Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /10/2017

Size: px
Start display at page:

Download "Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /10/2017"

Transcription

1 3/0/207 Neural Networks Emily Fox University of Washington March 0, 207 Slides adapted from Ali Farhadi (via Carlos Guestrin and Luke Zettlemoyer) Single-layer neural network

2 3/0/207 Perceptron as a neural network x[] x[2] x[d] w 2 Σ 3 This is one neuron: - Input edges x[],,x[d], along with intercept x[0]= - Sum passed through an activation function g Sigmoid neuron x[] x[2] w 2 Σ x[d] 4 Just change g! - Why would we want to do this? - Notice the output range [0,]. What was it before? - Look familiar? 2

3 3/0/207 Perceptron, linear classification, Boolean fns: x[j] {0,} Can learn x[] x[2]? x[] + x[2] Can learn x[] x[2]? x[] + x[2] Can learn any conjunction or disjunction? x[] + + x[d] - (-d+0.5) + x[] + + x[d] Can learn majority? - (-0.5*d) + x[] + + x[d] What are we missing? The dreaded XOR!, etc. x[] x[2] x[d ] w 2 Σ 5 Introducing a hidden layer 3

4 3/0/207 What can t a simple linear classifier represent? XOR the counterexample to everything Need non-linear features XOR = x[] AND NOT x[2] OR NOT x[] AND x[2] 7 Solving the XOR problem: Going beyond linear classification by adding a layer XOR = x[] AND NOT x[2] OR NOT x[] AND x[2] -0.5 v[] v[2] -0.5 x[] x[2] v[] v[2] y Thresholded to 0 or 4

5 3/0/207 Solving the XOR problem: Going beyond linear classification by adding a layer y = x[] XOR x[2] =(x[] x[2]) (x[2] x[]) v[] = (x[] x[2]) = -0.5+x[]-x[2] v[2] = (x[2] x[]) = -0.5+x[2]-x[] y = v[] v[2] = -0.5+v[]+v[2] x[] x[2] v[] v[2] -0.5 y 9 Hidden layer Single unit: -hidden layer: 0 No longer convex function! 5

6 3/0/207 A general neural network Layers and layers and layers of linear models and non-linear transformations x[] v[] y Around for about 50 years - Fell in disfavor in 90s In last few years, big resurgence - Impressive accuracy on several benchmark problems - Powered by huge datasets, GPUs, & modeling/learning alg improvements x[2] v[2] Learning neural networks with hidden layers 6

7 3/0/207 Recall: Optimizing a single-layer neuron We train to minimize sum of squared errors: Taking gradients: 3 Solution just depends on g : derivative of activation function! Forward propagation -hidden layer: For fixed weights, forming predictions is easy! Compute values left to right. Inputs: x[],,x[d] x[] v[] y 2. Hidden: v[],,v[d] 3. Output: y x[2] v[2] 4 7

8 3/0/207 Gradient descent for -hidden layer: Output layer parameters Dropped w 0 to make derivation simpler 5 Gradient for last layer same as single node case, but with hidden nodes v as input! Gradient descent for -hidden layer: Hidden layer parameters Dropped w 0 to make derivation simpler For hidden layer, two parts: 6 Recursive computation of gradient on output layer Normal update for single neuron 8

9 3/0/207 Multilayer neural networks Inference and Learning Forward pass: left to right, each hidden layer in turn Gradient computation: right to left, propagating gradient for each node Forward Gradient 7 Forward propagation Prediction Recursive algorithm Start from input layer Output of node v[k] with parents u[],u[2], : 8 9

10 3/0/207 Back-propagation Learning Just gradient descent!!! Recursive algorithm for computing gradient For each example - Perform forward propagation - Start from output layer Compute gradient of node v[k] with parents u[],u[2], : Update weight Repeat (move to preceding layer) 9 Convergence of backprop Perceptron leads to convex optimization - Gradient descent reaches global minima Multilayer neural nets not convex - Gradient descent gets stuck in local minima - Selecting number of hidden units and layers = fuzzy process - NNs have made a HUGE comeback in the last few years!!! Neural nets are back with a new name!!!! - Deep belief networks - Huge error reduction when trained with lots of data on GPUs 20 0

11 3/0/207 Overfitting in NNs Are NNs likely to overfit? - Yes, they can represent arbitrary functions!!! Avoiding overfitting? - More training data - Fewer hidden nodes / better topology - Regularization - Early stopping 2 Neural networks can do cool things!

12 3/0/207 Object recognition Slides from Jeff Dean at Google 23 Number detection Slides from Jeff Dean at Google 24 2

13 3/0/207 Acoustic Modeling for Speech Recognition label Close collaboration with Google Speech team Slides from Jeff Dean at Google Trained in <5 days on cluster of 800 machines 30% reduction in Word Error Rate for English! ( biggest single improvement in 20 years of speech research ) Launched in 202 at time of Jellybean release of Android era Convolutional Model for Object Recognition Softmax to predict object class Fully-connected layers Convolutional layers! (same weights used at all! spatial locations in layer)!! Convolutional networks developed by! Yann LeCun (NYU) Layer 7... Layer Input Slides from Jeff Dean at Google Basic architecture developed by Krizhevsky, Sutskever & Hinton (all now at Google).! Won 202 ImageNet challenge with 6.4% top-5 error rate 26 3

14 3/0/ era Model for Object Recognition Module with 6 separate! convolutional layers 24 layers deep! Slides from Jeff Dean at Google Developed by team of Google Researchers:! Won 204 ImageNet challenge with 6.66% top-5 error rate 27 Good Fine-grained Classification Slides from Jeff Dean at Google hibiscus dahlia 28 4

15 3/0/207 Good Generalization Slides from Jeff Dean at Google Both recognized as a meal Sensible Errors Slides from Jeff Dean at Google snake dog 5

16 3/0/207 Works in practice for real users. Slides from Jeff Dean at Google Works in practice for real users. Slides from Jeff Dean at Google 6

17 3/0/207 Object detection Redmon et al Neural network summary 7

18 3/0/207 What you need to know about neural networks Perceptron: - Relationship to general neurons Multilayer neural nets - Representation - Derivation of backprop - Learning rule Overfitting 35 Course Wrap-Up Emily Fox University of Washington March 0, 207 8

19 3/0/207 What you have learned this quarter 37 Learning is function approximation Point estimation Regression Overfitting Bias-Variance tradeoff Ridge, LASSO Cross validation Stochastic gradient descent Coordinate descent Subgradient Logistic regression Decision trees Boosting Instance-based learning Perceptron SVMs Kernel trick Dimensionality reduction, PCA K-means Mixtures of Gaussians EM Discriminative v. Generative learning Unsupervised v. Supervised learning Naïve Bayes Bayes nets Neural networks BIG PICTURE Improving the performance at some task though experience!!! - before you start any learning task, remember the fundamental questions: What is the learning problem? From what experience? What model? What loss function are you optimizing? With what optimization algorithm? Which learning algorithm? With what guarantees? How will you evaluate it? 38 9

20 3/0/207 Regression Example: Predicting house prices Data ML Regression Method Intelligence $ $ $ price ($) $ =?? 39 + house features house size Classification Example: Sentiment analysis Data ML Classification Method Intelligence Sushi was awesome, the food was awesome, but the service was awful. All reviews: Score(x) < 0 awful 40 awesome Score(x) > 0 20

21 3/0/207 Similarity/finding data Example: Document retrieval Nearest ML neighbor Method Data 4 Intelligence Clustering Example: Document structuring for retrieval Data ML Clustering Method SPORTS 42 Intelligence WORLD NEWS ENTERTAINMENT SCIENCE 2

22 3/0/207 Embedding Example: Embedding images to visualize data Data ML PCA Method Intelligence Can we give each image a coordinate, such that similar images are near each other? [Saul & Roweis 03] 43 Images with thousands or millions of pixels Deep Learning Example: Visual product recommender Data Deep ML Method Learning Intelligence Input images: Layer Layer 2 Nearest neighbors: x z y x 2 z

23 3/0/ You have done a lot!!! And (hopefully) learned a lot!!! - Implemented LASSO Logistic regression Perceptron Clustering - Answered hard questions and proved many interesting results - Completed (I am sure) an amazing ML project - And did excellently on the final! Thank You for the Hard Work!!! 23

Deep Learning & Neural Networks

Deep Learning & Neural Networks Deep Learning & Neural Networks Machine Learning CSE4546 Sham Kakade University of Washington November 29, 2016 Sham Kakade 1 Announcements: HW4 posted Poster Session Thurs, Dec 8 Today: Review: EM Neural

More information

Simple Model Selection Cross Validation Regularization Neural Networks

Simple Model Selection Cross Validation Regularization Neural Networks Neural Nets: Many possible refs e.g., Mitchell Chapter 4 Simple Model Selection Cross Validation Regularization Neural Networks Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University February

More information

Perceptron as a graph

Perceptron as a graph Neural Networks Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University October 10 th, 2007 2005-2007 Carlos Guestrin 1 Perceptron as a graph 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0-6 -4-2

More information

The exam is closed book, closed notes except your one-page cheat sheet.

The exam is closed book, closed notes except your one-page cheat sheet. CS 189 Fall 2015 Introduction to Machine Learning Final Please do not turn over the page before you are instructed to do so. You have 2 hours and 50 minutes. Please write your initials on the top-right

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Image Data: Classification via Neural Networks Instructor: Yizhou Sun yzsun@ccs.neu.edu November 19, 2015 Methods to Learn Classification Clustering Frequent Pattern Mining

More information

Deep Learning. Volker Tresp Summer 2014

Deep Learning. Volker Tresp Summer 2014 Deep Learning Volker Tresp Summer 2014 1 Neural Network Winter and Revival While Machine Learning was flourishing, there was a Neural Network winter (late 1990 s until late 2000 s) Around 2010 there

More information

CS 2750: Machine Learning. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh April 13, 2016

CS 2750: Machine Learning. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh April 13, 2016 CS 2750: Machine Learning Neural Networks Prof. Adriana Kovashka University of Pittsburgh April 13, 2016 Plan for today Neural network definition and examples Training neural networks (backprop) Convolutional

More information

Neural Network Neurons

Neural Network Neurons Neural Networks Neural Network Neurons 1 Receives n inputs (plus a bias term) Multiplies each input by its weight Applies activation function to the sum of results Outputs result Activation Functions Given

More information

Neural Networks. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani

Neural Networks. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani Neural Networks CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Biological and artificial neural networks Feed-forward neural networks Single layer

More information

Machine Learning. Chao Lan

Machine Learning. Chao Lan Machine Learning Chao Lan Machine Learning Prediction Models Regression Model - linear regression (least square, ridge regression, Lasso) Classification Model - naive Bayes, logistic regression, Gaussian

More information

Deep Learning for Computer Vision II

Deep Learning for Computer Vision II IIIT Hyderabad Deep Learning for Computer Vision II C. V. Jawahar Paradigm Shift Feature Extraction (SIFT, HoG, ) Part Models / Encoding Classifier Sparrow Feature Learning Classifier Sparrow L 1 L 2 L

More information

Deep Learning with Tensorflow AlexNet

Deep Learning with Tensorflow   AlexNet Machine Learning and Computer Vision Group Deep Learning with Tensorflow http://cvml.ist.ac.at/courses/dlwt_w17/ AlexNet Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton, "Imagenet classification

More information

ImageNet Classification with Deep Convolutional Neural Networks

ImageNet Classification with Deep Convolutional Neural Networks ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky Ilya Sutskever Geoffrey Hinton University of Toronto Canada Paper with same name to appear in NIPS 2012 Main idea Architecture

More information

Neural Networks for unsupervised learning From Principal Components Analysis to Autoencoders to semantic hashing

Neural Networks for unsupervised learning From Principal Components Analysis to Autoencoders to semantic hashing Neural Networks for unsupervised learning From Principal Components Analysis to Autoencoders to semantic hashing feature 3 PC 3 Beate Sick Many slides are taken form Hinton s great lecture on NN: https://www.coursera.org/course/neuralnets

More information

Lecture 17: Neural Networks and Deep Learning. Instructor: Saravanan Thirumuruganathan

Lecture 17: Neural Networks and Deep Learning. Instructor: Saravanan Thirumuruganathan Lecture 17: Neural Networks and Deep Learning Instructor: Saravanan Thirumuruganathan Outline Perceptron Neural Networks Deep Learning Convolutional Neural Networks Recurrent Neural Networks Auto Encoders

More information

Convolutional Neural Networks

Convolutional Neural Networks Lecturer: Barnabas Poczos Introduction to Machine Learning (Lecture Notes) Convolutional Neural Networks Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

More information

Neural Nets & Deep Learning

Neural Nets & Deep Learning Neural Nets & Deep Learning The Inspiration Inputs Outputs Our brains are pretty amazing, what if we could do something similar with computers? Image Source: http://ib.bioninja.com.au/_media/neuron _med.jpeg

More information

Neural Networks for Machine Learning. Lecture 15a From Principal Components Analysis to Autoencoders

Neural Networks for Machine Learning. Lecture 15a From Principal Components Analysis to Autoencoders Neural Networks for Machine Learning Lecture 15a From Principal Components Analysis to Autoencoders Geoffrey Hinton Nitish Srivastava, Kevin Swersky Tijmen Tieleman Abdel-rahman Mohamed Principal Components

More information

Lecture 20: Neural Networks for NLP. Zubin Pahuja

Lecture 20: Neural Networks for NLP. Zubin Pahuja Lecture 20: Neural Networks for NLP Zubin Pahuja zpahuja2@illinois.edu courses.engr.illinois.edu/cs447 CS447: Natural Language Processing 1 Today s Lecture Feed-forward neural networks as classifiers simple

More information

Unsupervised Learning: Clustering

Unsupervised Learning: Clustering Unsupervised Learning: Clustering Vibhav Gogate The University of Texas at Dallas Slides adapted from Carlos Guestrin, Dan Klein & Luke Zettlemoyer Machine Learning Supervised Learning Unsupervised Learning

More information

CMU Lecture 18: Deep learning and Vision: Convolutional neural networks. Teacher: Gianni A. Di Caro

CMU Lecture 18: Deep learning and Vision: Convolutional neural networks. Teacher: Gianni A. Di Caro CMU 15-781 Lecture 18: Deep learning and Vision: Convolutional neural networks Teacher: Gianni A. Di Caro DEEP, SHALLOW, CONNECTED, SPARSE? Fully connected multi-layer feed-forward perceptrons: More powerful

More information

Neural Networks and Deep Learning

Neural Networks and Deep Learning Neural Networks and Deep Learning Example Learning Problem Example Learning Problem Celebrity Faces in the Wild Machine Learning Pipeline Raw data Feature extract. Feature computation Inference: prediction,

More information

CS 1674: Intro to Computer Vision. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh November 16, 2016

CS 1674: Intro to Computer Vision. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh November 16, 2016 CS 1674: Intro to Computer Vision Neural Networks Prof. Adriana Kovashka University of Pittsburgh November 16, 2016 Announcements Please watch the videos I sent you, if you haven t yet (that s your reading)

More information

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1 Preface to the Second Edition Preface to the First Edition vii xi 1 Introduction 1 2 Overview of Supervised Learning 9 2.1 Introduction... 9 2.2 Variable Types and Terminology... 9 2.3 Two Simple Approaches

More information

DEEP LEARNING REVIEW. Yann LeCun, Yoshua Bengio & Geoffrey Hinton Nature Presented by Divya Chitimalla

DEEP LEARNING REVIEW. Yann LeCun, Yoshua Bengio & Geoffrey Hinton Nature Presented by Divya Chitimalla DEEP LEARNING REVIEW Yann LeCun, Yoshua Bengio & Geoffrey Hinton Nature 2015 -Presented by Divya Chitimalla What is deep learning Deep learning allows computational models that are composed of multiple

More information

SEMANTIC COMPUTING. Lecture 8: Introduction to Deep Learning. TU Dresden, 7 December Dagmar Gromann International Center For Computational Logic

SEMANTIC COMPUTING. Lecture 8: Introduction to Deep Learning. TU Dresden, 7 December Dagmar Gromann International Center For Computational Logic SEMANTIC COMPUTING Lecture 8: Introduction to Deep Learning Dagmar Gromann International Center For Computational Logic TU Dresden, 7 December 2018 Overview Introduction Deep Learning General Neural Networks

More information

Deep Convolutional Neural Networks. Nov. 20th, 2015 Bruce Draper

Deep Convolutional Neural Networks. Nov. 20th, 2015 Bruce Draper Deep Convolutional Neural Networks Nov. 20th, 2015 Bruce Draper Background: Fully-connected single layer neural networks Feed-forward classification Trained through back-propagation Example Computer Vision

More information

Machine Learning. MGS Lecture 3: Deep Learning

Machine Learning. MGS Lecture 3: Deep Learning Dr Michel F. Valstar http://cs.nott.ac.uk/~mfv/ Machine Learning MGS Lecture 3: Deep Learning Dr Michel F. Valstar http://cs.nott.ac.uk/~mfv/ WHAT IS DEEP LEARNING? Shallow network: Only one hidden layer

More information

Machine Learning. Deep Learning. Eric Xing (and Pengtao Xie) , Fall Lecture 8, October 6, Eric CMU,

Machine Learning. Deep Learning. Eric Xing (and Pengtao Xie) , Fall Lecture 8, October 6, Eric CMU, Machine Learning 10-701, Fall 2015 Deep Learning Eric Xing (and Pengtao Xie) Lecture 8, October 6, 2015 Eric Xing @ CMU, 2015 1 A perennial challenge in computer vision: feature engineering SIFT Spin image

More information

Using neural nets to recognize hand-written digits. Srikumar Ramalingam School of Computing University of Utah

Using neural nets to recognize hand-written digits. Srikumar Ramalingam School of Computing University of Utah Using neural nets to recognize hand-written digits Srikumar Ramalingam School of Computing University of Utah Reference Most of the slides are taken from the first chapter of the online book by Michael

More information

Machine Learning. The Breadth of ML Neural Networks & Deep Learning. Marc Toussaint. Duy Nguyen-Tuong. University of Stuttgart

Machine Learning. The Breadth of ML Neural Networks & Deep Learning. Marc Toussaint. Duy Nguyen-Tuong. University of Stuttgart Machine Learning The Breadth of ML Neural Networks & Deep Learning Marc Toussaint University of Stuttgart Duy Nguyen-Tuong Bosch Center for Artificial Intelligence Summer 2017 Neural Networks Consider

More information

Classification Lecture Notes cse352. Neural Networks. Professor Anita Wasilewska

Classification Lecture Notes cse352. Neural Networks. Professor Anita Wasilewska Classification Lecture Notes cse352 Neural Networks Professor Anita Wasilewska Neural Networks Classification Introduction INPUT: classification data, i.e. it contains an classification (class) attribute

More information

ROB 537: Learning-Based Control

ROB 537: Learning-Based Control ROB 537: Learning-Based Control Week 6, Lecture 1 Deep Learning (based on lectures by Fuxin Li, CS 519: Deep Learning) Announcements: HW 3 Due TODAY Midterm Exam on 11/6 Reading: Survey paper on Deep Learning

More information

Advanced Introduction to Machine Learning, CMU-10715

Advanced Introduction to Machine Learning, CMU-10715 Advanced Introduction to Machine Learning, CMU-10715 Deep Learning Barnabás Póczos, Sept 17 Credits Many of the pictures, results, and other materials are taken from: Ruslan Salakhutdinov Joshua Bengio

More information

Machine Learning With Python. Bin Chen Nov. 7, 2017 Research Computing Center

Machine Learning With Python. Bin Chen Nov. 7, 2017 Research Computing Center Machine Learning With Python Bin Chen Nov. 7, 2017 Research Computing Center Outline Introduction to Machine Learning (ML) Introduction to Neural Network (NN) Introduction to Deep Learning NN Introduction

More information

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review Gautam Kunapuli Machine Learning Data is identically and independently distributed Goal is to learn a function that maps to Data is generated using an unknown function Learn a hypothesis that minimizes

More information

Machine Learning 13. week

Machine Learning 13. week Machine Learning 13. week Deep Learning Convolutional Neural Network Recurrent Neural Network 1 Why Deep Learning is so Popular? 1. Increase in the amount of data Thanks to the Internet, huge amount of

More information

Machine Learning / Jan 27, 2010

Machine Learning / Jan 27, 2010 Revisiting Logistic Regression & Naïve Bayes Aarti Singh Machine Learning 10-701/15-781 Jan 27, 2010 Generative and Discriminative Classifiers Training classifiers involves learning a mapping f: X -> Y,

More information

Convolutional Neural Networks. Computer Vision Jia-Bin Huang, Virginia Tech

Convolutional Neural Networks. Computer Vision Jia-Bin Huang, Virginia Tech Convolutional Neural Networks Computer Vision Jia-Bin Huang, Virginia Tech Today s class Overview Convolutional Neural Network (CNN) Training CNN Understanding and Visualizing CNN Image Categorization:

More information

Energy Based Models, Restricted Boltzmann Machines and Deep Networks. Jesse Eickholt

Energy Based Models, Restricted Boltzmann Machines and Deep Networks. Jesse Eickholt Energy Based Models, Restricted Boltzmann Machines and Deep Networks Jesse Eickholt ???? Who s heard of Energy Based Models (EBMs) Restricted Boltzmann Machines (RBMs) Deep Belief Networks Auto-encoders

More information

COMP 551 Applied Machine Learning Lecture 16: Deep Learning

COMP 551 Applied Machine Learning Lecture 16: Deep Learning COMP 551 Applied Machine Learning Lecture 16: Deep Learning Instructor: Ryan Lowe (ryan.lowe@cs.mcgill.ca) Slides mostly by: Class web page: www.cs.mcgill.ca/~hvanho2/comp551 Unless otherwise noted, all

More information

Natural Language Processing CS 6320 Lecture 6 Neural Language Models. Instructor: Sanda Harabagiu

Natural Language Processing CS 6320 Lecture 6 Neural Language Models. Instructor: Sanda Harabagiu Natural Language Processing CS 6320 Lecture 6 Neural Language Models Instructor: Sanda Harabagiu In this lecture We shall cover: Deep Neural Models for Natural Language Processing Introduce Feed Forward

More information

Scaled Machine Learning at Matroid

Scaled Machine Learning at Matroid Scaled Machine Learning at Matroid Reza Zadeh @Reza_Zadeh http://reza-zadeh.com Machine Learning Pipeline Learning Algorithm Replicate model Data Trained Model Serve Model Repeat entire pipeline Scaling

More information

5 Machine Learning Abstractions and Numerical Optimization

5 Machine Learning Abstractions and Numerical Optimization Machine Learning Abstractions and Numerical Optimization 25 5 Machine Learning Abstractions and Numerical Optimization ML ABSTRACTIONS [some meta comments on machine learning] [When you write a large computer

More information

Deep Learning. Volker Tresp Summer 2015

Deep Learning. Volker Tresp Summer 2015 Deep Learning Volker Tresp Summer 2015 1 Neural Network Winter and Revival While Machine Learning was flourishing, there was a Neural Network winter (late 1990 s until late 2000 s) Around 2010 there

More information

Neural Networks (pp )

Neural Networks (pp ) Notation: Means pencil-and-paper QUIZ Means coding QUIZ Neural Networks (pp. 106-121) The first artificial neural network (ANN) was the (single-layer) perceptron, a simplified model of a biological neuron.

More information

Deep Learning for Computer Vision

Deep Learning for Computer Vision Deep Learning for Computer Vision Lecture 7: Universal Approximation Theorem, More Hidden Units, Multi-Class Classifiers, Softmax, and Regularization Peter Belhumeur Computer Science Columbia University

More information

Deep Learning Workshop. Nov. 20, 2015 Andrew Fishberg, Rowan Zellers

Deep Learning Workshop. Nov. 20, 2015 Andrew Fishberg, Rowan Zellers Deep Learning Workshop Nov. 20, 2015 Andrew Fishberg, Rowan Zellers Why deep learning? The ImageNet Challenge Goal: image classification with 1000 categories Top 5 error rate of 15%. Krizhevsky, Alex,

More information

Assignment # 5. Farrukh Jabeen Due Date: November 2, Neural Networks: Backpropation

Assignment # 5. Farrukh Jabeen Due Date: November 2, Neural Networks: Backpropation Farrukh Jabeen Due Date: November 2, 2009. Neural Networks: Backpropation Assignment # 5 The "Backpropagation" method is one of the most popular methods of "learning" by a neural network. Read the class

More information

CSE 559A: Computer Vision

CSE 559A: Computer Vision CSE 559A: Computer Vision Fall 2018: T-R: 11:30-1pm @ Lopata 101 Instructor: Ayan Chakrabarti (ayan@wustl.edu). Course Staff: Zhihao Xia, Charlie Wu, Han Liu http://www.cse.wustl.edu/~ayan/courses/cse559a/

More information

For Monday. Read chapter 18, sections Homework:

For Monday. Read chapter 18, sections Homework: For Monday Read chapter 18, sections 10-12 The material in section 8 and 9 is interesting, but we won t take time to cover it this semester Homework: Chapter 18, exercise 25 a-b Program 4 Model Neuron

More information

Improving the way neural networks learn Srikumar Ramalingam School of Computing University of Utah

Improving the way neural networks learn Srikumar Ramalingam School of Computing University of Utah Improving the way neural networks learn Srikumar Ramalingam School of Computing University of Utah Reference Most of the slides are taken from the third chapter of the online book by Michael Nielson: neuralnetworksanddeeplearning.com

More information

Instance-Based Learning: Nearest neighbor and kernel regression and classificiation

Instance-Based Learning: Nearest neighbor and kernel regression and classificiation Instance-Based Learning: Nearest neighbor and kernel regression and classificiation Emily Fox University of Washington February 3, 2017 Simplest approach: Nearest neighbor regression 1 Fit locally to each

More information

scikit-learn (Machine Learning in Python)

scikit-learn (Machine Learning in Python) scikit-learn (Machine Learning in Python) (PB13007115) 2016-07-12 (PB13007115) scikit-learn (Machine Learning in Python) 2016-07-12 1 / 29 Outline 1 Introduction 2 scikit-learn examples 3 Captcha recognize

More information

What is machine learning?

What is machine learning? Machine learning, pattern recognition and statistical data modelling Lecture 12. The last lecture Coryn Bailer-Jones 1 What is machine learning? Data description and interpretation finding simpler relationship

More information

SUPERVISED LEARNING METHODS. Stanley Liang, PhD Candidate, Lassonde School of Engineering, York University Helix Science Engagement Programs 2018

SUPERVISED LEARNING METHODS. Stanley Liang, PhD Candidate, Lassonde School of Engineering, York University Helix Science Engagement Programs 2018 SUPERVISED LEARNING METHODS Stanley Liang, PhD Candidate, Lassonde School of Engineering, York University Helix Science Engagement Programs 2018 2 CHOICE OF ML You cannot know which algorithm will work

More information

Instance-Based Learning: Nearest neighbor and kernel regression and classificiation

Instance-Based Learning: Nearest neighbor and kernel regression and classificiation Instance-Based Learning: Nearest neighbor and kernel regression and classificiation Emily Fox University of Washington February 3, 2017 Simplest approach: Nearest neighbor regression 1 Fit locally to each

More information

Neural Networks. By Laurence Squires

Neural Networks. By Laurence Squires Neural Networks By Laurence Squires Machine learning What is it? Type of A.I. (possibly the ultimate A.I.?!?!?!) Algorithms that learn how to classify data The algorithms slowly change their own variables

More information

Partitioning Data. IRDS: Evaluation, Debugging, and Diagnostics. Cross-Validation. Cross-Validation for parameter tuning

Partitioning Data. IRDS: Evaluation, Debugging, and Diagnostics. Cross-Validation. Cross-Validation for parameter tuning Partitioning Data IRDS: Evaluation, Debugging, and Diagnostics Charles Sutton University of Edinburgh Training Validation Test Training : Running learning algorithms Validation : Tuning parameters of learning

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Sources Hastie, Tibshirani, Friedman: The Elements of Statistical Learning James, Witten, Hastie, Tibshirani: An Introduction to Statistical Learning Andrew Ng:

More information

LECTURE NOTES Professor Anita Wasilewska NEURAL NETWORKS

LECTURE NOTES Professor Anita Wasilewska NEURAL NETWORKS LECTURE NOTES Professor Anita Wasilewska NEURAL NETWORKS Neural Networks Classifier Introduction INPUT: classification data, i.e. it contains an classification (class) attribute. WE also say that the class

More information

Object Detection Lecture Introduction to deep learning (CNN) Idar Dyrdal

Object Detection Lecture Introduction to deep learning (CNN) Idar Dyrdal Object Detection Lecture 10.3 - Introduction to deep learning (CNN) Idar Dyrdal Deep Learning Labels Computational models composed of multiple processing layers (non-linear transformations) Used to learn

More information

CS 6501: Deep Learning for Computer Graphics. Training Neural Networks II. Connelly Barnes

CS 6501: Deep Learning for Computer Graphics. Training Neural Networks II. Connelly Barnes CS 6501: Deep Learning for Computer Graphics Training Neural Networks II Connelly Barnes Overview Preprocessing Initialization Vanishing/exploding gradients problem Batch normalization Dropout Additional

More information

Lecture 13. Deep Belief Networks. Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen

Lecture 13. Deep Belief Networks. Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen Lecture 13 Deep Belief Networks Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen IBM T.J. Watson Research Center Yorktown Heights, New York, USA {picheny,bhuvana,stanchen}@us.ibm.com 12 December 2012

More information

Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining Knowledge Discovery and Data Mining Lecture 13 - Neural Nets Tom Kelsey School of Computer Science University of St Andrews http://tom.home.cs.st-andrews.ac.uk twk@st-andrews.ac.uk Tom Kelsey ID5059-13-NN

More information

Class 6 Large-Scale Image Classification

Class 6 Large-Scale Image Classification Class 6 Large-Scale Image Classification Liangliang Cao, March 7, 2013 EECS 6890 Topics in Information Processing Spring 2013, Columbia University http://rogerioferis.com/visualrecognitionandsearch Visual

More information

Data Mining. Neural Networks

Data Mining. Neural Networks Data Mining Neural Networks Goals for this Unit Basic understanding of Neural Networks and how they work Ability to use Neural Networks to solve real problems Understand when neural networks may be most

More information

Supervised Learning (contd) Linear Separation. Mausam (based on slides by UW-AI faculty)

Supervised Learning (contd) Linear Separation. Mausam (based on slides by UW-AI faculty) Supervised Learning (contd) Linear Separation Mausam (based on slides by UW-AI faculty) Images as Vectors Binary handwritten characters Treat an image as a highdimensional vector (e.g., by reading pixel

More information

Deep Learning. Deep Learning provided breakthrough results in speech recognition and image classification. Why?

Deep Learning. Deep Learning provided breakthrough results in speech recognition and image classification. Why? Data Mining Deep Learning Deep Learning provided breakthrough results in speech recognition and image classification. Why? Because Speech recognition and image classification are two basic examples of

More information

Machine Learning Techniques

Machine Learning Techniques Machine Learning Techniques ( 機器學習技法 ) Lecture 16: Finale Hsuan-Tien Lin ( 林軒田 ) htlin@csie.ntu.edu.tw Department of Computer Science & Information Engineering National Taiwan University ( 國立台灣大學資訊工程系

More information

Artificial Neural Networks (Feedforward Nets)

Artificial Neural Networks (Feedforward Nets) Artificial Neural Networks (Feedforward Nets) y w 03-1 w 13 y 1 w 23 y 2 w 01 w 21 w 22 w 02-1 w 11 w 12-1 x 1 x 2 6.034 - Spring 1 Single Perceptron Unit y w 0 w 1 w n w 2 w 3 x 0 =1 x 1 x 2 x 3... x

More information

A Taxonomy of Semi-Supervised Learning Algorithms

A Taxonomy of Semi-Supervised Learning Algorithms A Taxonomy of Semi-Supervised Learning Algorithms Olivier Chapelle Max Planck Institute for Biological Cybernetics December 2005 Outline 1 Introduction 2 Generative models 3 Low density separation 4 Graph

More information

Su et al. Shape Descriptors - III

Su et al. Shape Descriptors - III Su et al. Shape Descriptors - III Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749 Funkhouser; Feng, Liu, Gong Recap Global A shape descriptor is a set of numbers that describes a shape in a way that

More information

More on Learning. Neural Nets Support Vectors Machines Unsupervised Learning (Clustering) K-Means Expectation-Maximization

More on Learning. Neural Nets Support Vectors Machines Unsupervised Learning (Clustering) K-Means Expectation-Maximization More on Learning Neural Nets Support Vectors Machines Unsupervised Learning (Clustering) K-Means Expectation-Maximization Neural Net Learning Motivated by studies of the brain. A network of artificial

More information

Instance-based Learning

Instance-based Learning Instance-based Learning Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University October 15 th, 2007 2005-2007 Carlos Guestrin 1 1-Nearest Neighbor Four things make a memory based learner:

More information

Learning. Learning agents Inductive learning. Neural Networks. Different Learning Scenarios Evaluation

Learning. Learning agents Inductive learning. Neural Networks. Different Learning Scenarios Evaluation Learning Learning agents Inductive learning Different Learning Scenarios Evaluation Slides based on Slides by Russell/Norvig, Ronald Williams, and Torsten Reil Material from Russell & Norvig, chapters

More information

Machine Learning (CSE 446): Practical Issues

Machine Learning (CSE 446): Practical Issues Machine Learning (CSE 446): Practical Issues Noah Smith c 2017 University of Washington nasmith@cs.washington.edu October 18, 2017 1 / 39 scary words 2 / 39 Outline of CSE 446 We ve already covered stuff

More information

Predictive Analytics: Demystifying Current and Emerging Methodologies. Tom Kolde, FCAS, MAAA Linda Brobeck, FCAS, MAAA

Predictive Analytics: Demystifying Current and Emerging Methodologies. Tom Kolde, FCAS, MAAA Linda Brobeck, FCAS, MAAA Predictive Analytics: Demystifying Current and Emerging Methodologies Tom Kolde, FCAS, MAAA Linda Brobeck, FCAS, MAAA May 18, 2017 About the Presenters Tom Kolde, FCAS, MAAA Consulting Actuary Chicago,

More information

Neural Network Learning. Today s Lecture. Continuation of Neural Networks. Artificial Neural Networks. Lecture 24: Learning 3. Victor R.

Neural Network Learning. Today s Lecture. Continuation of Neural Networks. Artificial Neural Networks. Lecture 24: Learning 3. Victor R. Lecture 24: Learning 3 Victor R. Lesser CMPSCI 683 Fall 2010 Today s Lecture Continuation of Neural Networks Artificial Neural Networks Compose of nodes/units connected by links Each link has a numeric

More information

Deep Learning With Noise

Deep Learning With Noise Deep Learning With Noise Yixin Luo Computer Science Department Carnegie Mellon University yixinluo@cs.cmu.edu Fan Yang Department of Mathematical Sciences Carnegie Mellon University fanyang1@andrew.cmu.edu

More information

Knowledge Discovery and Data Mining. Neural Nets. A simple NN as a Mathematical Formula. Notes. Lecture 13 - Neural Nets. Tom Kelsey.

Knowledge Discovery and Data Mining. Neural Nets. A simple NN as a Mathematical Formula. Notes. Lecture 13 - Neural Nets. Tom Kelsey. Knowledge Discovery and Data Mining Lecture 13 - Neural Nets Tom Kelsey School of Computer Science University of St Andrews http://tom.home.cs.st-andrews.ac.uk twk@st-andrews.ac.uk Tom Kelsey ID5059-13-NN

More information

Learning via Optimization

Learning via Optimization Lecture 7 1 Outline 1. Optimization Convexity 2. Linear regression in depth Locally weighted linear regression 3. Brief dips Logistic Regression [Stochastic] gradient ascent/descent Support Vector Machines

More information

Machine Learning. Topic 5: Linear Discriminants. Bryan Pardo, EECS 349 Machine Learning, 2013

Machine Learning. Topic 5: Linear Discriminants. Bryan Pardo, EECS 349 Machine Learning, 2013 Machine Learning Topic 5: Linear Discriminants Bryan Pardo, EECS 349 Machine Learning, 2013 Thanks to Mark Cartwright for his extensive contributions to these slides Thanks to Alpaydin, Bishop, and Duda/Hart/Stork

More information

CPSC 340: Machine Learning and Data Mining. Deep Learning Fall 2016

CPSC 340: Machine Learning and Data Mining. Deep Learning Fall 2016 CPSC 340: Machine Learning and Data Mining Deep Learning Fall 2016 Assignment 5: Due Friday. Assignment 6: Due next Friday. Final: Admin December 12 (8:30am HEBB 100) Covers Assignments 1-6. Final from

More information

27: Hybrid Graphical Models and Neural Networks

27: Hybrid Graphical Models and Neural Networks 10-708: Probabilistic Graphical Models 10-708 Spring 2016 27: Hybrid Graphical Models and Neural Networks Lecturer: Matt Gormley Scribes: Jakob Bauer Otilia Stretcu Rohan Varma 1 Motivation We first look

More information

Deep Model Compression

Deep Model Compression Deep Model Compression Xin Wang Oct.31.2016 Some of the contents are borrowed from Hinton s and Song s slides. Two papers Distilling the Knowledge in a Neural Network by Geoffrey Hinton et al What s the

More information

Gradient Descent. Wed Sept 20th, James McInenrey Adapted from slides by Francisco J. R. Ruiz

Gradient Descent. Wed Sept 20th, James McInenrey Adapted from slides by Francisco J. R. Ruiz Gradient Descent Wed Sept 20th, 2017 James McInenrey Adapted from slides by Francisco J. R. Ruiz Housekeeping A few clarifications of and adjustments to the course schedule: No more breaks at the midpoint

More information

Deep Neural Networks:

Deep Neural Networks: Deep Neural Networks: Part II Convolutional Neural Network (CNN) Yuan-Kai Wang, 2016 Web site of this course: http://pattern-recognition.weebly.com source: CNN for ImageClassification, by S. Lazebnik,

More information

Please write your initials at the top right of each page (e.g., write JS if you are Jonathan Shewchuk). Finish this by the end of your 3 hours.

Please write your initials at the top right of each page (e.g., write JS if you are Jonathan Shewchuk). Finish this by the end of your 3 hours. CS 189 Spring 016 Introduction to Machine Learning Final Please do not open the exam before you are instructed to do so. The exam is closed book, closed notes except your two-page cheat sheet. Electronic

More information

CSE 446 Bias-Variance & Naïve Bayes

CSE 446 Bias-Variance & Naïve Bayes CSE 446 Bias-Variance & Naïve Bayes Administrative Homework 1 due next week on Friday Good to finish early Homework 2 is out on Monday Check the course calendar Start early (midterm is right before Homework

More information

CS229 Final Project: Predicting Expected Response Times

CS229 Final Project: Predicting Expected  Response Times CS229 Final Project: Predicting Expected Email Response Times Laura Cruz-Albrecht (lcruzalb), Kevin Khieu (kkhieu) December 15, 2017 1 Introduction Each day, countless emails are sent out, yet the time

More information

Perceptron: This is convolution!

Perceptron: This is convolution! Perceptron: This is convolution! v v v Shared weights v Filter = local perceptron. Also called kernel. By pooling responses at different locations, we gain robustness to the exact spatial location of image

More information

An Exploration of Computer Vision Techniques for Bird Species Classification

An Exploration of Computer Vision Techniques for Bird Species Classification An Exploration of Computer Vision Techniques for Bird Species Classification Anne L. Alter, Karen M. Wang December 15, 2017 Abstract Bird classification, a fine-grained categorization task, is a complex

More information

COMPUTATIONAL INTELLIGENCE SEW (INTRODUCTION TO MACHINE LEARNING) SS18. Lecture 6: k-nn Cross-validation Regularization

COMPUTATIONAL INTELLIGENCE SEW (INTRODUCTION TO MACHINE LEARNING) SS18. Lecture 6: k-nn Cross-validation Regularization COMPUTATIONAL INTELLIGENCE SEW (INTRODUCTION TO MACHINE LEARNING) SS18 Lecture 6: k-nn Cross-validation Regularization LEARNING METHODS Lazy vs eager learning Eager learning generalizes training data before

More information

Ensemble methods in machine learning. Example. Neural networks. Neural networks

Ensemble methods in machine learning. Example. Neural networks. Neural networks Ensemble methods in machine learning Bootstrap aggregating (bagging) train an ensemble of models based on randomly resampled versions of the training set, then take a majority vote Example What if you

More information

CSE 5526: Introduction to Neural Networks Radial Basis Function (RBF) Networks

CSE 5526: Introduction to Neural Networks Radial Basis Function (RBF) Networks CSE 5526: Introduction to Neural Networks Radial Basis Function (RBF) Networks Part IV 1 Function approximation MLP is both a pattern classifier and a function approximator As a function approximator,

More information

Case Study 1: Estimating Click Probabilities

Case Study 1: Estimating Click Probabilities Case Study 1: Estimating Click Probabilities SGD cont d AdaGrad Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade March 31, 2015 1 Support/Resources Office Hours Yao Lu:

More information

IMPLEMENTING DEEP LEARNING USING CUDNN 이예하 VUNO INC.

IMPLEMENTING DEEP LEARNING USING CUDNN 이예하 VUNO INC. IMPLEMENTING DEEP LEARNING USING CUDNN 이예하 VUNO INC. CONTENTS Deep Learning Review Implementation on GPU using cudnn Optimization Issues Introduction to VUNO-Net DEEP LEARNING REVIEW BRIEF HISTORY OF NEURAL

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing ECG782: Multidimensional Digital Signal Processing Object Recognition http://www.ee.unlv.edu/~b1morris/ecg782/ 2 Outline Knowledge Representation Statistical Pattern Recognition Neural Networks Boosting

More information

More Learning. Ensembles Bayes Rule Neural Nets K-means Clustering EM Clustering WEKA

More Learning. Ensembles Bayes Rule Neural Nets K-means Clustering EM Clustering WEKA More Learning Ensembles Bayes Rule Neural Nets K-means Clustering EM Clustering WEKA 1 Ensembles An ensemble is a set of classifiers whose combined results give the final decision. test feature vector

More information