hard Thresholding (NIHT) Iterative tree thresholding (etension of NIHT)

15 Algorithm options Adapted three algorithms for the problem: l 1 projection (based on SPGL1) Normalized Iterative Hard Thresholding (NIHT) Iterative tree thresholding (etension of NIHT) A choice of three 2D sparsifying transforms: Discrete Cosine transform (JPEG) Haar wavelet Daubechies 9 7 wavelet (JPEG 2000)

16 Accuracy of reconstruction Metric: RMSE 6464 lena original 1 N ˆ 2 2 ±1 sampling l 1 projection algorithm Daubechies 9 7 wavelets

17 Some eample reconstructions

18 Running time (s)

19 Effect of sampling noise on RMSE (σ=0)

20 Effect of sampling noise on RMSE (σ=2.5)

21 Effect of sampling noise on RMSE (σ=25)

22 Comparison of different wavebands original visible SW MW LW range reconstruction data RMSE : t : 29.71s RMSE : 9.13 t : 72.57s RMSE : t : 54.24s RMSE : 8.60 t : 52.60s RMSE : 3.87 t : 22.65s tuning : 0.55 tuning : 0.8 tuning : 0.6 tuning : 0.7 tuning : 0.85 ±1 sampling; undersampling ratio 15%; l 1 projection algorithm; Haar wavelet

23 Effect of foreground/background clutter without trees with trees data original recovered recovered original data SW RMSE : 9.13 t : 72.57s tuning : 0.8 RMSE : t : 26.86s tuning : 0.4 MW RMSE : t : 54.24s tuning : 0.6 RMSE : t : 55.14s tuning : 0.5 LW RMSE : 8.60 t : 52.60s tuning : 0.7 RMSE : t : 34.33s tuning : 0.45

24 Peak signal to noise reduction (LW) 1.35km original l 1 l 1 debias NIHT 89% 90% 95% 5km 79% 92% 94% 10km 79% 88% 97%

25 Peak signal to noise reduction (LW) 1.35km original l 1 l 1 debias NIHT 89% 90% 95% 5km 79% 92% 94% 10km 79% 88% 97% CS techniques (using wavelets) can effectively preserve PSNR even at distance

26 Etension to 3D dynamic images Modelling assumption: the sequence can be viewed as a series of static frames slow moving scene. y i F i i i 1,, Perform separate 2D reconstructions as before. F

27 Etension to 3D dynamic images Modelling assumption: the sequence can be viewed as a series of static frames slow moving scene. y i F i i i 1,, Perform separate 2D reconstructions as before. Frame by frame reconstruction implemented F Reads in a 3D tensor video sequence Same 2D model options available Writes output to AVI file.

28 Joint 3D reconstruction Alternative: eploit temporal dependence between frames model enre datacube as sparse in the 3D wavelet domain. F 2 1 F F y

29 Joint 3D reconstruction Alternative: eploit temporal dependence between frames model enre datacube as sparse in the 3D wavelet domain. 3D transforms implemented: 3D Haar wavelets 3D Daubechies D8 orthogonal wavelets. F 2 1 F F y

30 3D reconstruction eample CAMEOSIM video sequence of moving vehicle datacube Reconstruction using l 1 projection and Haar wavelets ; δ = 0.4 Original:

31 3D reconstruction eample CAMEOSIM video sequence of moving vehicle datacube Reconstruction using l 1 projection and Haar wavelets ; δ = 0.4 Frame by frame:

32 3D reconstruction eample CAMEOSIM video sequence of moving vehicle datacube Reconstruction using l 1 projection and Haar wavelets ; δ = 0.4 Joint:

33 Design issues Quantifying constraints on sampling time controlling photon counting noise limits on the speed at which the micromirrors can be flipped

34 Design issues Quantifying constraints on sampling time controlling photon counting noise limits on the speed at which the micromirrors can be flipped DMD technology availability in different wavebands cost and bulkiness

35 Design issues Quantifying constraints on sampling time controlling photon counting noise limits on the speed at which the micromirrors can be flipped DMD technology availability in different wavebands cost and bulkiness Quantifying increase in dynamic range/quantization error

36 Design issues Quantifying constraints on sampling time controlling photon counting noise limits on the speed at which the micromirrors can be flipped DMD technology availability in different wavebands cost and bulkiness Quantifying increase in dynamic range/quantization error Etension to 3D: quantifying constraints on speed of motion of dynamic images

37 Summary of findings It is possible to undersample providing the image in question is suitably compressible

38 Summary of findings It is possible to undersample providing the image in question is suitably compressible The compressibility of the image will depend upon the waveband presence of foreground/background clutter

39 Summary of findings It is possible to undersample providing the image in question is suitably compressible The compressibility of the image will depend upon the waveband presence of foreground/background clutter The model shows robustness to sampling noise

40 Summary of findings It is possible to undersample providing the image in question is suitably compressible The compressibility of the image will depend upon the waveband presence of foreground/background clutter The model shows robustness to sampling noise Good signal to noise preservation even at distance

41 Summary of findings It is possible to undersample providing the image in question is suitably compressible The compressibility of the image will depend upon the waveband presence of foreground/background clutter The model shows robustness to sampling noise Good signal to noise preservation even at distance Possibility of etending to 3D dynamic imaging provided the scene is suitably slow moving

42 References Single Piel Imaging via Compressive Sampling (M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly & R. Baraniuk); IEEE Signal Processing Magazine, Vol. 25(2), pp (2008). Compressive Imaging for Video Representation and Coding (M. Wakin, J. Laska, M. Duarte, D. Baron, S. Sarvotham, D. Takhar, K. Kelly & R. Baraniuk); Proceedings of the Picture Coding Symposium, Beijing, China (April 2006). Phase Transitions for Greedy Sparse Approimation Algorithms (J. Blanchard, C. Cartis, J. Tanner & AT); Applied Computational & Harmonic Analysis, Vol. 30(2), pp (2011); Compressive Single Piel Imaging (AT); Technical report (2011);

43 Thank you for your attention!

Compressive Sensing for Multimedia. Communications in Wireless Sensor Networks

Compressive Sensing for Multimedia. Communications in Wireless Sensor Networks Compressive Sensing for Multimedia 1 Communications in Wireless Sensor Networks Wael Barakat & Rabih Saliba MDDSP Project Final Report Prof. Brian L. Evans May 9, 2008 Abstract Compressive Sensing is an

More information

Adaptive compressed image sensing based on wavelet-trees

Adaptive compressed image sensing based on wavelet-trees Adaptive compressed image sensing based on wavelet-trees S. Dekel GE Healthcare, 27 Hamaskit St., Herzelia 46733, Israel Abstract: We present an architecture for an image acquisition process that enables

More information

COMPRESSIVE VIDEO SAMPLING

COMPRESSIVE VIDEO SAMPLING COMPRESSIVE VIDEO SAMPLING Vladimir Stanković and Lina Stanković Dept of Electronic and Electrical Engineering University of Strathclyde, Glasgow, UK phone: +44-141-548-2679 email: {vladimir,lina}.stankovic@eee.strath.ac.uk

More information

SEQUENTIAL IMAGE COMPLETION FOR HIGH-SPEED LARGE-PIXEL NUMBER SENSING

SEQUENTIAL IMAGE COMPLETION FOR HIGH-SPEED LARGE-PIXEL NUMBER SENSING SEQUENTIAL IMAGE COMPLETION FOR HIGH-SPEED LARGE-PIXEL NUMBER SENSING Akira Hirabayashi Naoki Nogami Takashi Ijiri Laurent Condat Ritsumeikan University College Info. Science & Eng. Kusatsu, Shiga 525-8577,

More information

Compressed Sampling CMOS Imager based on Asynchronous Random Pixel Contributions

Compressed Sampling CMOS Imager based on Asynchronous Random Pixel Contributions Compressed Sampling CMOS Imager based on Asynchronous Random Pixel Contributions Marco Trevisi 1, H.C. Bandala-Hernandez 2, Ricardo Carmona-Galán 1, and Ángel Rodríguez-Vázquez 1 1 Institute of Microelectronics

More information

Compressive Sensing: Theory and Practice

Compressive Sensing: Theory and Practice Compressive Sensing: Theory and Practice Mark Davenport Rice University ECE Department Sensor Explosion Digital Revolution If we sample a signal at twice its highest frequency, then we can recover it exactly.

More information

Compressive Sensing Based Image Reconstruction using Wavelet Transform

Compressive Sensing Based Image Reconstruction using Wavelet Transform Compressive Sensing Based Image Reconstruction using Wavelet Transform Sherin C Abraham #1, Ketki Pathak *2, Jigna J Patel #3 # Electronics & Communication department, Gujarat Technological University

More information

TERM PAPER ON The Compressive Sensing Based on Biorthogonal Wavelet Basis

TERM PAPER ON The Compressive Sensing Based on Biorthogonal Wavelet Basis TERM PAPER ON The Compressive Sensing Based on Biorthogonal Wavelet Basis Submitted By: Amrita Mishra 11104163 Manoj C 11104059 Under the Guidance of Dr. Sumana Gupta Professor Department of Electrical

More information

The Smashed Filter for Compressive Classification and Target Recognition

The Smashed Filter for Compressive Classification and Target Recognition The Smashed Filter for Compressive Classification and Target Recognition Mark A. Davenport Joint work with Marco Duarte, Michael Wakin, Jason Laska, Dharmpal Takhar, Kevin Kelly and Rich Baraniuk dsp.rice.edu/cs

More information

Structurally Random Matrices

Structurally Random Matrices Fast Compressive Sampling Using Structurally Random Matrices Presented by: Thong Do (thongdo@jhu.edu) The Johns Hopkins University A joint work with Prof. Trac Tran, The Johns Hopkins University it Dr.

More information

ANALYSIS OF RECONSTRUCTED IMAGES USING COMPRESSIVE SENSING

ANALYSIS OF RECONSTRUCTED IMAGES USING COMPRESSIVE SENSING International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-01 1 ANALYSIS OF RECONSTRUCTED IMAGES USING COMPRESSIVE SENSING Ms.Ambily Joseph, Ms.Jaini Sara Babu, Dr. K.P Soman

More information

Compressive Sensing Applications and Demonstrations: Synthetic Aperture Radar

Compressive Sensing Applications and Demonstrations: Synthetic Aperture Radar Compressive Sensing Applications and Demonstrations: Synthetic Aperture Radar Shaun I. Kelly The University of Edinburgh 1 Outline 1 SAR Basics 2 Compressed Sensing SAR 3 Other Applications of Sparsity

More information

WAVELET USE FOR IMAGE RESTORATION

WAVELET USE FOR IMAGE RESTORATION WAVELET USE FOR IMAGE RESTORATION Jiří PTÁČEK and Aleš PROCHÁZKA 1 Institute of Chemical Technology, Prague Department of Computing and Control Engineering Technicka 5, 166 28 Prague 6, Czech Republic

More information

Non-Differentiable Image Manifolds

Non-Differentiable Image Manifolds The Multiscale Structure of Non-Differentiable Image Manifolds Michael Wakin Electrical l Engineering i Colorado School of Mines Joint work with Richard Baraniuk, Hyeokho Choi, David Donoho Models for

More information

Adaptive Quantization for Video Compression in Frequency Domain

Adaptive Quantization for Video Compression in Frequency Domain Adaptive Quantization for Video Compression in Frequency Domain *Aree A. Mohammed and **Alan A. Abdulla * Computer Science Department ** Mathematic Department University of Sulaimani P.O.Box: 334 Sulaimani

More information

Measurements and Bits: Compressed Sensing meets Information Theory. Dror Baron ECE Department Rice University dsp.rice.edu/cs

Measurements and Bits: Compressed Sensing meets Information Theory. Dror Baron ECE Department Rice University dsp.rice.edu/cs Measurements and Bits: Compressed Sensing meets Information Theory Dror Baron ECE Department Rice University dsp.rice.edu/cs Sensing by Sampling Sample data at Nyquist rate Compress data using model (e.g.,

More information

LOW BIT-RATE COMPRESSION OF VIDEO AND LIGHT-FIELD DATA USING CODED SNAPSHOTS AND LEARNED DICTIONARIES

LOW BIT-RATE COMPRESSION OF VIDEO AND LIGHT-FIELD DATA USING CODED SNAPSHOTS AND LEARNED DICTIONARIES LOW BIT-RATE COMPRESSION OF VIDEO AND LIGHT-FIELD DATA USING CODED SNAPSHOTS AND LEARNED DICTIONARIES Chandrajit Choudhury, Yellamraju Tarun, Ajit Rajwade, and Subhasis Chaudhuri Dept. of Electrical Engineering

More information

ADAPTIVE ACQUISITIONS IN BIOMEDICAL OPTICAL IMAGING BASED ON SINGLE PIXEL CAMERA: COMPARISON WITH COMPRESSIVE SENSING

ADAPTIVE ACQUISITIONS IN BIOMEDICAL OPTICAL IMAGING BASED ON SINGLE PIXEL CAMERA: COMPARISON WITH COMPRESSIVE SENSING IEEE International Symposium on Biomedical Imaging Prague April 14, 2016 ADAPTIVE ACQUISITIONS IN BIOMEDICAL OPTICAL IMAGING BASED ON SINGLE PIXEL CAMERA: COMPARISON WITH COMPRESSIVE SENSING Florian Rousset

More information

VARIABLE DENSITY COMPRESSED IMAGE SAMPLING

VARIABLE DENSITY COMPRESSED IMAGE SAMPLING VARIABLE DENSITY COMPRESSED IMAGE SAMPLING Zhongmin Wang, Gonzalo R. Arce and Jose L. Paredes Dep. of Electrical and Computer Engineering, University of Delaware, Newark, DE, 19716 USA. e-mail:{zhongmin,arce}@ee.udel.edu

More information

Block Compressive Sensing (BCS) based Multi-Phase Reconstruction (MPR) Framework for Video

Block Compressive Sensing (BCS) based Multi-Phase Reconstruction (MPR) Framework for Video Block Compressive Sensing (BCS) based Multi-Phase Reconstruction (MPR) Framework for Video Mansoor Ebrahim*, Wai Chong Chai Faculty of Science & Technology, Sunway University Bandar Sunway, 46150 Petaling

More information

G Practical Magnetic Resonance Imaging II Sackler Institute of Biomedical Sciences New York University School of Medicine. Compressed Sensing

G Practical Magnetic Resonance Imaging II Sackler Institute of Biomedical Sciences New York University School of Medicine. Compressed Sensing G16.4428 Practical Magnetic Resonance Imaging II Sackler Institute of Biomedical Sciences New York University School of Medicine Compressed Sensing Ricardo Otazo, PhD ricardo.otazo@nyumc.org Compressed

More information

Compressive Imaging for Video Representation and Coding

Compressive Imaging for Video Representation and Coding Compressive Imaging for Video Representation and Coding Michael B. Wakin, Jason N. Laska, Marco F. Duarte, Dror Baron, Shriram Sarvotham Dharmpal Takhar, Kevin F. Kelly, and Richard G. Baraniuk Dept. of

More information

The Fundamentals of Compressive Sensing

The Fundamentals of Compressive Sensing The Fundamentals of Compressive Sensing Mark A. Davenport Georgia Institute of Technology School of Electrical and Computer Engineering Sensor explosion Data deluge Digital revolution If we sample a signal

More information

Motion Estimation and Classification in Compressive Sensing from Dynamic Measurements

Motion Estimation and Classification in Compressive Sensing from Dynamic Measurements Motion Estimation and Classification in Compressive Sensing from Dynamic Measurements Vijay Rengarajan, A.N. Rajagopalan, and R. Aravind Department of Electrical Engineering, Indian Institute of Technology

More information

RECONSTRUCTION ALGORITHMS FOR COMPRESSIVE VIDEO SENSING USING BASIS PURSUIT

RECONSTRUCTION ALGORITHMS FOR COMPRESSIVE VIDEO SENSING USING BASIS PURSUIT RECONSTRUCTION ALGORITHMS FOR COMPRESSIVE VIDEO SENSING USING BASIS PURSUIT Ida Wahidah 1, Andriyan Bayu Suksmono 1 1 School of Electrical Engineering and Informatics, Institut Teknologi Bandung Jl. Ganesa

More information

Review and Implementation of DWT based Scalable Video Coding with Scalable Motion Coding.

Review and Implementation of DWT based Scalable Video Coding with Scalable Motion Coding. Project Title: Review and Implementation of DWT based Scalable Video Coding with Scalable Motion Coding. Midterm Report CS 584 Multimedia Communications Submitted by: Syed Jawwad Bukhari 2004-03-0028 About

More information

Compressive Sensing of High-Dimensional Visual Signals. Aswin C Sankaranarayanan Rice University

Compressive Sensing of High-Dimensional Visual Signals. Aswin C Sankaranarayanan Rice University Compressive Sensing of High-Dimensional Visual Signals Aswin C Sankaranarayanan Rice University Interaction of light with objects Reflection Fog Volumetric scattering Human skin Sub-surface scattering

More information

Tutorial on Image Compression

Tutorial on Image Compression Tutorial on Image Compression Richard Baraniuk Rice University dsp.rice.edu Agenda Image compression problem Transform coding (lossy) Approximation linear, nonlinear DCT-based compression JPEG Wavelet-based

More information

Compressive Sensing for High-Dimensional Data

Compressive Sensing for High-Dimensional Data Compressive Sensing for High-Dimensional Data Richard Baraniuk Rice University dsp.rice.edu/cs DIMACS Workshop on Recent Advances in Mathematics and Information Sciences for Analysis and Understanding

More information

Video Compression Method for On-Board Systems of Construction Robots

Video Compression Method for On-Board Systems of Construction Robots Video Compression Method for On-Board Systems of Construction Robots Andrei Petukhov, Michael Rachkov Moscow State Industrial University Department of Automatics, Informatics and Control Systems ul. Avtozavodskaya,

More information

ELEG Compressive Sensing and Sparse Signal Representations

ELEG Compressive Sensing and Sparse Signal Representations ELEG 867 - Compressive Sensing and Sparse Signal Representations Gonzalo R. Arce Depart. of Electrical and Computer Engineering University of Delaware Fall 211 Compressive Sensing G. Arce Fall, 211 1 /

More information

Evaluation of Deconvolution Methods for PRISM images

Evaluation of Deconvolution Methods for PRISM images Evaluation of Deconvolution Methods for PRISM images Peter Schwind, Gintautas Palubinskas, Tobias Storch, Rupert Müller Remote Sensing Technology Inst. (IMF) German Aerospace Center (DLR) November 2008,

More information

Compressive Sensing based image processing in TrapView pest monitoring system

Compressive Sensing based image processing in TrapView pest monitoring system Compressive Sensing based image processing in TrapView pest monitoring system Milan Marić *, Irena Orović ** and Srdjan Stanković ** * S&T Crna Gora d.o.o, Podgorica, Montenegro ** University of Montenegro,

More information

Randomized sampling without repetition in timelapse seismic surveys

Randomized sampling without repetition in timelapse seismic surveys Randomized sampling without repetition in timelapse seismic surveys Felix Oghenekohwo SLIM University of British Columbia Randomized sampling without repetition in timelapse seismic surveys Felix Oghenekohwo

More information

CHAPTER 6. 6 Huffman Coding Based Image Compression Using Complex Wavelet Transform. 6.3 Wavelet Transform based compression technique 106

CHAPTER 6. 6 Huffman Coding Based Image Compression Using Complex Wavelet Transform. 6.3 Wavelet Transform based compression technique 106 CHAPTER 6 6 Huffman Coding Based Image Compression Using Complex Wavelet Transform Page No 6.1 Introduction 103 6.2 Compression Techniques 104 103 6.2.1 Lossless compression 105 6.2.2 Lossy compression

More information

Image Reconstruction from Multiple Sparse Representations

Image Reconstruction from Multiple Sparse Representations Image Reconstruction from Multiple Sparse Representations Robert Crandall Advisor: Professor Ali Bilgin University of Arizona Program in Applied Mathematics 617 N. Santa Rita, Tucson, AZ 85719 Abstract

More information

Signal Processing with Side Information

Signal Processing with Side Information Signal Processing with Side Information A Geometric Approach via Sparsity João F. C. Mota Heriot-Watt University, Edinburgh, UK Side Information Signal processing tasks Denoising Reconstruction Demixing

More information

Randomized Dimensionality Reduction

Randomized Dimensionality Reduction Randomized Dimensionality Reduction with Applications to Signal Processing and Communications Richard Baraniuk Rice University The Digital Universe Size: 281 billion gigabytes generated in 2007 digital

More information

CSEP 521 Applied Algorithms Spring Lossy Image Compression

CSEP 521 Applied Algorithms Spring Lossy Image Compression CSEP 521 Applied Algorithms Spring 2005 Lossy Image Compression Lossy Image Compression Methods Scalar quantization (SQ). Vector quantization (VQ). DCT Compression JPEG Wavelet Compression SPIHT UWIC (University

More information

Compressive Sensing. A New Framework for Sparse Signal Acquisition and Processing. Richard Baraniuk. Rice University

Compressive Sensing. A New Framework for Sparse Signal Acquisition and Processing. Richard Baraniuk. Rice University Compressive Sensing A New Framework for Sparse Signal Acquisition and Processing Richard Baraniuk Rice University Better, Stronger, Faster Accelerating Data Deluge 1250 billion gigabytes generated in 2010

More information

Reversible Wavelets for Embedded Image Compression. Sri Rama Prasanna Pavani Electrical and Computer Engineering, CU Boulder

Reversible Wavelets for Embedded Image Compression. Sri Rama Prasanna Pavani Electrical and Computer Engineering, CU Boulder Reversible Wavelets for Embedded Image Compression Sri Rama Prasanna Pavani Electrical and Computer Engineering, CU Boulder pavani@colorado.edu APPM 7400 - Wavelets and Imaging Prof. Gregory Beylkin -

More information

CS-MUVI: Video Compressive Sensing for Spatial-Multiplexing Cameras

CS-MUVI: Video Compressive Sensing for Spatial-Multiplexing Cameras CS-MUVI: Video Compressive Sensing for Spatial-Multiplexing Cameras Aswin C. Sankaranarayanan, Christoph Studer, and Richard G. Baraniuk Rice University Abstract Compressive sensing (CS)-based spatial-multiplexing

More information

Distributed Compressed Estimation Based on Compressive Sensing for Wireless Sensor Networks

Distributed Compressed Estimation Based on Compressive Sensing for Wireless Sensor Networks Distributed Compressed Estimation Based on Compressive Sensing for Wireless Sensor Networks Joint work with Songcen Xu and Vincent Poor Rodrigo C. de Lamare CETUC, PUC-Rio, Brazil Communications Research

More information

JPEG 2000 vs. JPEG in MPEG Encoding

JPEG 2000 vs. JPEG in MPEG Encoding JPEG 2000 vs. JPEG in MPEG Encoding V.G. Ruiz, M.F. López, I. García and E.M.T. Hendrix Dept. Computer Architecture and Electronics University of Almería. 04120 Almería. Spain. E-mail: vruiz@ual.es, mflopez@ace.ual.es,

More information

COMPUTATIONAL AGILE BEAM LADAR IMAGING

COMPUTATIONAL AGILE BEAM LADAR IMAGING COMPUTATIONAL AGILE BEAM LADAR IMAGING Arthita Ghosh 1, Vishal M. Patel 2 and Michael A. Powers 3 1 Center for Automation Research, University of Maryland, College Park, MD 20742 2 Rutgers, The State University

More information

Sparse Reconstruction / Compressive Sensing

Sparse Reconstruction / Compressive Sensing Sparse Reconstruction / Compressive Sensing Namrata Vaswani Department of Electrical and Computer Engineering Iowa State University Namrata Vaswani Sparse Reconstruction / Compressive Sensing 1/ 20 The

More information

JPEG compression of monochrome 2D-barcode images using DCT coefficient distributions

JPEG compression of monochrome 2D-barcode images using DCT coefficient distributions Edith Cowan University Research Online ECU Publications Pre. JPEG compression of monochrome D-barcode images using DCT coefficient distributions Keng Teong Tan Hong Kong Baptist University Douglas Chai

More information

Introduction to Topics in Machine Learning

Introduction to Topics in Machine Learning Introduction to Topics in Machine Learning Namrata Vaswani Department of Electrical and Computer Engineering Iowa State University Namrata Vaswani 1/ 27 Compressed Sensing / Sparse Recovery: Given y :=

More information

An Improved Performance of Watermarking In DWT Domain Using SVD

An Improved Performance of Watermarking In DWT Domain Using SVD An Improved Performance of Watermarking In DWT Domain Using SVD Ramandeep Kaur 1 and Harpal Singh 2 1 Research Scholar, Department of Electronics & Communication Engineering, RBIEBT, Kharar, Pin code 140301,

More information

Reconstruction-free Inference on Compressive Measurements

Reconstruction-free Inference on Compressive Measurements Carnegie Mellon University Research Showcase @ CMU Department of Electrical and Computer Engineering Carnegie Institute of Technology 6-2015 Reconstruction-free Inference on Compressive Measurements Suhas

More information

Image denoising using curvelet transform: an approach for edge preservation

Image denoising using curvelet transform: an approach for edge preservation Journal of Scientific & Industrial Research Vol. 3469, January 00, pp. 34-38 J SCI IN RES VOL 69 JANUARY 00 Image denoising using curvelet transform: an approach for edge preservation Anil A Patil * and

More information

Compressed Sensing Algorithm for Real-Time Doppler Ultrasound Image Reconstruction

Compressed Sensing Algorithm for Real-Time Doppler Ultrasound Image Reconstruction Mathematical Modelling and Applications 2017; 2(6): 75-80 http://www.sciencepublishinggroup.com/j/mma doi: 10.11648/j.mma.20170206.14 ISSN: 2575-1786 (Print); ISSN: 2575-1794 (Online) Compressed Sensing

More information

How and what do we see? Segmentation and Grouping. Fundamental Problems. Polyhedral objects. Reducing the combinatorics of pose estimation

How and what do we see? Segmentation and Grouping. Fundamental Problems. Polyhedral objects. Reducing the combinatorics of pose estimation Segmentation and Grouping Fundamental Problems ' Focus of attention, or grouping ' What subsets of piels do we consider as possible objects? ' All connected subsets? ' Representation ' How do we model

More information

DOWNWARD SPATIALLY-SCALABLE IMAGE RECONSTRUCTION BASED ON COMPRESSED SENSING

DOWNWARD SPATIALLY-SCALABLE IMAGE RECONSTRUCTION BASED ON COMPRESSED SENSING DOWNWARD SPATIALLY-SCALABLE IMAGE RECONSTRUCTION BASED ON COMPRESSED SENSING Shuyuan Zhu 1 Bing Zeng 1 Lu Fang 2 and Moncef Gabbouj 3 1 Institute of Image Processing University of Electronic Science and

More information

Comparison of Wavelet Based Watermarking Techniques for Various Attacks

Comparison of Wavelet Based Watermarking Techniques for Various Attacks International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, Volume-3, Issue-4, April 2015 Comparison of Wavelet Based Watermarking Techniques for Various Attacks Sachin B. Patel,

More information

A Robust Watermarking Algorithm For JPEG Images

A Robust Watermarking Algorithm For JPEG Images nd Joint International Information Technology, Mechanical and Electronic Engineering Conference (JIMEC 7) A Robust Watermarking Algorithm For JPEG Images Baosheng Sun, Daofu Gong*, Fenlin Liu *Foundation

More information

Compressive. Graphical Models. Volkan Cevher. Rice University ELEC 633 / STAT 631 Class

Compressive. Graphical Models. Volkan Cevher. Rice University ELEC 633 / STAT 631 Class Compressive Sensing and Graphical Models Volkan Cevher volkan@rice edu volkan@rice.edu Rice University ELEC 633 / STAT 631 Class http://www.ece.rice.edu/~vc3/elec633/ Digital Revolution Pressure is on

More information

DEEP LEARNING OF COMPRESSED SENSING OPERATORS WITH STRUCTURAL SIMILARITY (SSIM) LOSS

DEEP LEARNING OF COMPRESSED SENSING OPERATORS WITH STRUCTURAL SIMILARITY (SSIM) LOSS DEEP LEARNING OF COMPRESSED SENSING OPERATORS WITH STRUCTURAL SIMILARITY (SSIM) LOSS ABSTRACT Compressed sensing (CS) is a signal processing framework for efficiently reconstructing a signal from a small

More information

Image Error Concealment Based on Watermarking

Image Error Concealment Based on Watermarking Image Error Concealment Based on Watermarking Shinfeng D. Lin, Shih-Chieh Shie and Jie-Wei Chen Department of Computer Science and Information Engineering,National Dong Hwa Universuty, Hualien, Taiwan,

More information

Department of Electronics and Communication KMP College of Engineering, Perumbavoor, Kerala, India 1 2

Department of Electronics and Communication KMP College of Engineering, Perumbavoor, Kerala, India 1 2 Vol.3, Issue 3, 2015, Page.1115-1021 Effect of Anti-Forensics and Dic.TV Method for Reducing Artifact in JPEG Decompression 1 Deepthy Mohan, 2 Sreejith.H 1 PG Scholar, 2 Assistant Professor Department

More information

A COMPRESSION TECHNIQUES IN DIGITAL IMAGE PROCESSING - REVIEW

A COMPRESSION TECHNIQUES IN DIGITAL IMAGE PROCESSING - REVIEW A COMPRESSION TECHNIQUES IN DIGITAL IMAGE PROCESSING - ABSTRACT: REVIEW M.JEYAPRATHA 1, B.POORNA VENNILA 2 Department of Computer Application, Nadar Saraswathi College of Arts and Science, Theni, Tamil

More information

Data Hiding in Video

Data Hiding in Video Data Hiding in Video J. J. Chae and B. S. Manjunath Department of Electrical and Computer Engineering University of California, Santa Barbara, CA 9316-956 Email: chaejj, manj@iplab.ece.ucsb.edu Abstract

More information

ADAPTIVE LOW RANK AND SPARSE DECOMPOSITION OF VIDEO USING COMPRESSIVE SENSING

ADAPTIVE LOW RANK AND SPARSE DECOMPOSITION OF VIDEO USING COMPRESSIVE SENSING ADAPTIVE LOW RANK AND SPARSE DECOMPOSITION OF VIDEO USING COMPRESSIVE SENSING Fei Yang 1 Hong Jiang 2 Zuowei Shen 3 Wei Deng 4 Dimitris Metaxas 1 1 Rutgers University 2 Bell Labs 3 National University

More information

A new robust watermarking scheme based on PDE decomposition *

A new robust watermarking scheme based on PDE decomposition * A new robust watermarking scheme based on PDE decomposition * Noura Aherrahrou University Sidi Mohamed Ben Abdellah Faculty of Sciences Dhar El mahraz LIIAN, Department of Informatics Fez, Morocco Hamid

More information

A Comparison of Still-Image Compression Standards Using Different Image Quality Metrics and Proposed Methods for Improving Lossy Image Quality

A Comparison of Still-Image Compression Standards Using Different Image Quality Metrics and Proposed Methods for Improving Lossy Image Quality A Comparison of Still-Image Compression Standards Using Different Image Quality Metrics and Proposed Methods for Improving Lossy Image Quality Multidimensional DSP Literature Survey Eric Heinen 3/21/08

More information

Robust Video Coding. Heechan Park. Signal and Image Processing Group Computer Science Department University of Warwick. for CS403

Robust Video Coding. Heechan Park. Signal and Image Processing Group Computer Science Department University of Warwick. for CS403 Robust Video Coding for CS403 Heechan Park Signal and Image Processing Group Computer Science Department University of Warwick Standard Video Coding Scalable Video Coding Distributed Video Coding Video

More information

1-bit Compressive Data Gathering for Wireless Sensor Networks

1-bit Compressive Data Gathering for Wireless Sensor Networks 1-bit Compressive Data Gathering for Wireless Sensor Networks Jiping Xiong, Member, IEEE, Qinghua Tang, and Jian Zhao Abstract Compressive sensing (CS) has been widely used for the data gathering in wireless

More information

Discrete Wavelets and Image Processing

Discrete Wavelets and Image Processing Discrete Wavelets and Image Processing Helmut Knaust Department of Mathematical Sciences The University of Texas at El Paso El Paso TX 79968-0514 hknaust@utep.edu October 16, 2009 Math 5311: Applied Mathematics

More information

A tree projection algorithm for wavelet-based sparse approximation

A tree projection algorithm for wavelet-based sparse approximation A tree projection algorithm for wavelet-based sparse approximation Andrew Thompson Duke University, North Carolina, USA joint with Coralia Cartis (University of Edinburgh) Wavelet trees Discrete wavelet

More information

COMPARISONS OF DCT-BASED AND DWT-BASED WATERMARKING TECHNIQUES

COMPARISONS OF DCT-BASED AND DWT-BASED WATERMARKING TECHNIQUES COMPARISONS OF DCT-BASED AND DWT-BASED WATERMARKING TECHNIQUES H. I. Saleh 1, M. E. Elhadedy 2, M. A. Ashour 1, M. A. Aboelsaud 3 1 Radiation Engineering Dept., NCRRT, AEA, Egypt. 2 Reactor Dept., NRC,

More information

Using Shift Number Coding with Wavelet Transform for Image Compression

Using Shift Number Coding with Wavelet Transform for Image Compression ISSN 1746-7659, England, UK Journal of Information and Computing Science Vol. 4, No. 3, 2009, pp. 311-320 Using Shift Number Coding with Wavelet Transform for Image Compression Mohammed Mustafa Siddeq

More information

Robust Image Watermarking based on Discrete Wavelet Transform, Discrete Cosine Transform & Singular Value Decomposition

Robust Image Watermarking based on Discrete Wavelet Transform, Discrete Cosine Transform & Singular Value Decomposition Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 3, Number 8 (2013), pp. 971-976 Research India Publications http://www.ripublication.com/aeee.htm Robust Image Watermarking based

More information

KSVD - Gradient Descent Method For Compressive Sensing Optimization

KSVD - Gradient Descent Method For Compressive Sensing Optimization KSV - Gradient escent Method For Compressive Sensing Optimization Endra epartment of Computer Engineering Faculty of Engineering Bina Nusantara University INTROUCTION INTROUCTION WHAT IS COMPRESSIVE SENSING?

More information

Image Interpolation using Collaborative Filtering

Image Interpolation using Collaborative Filtering Image Interpolation using Collaborative Filtering 1,2 Qiang Guo, 1,2,3 Caiming Zhang *1 School of Computer Science and Technology, Shandong Economic University, Jinan, 250014, China, qguo2010@gmail.com

More information

FRACTAL IMAGE COMPRESSION OF GRAYSCALE AND RGB IMAGES USING DCT WITH QUADTREE DECOMPOSITION AND HUFFMAN CODING. Moheb R. Girgis and Mohammed M.

FRACTAL IMAGE COMPRESSION OF GRAYSCALE AND RGB IMAGES USING DCT WITH QUADTREE DECOMPOSITION AND HUFFMAN CODING. Moheb R. Girgis and Mohammed M. 322 FRACTAL IMAGE COMPRESSION OF GRAYSCALE AND RGB IMAGES USING DCT WITH QUADTREE DECOMPOSITION AND HUFFMAN CODING Moheb R. Girgis and Mohammed M. Talaat Abstract: Fractal image compression (FIC) is a

More information

Image Compression Algorithm and JPEG Standard

Image Compression Algorithm and JPEG Standard International Journal of Scientific and Research Publications, Volume 7, Issue 12, December 2017 150 Image Compression Algorithm and JPEG Standard Suman Kunwar sumn2u@gmail.com Summary. The interest in

More information

A COMPRESSIVE SAMPLING SCHEME FOR ITERATIVE HYPERSPECTRAL IMAGE RECONSTRUCTION

A COMPRESSIVE SAMPLING SCHEME FOR ITERATIVE HYPERSPECTRAL IMAGE RECONSTRUCTION A COMPRESSIVE SAMPLING SCHEME FOR ITERATIVE HYPERSPECTRAL IMAGE RECONSTRUCTION A. Abrardo, M. Barni, C.M. Carretti, S. Kuiteing Kamdem Università di Siena Dipartimento di Ingegneria dell Informazione {surname}@dii.unisi.it

More information

Constrained Reconstruction of Sparse Cardiac MR DTI Data

Constrained Reconstruction of Sparse Cardiac MR DTI Data Constrained Reconstruction of Sparse Cardiac MR DTI Data Ganesh Adluru 1,3, Edward Hsu, and Edward V.R. DiBella,3 1 Electrical and Computer Engineering department, 50 S. Central Campus Dr., MEB, University

More information

* I Form Approved FA PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT N/A AFRL-SR-AR-TR N/A

* I Form Approved FA PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT N/A AFRL-SR-AR-TR N/A * I Form Approved REPORT DOCUMENTATION PAGE T OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing

More information

Compressive sampling for accelerometer signals in structural health monitoring

Compressive sampling for accelerometer signals in structural health monitoring Structural Health Monitoring OnlineFirst, published on June 4, 2 as doi:.77/475927373287 Article Compressive sampling for accelerometer signals in structural health monitoring Structural Health Monitoring

More information

EE 5359 Multimedia project

EE 5359 Multimedia project EE 5359 Multimedia project -Chaitanya Chukka -Chaitanya.chukka@mavs.uta.edu 5/7/2010 1 Universality in the title The measurement of Image Quality(Q)does not depend : On the images being tested. On Viewing

More information

3D Mesh Sequence Compression Using Thin-plate Spline based Prediction

3D Mesh Sequence Compression Using Thin-plate Spline based Prediction Appl. Math. Inf. Sci. 10, No. 4, 1603-1608 (2016) 1603 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.18576/amis/100440 3D Mesh Sequence Compression Using Thin-plate

More information

Main Menu. Summary. sampled) f has a sparse representation transform domain S with. in certain. f S x, the relation becomes

Main Menu. Summary. sampled) f has a sparse representation transform domain S with. in certain. f S x, the relation becomes Preliminary study on Dreamlet based compressive sensing data recovery Ru-Shan Wu*, Yu Geng 1 and Lingling Ye, Modeling and Imaging Lab, Earth & Planetary Sciences/IGPP, University of California, Santa

More information

Bit-plane Image Coding Scheme Based On Compressed Sensing

Bit-plane Image Coding Scheme Based On Compressed Sensing Appl. Math. Inf. Sci. 6, No. 3, 721-727 (2012) 721 Applied Mathematics & Information Sciences An International Journal Bit-plane Image Coding Scheme Based On Compressed Sensing Guangchun Gao, Kai Xiong

More information

A New Approach to Compressed Image Steganography Using Wavelet Transform

A New Approach to Compressed Image Steganography Using Wavelet Transform IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661,p-ISSN: 2278-8727, Volume 17, Issue 5, Ver. III (Sep. Oct. 2015), PP 53-59 www.iosrjournals.org A New Approach to Compressed Image Steganography

More information

A Sparsity-Driven Approach to Multi-camera Tracking in Visual Sensor Networks

A Sparsity-Driven Approach to Multi-camera Tracking in Visual Sensor Networks A Sparsity-Driven Approach to Multi-camera Tracking in Visual Sensor Networks Serhan Coşar a,b a INRIA Sophia Antipolis, STARS team 2004 R. des Lucioles, 06902 S. Antipolis, France serhan.cosar@inria.fr

More information

SSIM Image Quality Metric for Denoised Images

SSIM Image Quality Metric for Denoised Images SSIM Image Quality Metric for Denoised Images PETER NDAJAH, HISAKAZU KIKUCHI, MASAHIRO YUKAWA, HIDENORI WATANABE and SHOGO MURAMATSU Department of Electrical and Electronics Engineering, Niigata University,

More information

A COMPRESSIVE SAMPLING SCHEME FOR ITERATIVE HYPERSPECTRAL IMAGE RECONSTRUCTION

A COMPRESSIVE SAMPLING SCHEME FOR ITERATIVE HYPERSPECTRAL IMAGE RECONSTRUCTION 19th European Signal Processing Conference (EUSIPCO 2011) Barcelona, Spain, August 29 - September 2, 2011 A COMPRESSIVE SAMPLING SCHEME FOR ITERATIVE HYPERSPECTRAL IMAGE RECONSTRUCTION A. Abrardo, M. Barni,

More information

Combined DCT-Haar Transforms for Image Compression

Combined DCT-Haar Transforms for Image Compression Proceedings of the 4 th World Congress on Electrical Engineering and Computer Systems and Sciences (EECSS 18) Madrid, Spain August 21 23, 2018 Paper No. MVML 103 DOI: 10.11159/mvml18.103 Combined DCT-Haar

More information

The Analysis and Detection of Double JPEG2000 Compression Based on Statistical Characterization of DWT Coefficients

The Analysis and Detection of Double JPEG2000 Compression Based on Statistical Characterization of DWT Coefficients Available online at www.sciencedirect.com Energy Procedia 17 (2012 ) 623 629 2012 International Conference on Future Electrical Power and Energy Systems The Analysis and Detection of Double JPEG2000 Compression

More information

2D-DST scheme for image mirroring and rotation

2D-DST scheme for image mirroring and rotation 2D-D scheme for image mirroring and rotation Do yeon Kim and K. R. Rao Department of Electrical Engineering he University of eas at Arlington 46 Yates treet, 769, UA E-mail: cooldnk@yahoo.com, rao@uta.edu

More information

Compressive Parameter Estimation with Earth Mover s Distance via K-means Clustering. Dian Mo and Marco F. Duarte

Compressive Parameter Estimation with Earth Mover s Distance via K-means Clustering. Dian Mo and Marco F. Duarte Compressive Parameter Estimation with Earth Mover s Distance via K-means Clustering Dian Mo and Marco F. Duarte Compressive Sensing (CS) Integrates linear acquisition with dimensionality reduction linear

More information

International Journal of Modern Trends in Engineering and Research e-issn No.: , Date: 2-4 July, 2015

International Journal of Modern Trends in Engineering and Research   e-issn No.: , Date: 2-4 July, 2015 International Journal of Modern Trends in Engineering and Research www.ijmter.com e-issn No.:2349-9745, Date: 2-4 July, 2015 Denoising of Speech using Wavelets Snehal S. Laghate 1, Prof. Sanjivani S. Bhabad

More information

SPARSE SIGNAL RECONSTRUCTION FROM NOISY COMPRESSIVE MEASUREMENTS USING CROSS VALIDATION. Petros Boufounos, Marco F. Duarte, Richard G.

SPARSE SIGNAL RECONSTRUCTION FROM NOISY COMPRESSIVE MEASUREMENTS USING CROSS VALIDATION. Petros Boufounos, Marco F. Duarte, Richard G. SPARSE SIGNAL RECONSTRUCTION FROM NOISY COMPRESSIVE MEASUREMENTS USING CROSS VALIDATION Petros Boufounos, Marco F. Duarte, Richard G. Baraniuk Rice University, Electrical and Computer Engineering, Houston,

More information

ECE 533 Digital Image Processing- Fall Group Project Embedded Image coding using zero-trees of Wavelet Transform

ECE 533 Digital Image Processing- Fall Group Project Embedded Image coding using zero-trees of Wavelet Transform ECE 533 Digital Image Processing- Fall 2003 Group Project Embedded Image coding using zero-trees of Wavelet Transform Harish Rajagopal Brett Buehl 12/11/03 Contributions Tasks Harish Rajagopal (%) Brett

More information

Multiple target detection in video using quadratic multi-frame correlation filtering

Multiple target detection in video using quadratic multi-frame correlation filtering Multiple target detection in video using quadratic multi-frame correlation filtering Ryan Kerekes Oak Ridge National Laboratory B. V. K. Vijaya Kumar Carnegie Mellon University March 17, 2008 1 Outline

More information

Compressive Sensing for Background Subtraction

Compressive Sensing for Background Subtraction Compressive Sensing for Background Subtraction Volkan Cevher 1, Aswin Sankaranarayanan 2, Marco F. Duarte 1, Dikpal Reddy 2, Richard G. Baraniuk 1, and Rama Chellappa 2 1 Rice University, ECE, Houston

More information

Signal Reconstruction from Sparse Representations: An Introdu. Sensing

Signal Reconstruction from Sparse Representations: An Introdu. Sensing Signal Reconstruction from Sparse Representations: An Introduction to Compressed Sensing December 18, 2009 Digital Data Acquisition Suppose we want to acquire some real world signal digitally. Applications

More information

A SEMI-FRAGILE WATERMARKING SCHEME FOR IMAGE TAMPER LOCALIZATION AND RECOVERY

A SEMI-FRAGILE WATERMARKING SCHEME FOR IMAGE TAMPER LOCALIZATION AND RECOVERY Journal of Theoretical Applied nformation Technology 31 August 2012 Vol 42 No2 2005-2012 JATT & LLS All rights reserved SSN: 1992-8645 wwwjatitorg E-SSN: 1817-3195 A SEM-FRAGLE WATERMARNG SCHEME FOR MAGE

More information

Research Article Self-Adaptive Image Reconstruction Inspired by Insect Compound Eye Mechanism

Research Article Self-Adaptive Image Reconstruction Inspired by Insect Compound Eye Mechanism Computational and Mathematical Methods in Medicine Volume 2012, Article ID 125321, 7 pages doi:10.1155/2012/125321 Research Article Self-Adaptive Image Reconstruction Inspired by Insect Compound Eye Mechanism

More information