GLOBAL EDITION. Interactive Computer Graphics. A TopDown Approach with WebGL SEVENTH EDITION. Edward Angel Dave Shreiner


 Simon Holland
 1 years ago
 Views:
Transcription
1 GLOBAL EDITION Interactive Computer Graphics A TopDown Approach with WebGL SEVENTH EDITION Edward Angel Dave Shreiner
2 This page is intentionally left blank.
3 Interactive Computer Graphics with WebGL, Global Edition Table of Contents Cover Dedication Contents Preface Chapter 1: Graphics Systems and Models 1.1 Applications of Computer Graphics Display of Information Design Simulation and Animation User Interfaces 1.2 A Graphics System Pixels and the Framebuffer The CPU and the GPU Output Devices Input Devices 1.3 Images: Physical and Synthetic Objects and Viewers Light and Images Imaging Models 1.4 Imaging Systems The Pinhole Camera The Human Visual System 1.5 The SyntheticCamera Model 1.6 The Programmers Interface The PenPlotter Model ThreeDimensional APIs A Sequence of Images The ModelingRendering Paradigm 1.7 Graphics Architectures Display Processors Pipeline Architectures The Graphics Pipeline Vertex Processing Clipping and Primitive Assembly Rasterization Fragment Processing 1.8 Programmable Pipelines
4 1.9 Performance Characteristics 1.10 OpenGL Versions and WebGL Chapter 2: Graphics Programming 2.1 The Sierpinski Gasket 2.2 Programming TwoDimensional Applications 2.3 The WebGL Application Programming Interface Graphics Functions The Graphics Pipeline and State Machines OpenGL and WebGL The WebGL Interface Coordinate Systems 2.4 Primitives and Attributes Polygon Basics Polygons in WebGL Approximating a Sphere Triangulation Text Curved Objects Attributes 2.5 Color RGB Color Indexed Color Setting of Color Attributes 2.6 Viewing The Orthographic View TwoDimensional Viewing 2.7 Control Functions Interaction with the Window System Aspect Ratio and Viewports Application Organization 2.8 The Gasket Program Sending Data to the GPU Rendering the Points The Vertex Shader The Fragment Shader Combining the Parts The initshaders Function
5 2.8.7 The init Function Reading the Shaders from the Application 2.9 Polygons and Recursion 2.10 The ThreeDimensional Gasket Use of ThreeDimensional Points Naming Conventions Use of Polygons in Three Dimensions HiddenSurface Removal Chapter 3: Interaction and Animation 3.1 Animation The Rotating Square The Display Process Double Buffering Using a Timer Using requestanimframe 3.2 Interaction 3.3 Input Devices 3.4 Physical Input Devices Keyboard Codes The Light Pen The Mouse and the Trackball Data Tablets,Touch Pads, and Touch Screens The Joystick Multidimensional Input Devices Logical Devices Input Modes 3.5 Clients and Servers 3.6 Programming EventDriven Input Events and Event Listeners Adding a Button Menus Using Keycodes Sliders 3.7 Position Input 3.8 Window Events 3.9 Picking 3.10 Building Models Interactively
6 3.11 Design of Interactive Programs Chapter 4: Geometric Objects and Transformations 4.1 Scalars, Points, and Vectors Geometric Objects CoordinateFree Geometry The Mathematical View: Vector and Affine Spaces The Computer Science View Geometric ADTs Lines Affine Sums Convexity Dot and Cross Products Planes 4.2 ThreeDimensional Primitives 4.3 Coordinate Systems and Frames Representations and NTuples Change of Coordinate Systems Example: Change of Representation Homogeneous Coordinates Example: Change in Frames Working with Representations 4.4 Frames in WebGL 4.5 Matrix and Vector Types Row versus Column Major Matrix Representations 4.6 Modeling a Colored Cube Modeling the Faces Inward and OutwardPointing Faces Data Structures for Object Representation The Colored Cube Color Interpolation Displaying the Cube Drawing with Elements 4.7 Affine Transformations 4.8 Translation, Rotation, and Scaling Translation Rotation Scaling
7 4.9 Transformations in Homogeneous Coordinates Translation Scaling Rotation Shear 4.10 Concatenation of Transformations Rotation About a Fixed Point General Rotation The Instance Transformation Rotation About an Arbitrary Axis 4.11 Transformation Matrices in WebGL Current Transformation Matrices Basic Matrix Functions Rotation, Translation, and Scaling Rotation About a Fixed Point Order of Transformations 4.12 Spinning of the Cube Uniform Matrices 4.13 Interfaces to ThreeDimensional Applications Using Areas of the Screen A Virtual Trackball Smooth Rotations Incremental Rotation 4.14 Quaternions Complex Numbers and Quaternions Quaternions and Rotation Quaternions and Gimbal Lock Chapter 5: Viewing 5.1 Classical and Computer Viewing Classical Viewing Orthographic Projections Axonometric Projections Oblique Projections Perspective Viewing 5.2 Viewing with a Computer 5.3 Positioning of the Camera Positioning of the Camera Frame
8 5.3.2 Two Viewing APIs The LookAt Function Other Viewing APIs 5.4 Parallel Projections Orthogonal Projections Parallel Viewing with WebGL Projection Normalization Orthogonal Projection Matrices Oblique Projections An Interactive Viewer 5.5 Perspective Projections Simple Perspective Projections 5.6 Perspective Projections with WebGL Perspective Functions 5.7 Perspective Projection Matrices Perspective Normalization WebGL Perspective Transformations Perspective Example 5.8 HiddenSurface Removal Culling 5.9 Displaying Meshes Displaying Meshes as Surfaces Polygon Offset Walking through a Scene 5.10 Projections and Shadows Projected Shadows 5.11 Shadow Maps Chapter 6: Lighting and Shading 6.1 Light and Matter 6.2 Light Sources Color Sources Ambient Light Point Sources Spotlights Distant Light Sources 6.3 The Phong Reflection Model Ambient Reflection
9 6.3.2 Diffuse Reflection Specular Reflection The Modified Phong Model 6.4 Computation of Vectors Normal Vectors Angle of Reflection 6.5 Polygonal Shading Flat Shading Smooth and Gouraud Shading Phong Shading 6.6 Approximation of a Sphere by Recursive Subdivision 6.7 Specifying Lighting Parameters Light Sources Materials 6.8 Implementing a Lighting Model Applying the Lighting Model in the Application Efficiency Lighting in the Vertex Shader 6.9 Shading of the Sphere Model 6.10 PerFragment Lighting 6.11 Nonphotorealistic Shading 6.12 Global Illumination Chapter 7: Discrete Techniques 7.1 Buffers 7.2 Digital Images 7.3 Mapping Methods 7.4 TwoDimensional Texture Mapping 7.5 Texture Mapping in WebGL Texture Objects The Texture Image Array Texture Coordinates and Samplers Texture Sampling Working with Texture Coordinates Multitexturing 7.6 Texture Generation 7.7 Environment Maps
10 7.8 Reflection Map Example 7.9 Bump Mapping Finding Bump Maps Bump Map Example 7.10 Blending Techniques Opacity and Blending Image Blending Blending in WebGL Antialiasing Revisited BacktoFront and FronttoBack Rendering Scene Antialiasing and Multisampling Image Processing Other Multipass Methods 7.11 GPGPU 7.12 Framebuffer Objects 7.13 Buffer PingPonging 7.14 Picking Chapter 8: From Geometry To Pixels 8.1 Basic Implementation Strategies 8.2 Four Major Tasks Modeling Geometry Processing Rasterization Fragment Processing 8.3 Clipping 8.4 LineSegment Clipping CohenSutherland Clipping LiangBarsky Clipping 8.5 Polygon Clipping 8.6 Clipping of Other Primitives Bounding Boxes and Volumes Curves, Surfaces, and Text Clipping in the Framebuffer 8.7 Clipping in Three Dimensions 8.8 Rasterization 8.9 Bresenhams Algorithm
11 8.10 Polygon Rasterization InsideOutside Testing WebGL and Concave Polygons Fill and Sort Flood Fill Singularities 8.11 HiddenSurface Removal ObjectSpace and ImageSpace Approaches Sorting and HiddenSurface Removal Scan Line Algorithms BackFace Removal The zbuffer Algorithm Scan Conversion with the zbuffer Depth Sort and the Painters Algorithm 8.12 Antialiasing 8.13 Display Considerations Color Systems The Color Matrix Gamma Correction Dithering and Halftoning Chapter 9: Modeling and Hierarchy 9.1 Symbols and Instances 9.2 Hierarchical Models 9.3 A Robot Arm 9.4 Trees and Traversal A StackBased Traversal 9.5 Use of Tree Data Structures 9.6 Animation 9.7 Graphical Objects Methods, Attributes, and Messages A Cube Object Objects and Hierarchy Geometric and Nongeometric Objects 9.8 Scene Graphs 9.9 Implementing Scene Graphs 9.10 Other Tree Structures CSG Trees
12 BSP Trees Quadtrees and Octrees Chapter 10: Procedural Methods 10.1 Algorithmic Models 10.2 Physically Based Models and Particle Systems 10.3 Newtonian Particles Independent Particles Spring Forces Attractive and Repulsive Forces 10.4 Solving Particle Systems 10.5 Constraints Collisions Soft Constraints 10.6 A Simple Particle System Displaying the Particles Updating Particle Positions Collisions Forces Flocking 10.7 AgentBased Models 10.8 LanguageBased Models 10.9 Recursive Methods and Fractals Rulers and Length Fractal Dimension Midpoint Division and Brownian Motion Fractal Mountains The Mandelbrot Set Mandelbrot Fragment Shader Procedural Noise Chapter 11: Curves and Surfaces 11.1 Representation of Curves and Surfaces Explicit Representation Implicit Representations
13 Parametric Form Parametric Polynomial Curves Parametric Polynomial Surfaces 11.2 Design Criteria 11.3 Parametric Cubic Polynomial Curves 11.4 Interpolation Blending Functions The Cubic Interpolating Patch 11.5 Hermite Curves and Surfaces The Hermite Form Geometric and Parametric Continuity 11.6 Be zier Curves and Surfaces Be zier Curves Be zier Surface Patches 11.7 Cubic BSplines The Cubic BSpline Curve BSplines and Basis Spline Surfaces 11.8 General BSplines Recursively Defined BSplines Uniform Splines Nonuniform BSplines NURBS CatmullRom Splines 11.9 Rendering Curves and Surfaces Polynomial Evaluation Methods Recursive Subdivision of Be zier Polynomials Rendering Other Polynomial Curves by Subdivision Subdivision of Be zier Surfaces The Utah Teapot Algebraic Surfaces Quadrics Rendering of Surfaces by Ray Casting Subdivision Curves and Surfaces Mesh Subdivision Mesh Generation from Data Height Fields Revisited Delaunay Triangulation Point Clouds Graphics API support for Curves and Surfaces
14 Tessellation Shading Geometry Shading Chapter 12: Advanced Rendering 12.1 Going Beyond Pipeline Rendering 12.2 Ray Tracing 12.3 Building a Simple Ray Tracer Recursive Ray Tracing Calculating Intersections RayTracing Variations 12.4 The Rendering Equation 12.5 Radiosity The Radiosity Equation Solving the Radiosity Equation Computing Form Factors Carrying Out Radiosity 12.6 Global Illumination and Path Tracing 12.7 RenderMan 12.8 Parallel Rendering SortMiddle Rendering SortLast Rendering SortFirst Rendering 12.9 Hardware GPU Implementations Implicit Functions and Contour Maps Marching Squares Marching Triangles Volume Rendering Volumetric Data Sets Visualization of Implicit Functions Isosurfaces and Marching Cubes Marching Tetrahedra Mesh Simplification Direct Volume Rendering Assignment of Color and Opacity Splatting Volume Ray Tracing Texture Mapping of Volumes ImageBased Rendering
15 A Simple Example Appendix Appendix A: Initializing Shaders A.1 Shaders in the HTML file A.2 Reading Shaders from Source Files Appendix B: Spaces B.1 Scalars B.2 Vector Spaces B.3 Affine Spaces B.4 Euclidean Spaces B.5 Projections B.6 GramSchmidt Orthogonalization Appendix C: Matrices C.1 Definitions C.2 Matrix Operations C.3 Row and Column Matrices C.4 Rank C.5 Change of Representation C.6 The Cross Product C.7 Eigenvalues and Eigenvectors C.8 Vector and Matrix Objects Appendix D: Sampling and Aliasing D.1 Sampling Theory D.2 Reconstruction D.3 Quantization References WebGL Index Subject Index
Interactive Computer Graphics A TOPDOWN APPROACH WITH SHADERBASED OPENGL
International Edition Interactive Computer Graphics A TOPDOWN APPROACH WITH SHADERBASED OPENGL Sixth Edition Edward Angel Dave Shreiner Interactive Computer Graphics: A TopDown Approach with ShaderBased
More informationCHAPTER 1 Graphics Systems and Models 3
?????? 1 CHAPTER 1 Graphics Systems and Models 3 1.1 Applications of Computer Graphics 4 1.1.1 Display of Information............. 4 1.1.2 Design.................... 5 1.1.3 Simulation and Animation...........
More informationQUESTION BANK 10CS65 : COMPUTER GRAPHICS AND VISUALIZATION
QUESTION BANK 10CS65 : COMPUTER GRAPHICS AND VISUALIZATION INTRODUCTION OBJECTIVE: This chapter deals the applications of computer graphics and overview of graphics systems and imaging. UNIT I 1 With clear
More informationComputer Graphics I Lecture 11
15462 Computer Graphics I Lecture 11 Midterm Review Assignment 3 Movie Midterm Review Midterm Preview February 26, 2002 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/
More informationSRM INSTITUTE OF SCIENCE AND TECHNOLOGY
SRM INSTITUTE OF SCIENCE AND TECHNOLOGY DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK SUB.NAME: COMPUTER GRAPHICS SUB.CODE: IT307 CLASS : III/IT UNIT1 2marks 1. What is the various applications
More informationIntroduction to Computer Graphics
Introduction to Computer Graphics James D. Foley Georgia Institute of Technology Andries van Dam Brown University Steven K. Feiner Columbia University John F. Hughes Brown University Richard L. Phillips
More informationCS2401 COMPUTER GRAPHICS ANNA UNIV QUESTION BANK
CS2401 Computer Graphics CS2401 COMPUTER GRAPHICS ANNA UNIV QUESTION BANK CS2401 COMPUTER GRAPHICS UNIT 12D PRIMITIVES 1. Define Computer Graphics. 2. Explain any 3 uses of computer graphics applications.
More informationModels and Architectures
Models and Architectures Objectives Learn the basic design of a graphics system Introduce graphics pipeline architecture Examine software components for an interactive graphics system 1 Image Formation
More informationCS 130 Final. Fall 2015
CS 130 Final Fall 2015 Name Student ID Signature You may not ask any questions during the test. If you believe that there is something wrong with a question, write down what you think the question is trying
More informationCOMPUTER GRAPHICS, MULTIMEDIA AND ANIMATION, Second Edition (with CDROM) Malay K. Pakhira
Computer Graphics, Multimedia and Animation SECOND EDITION Malay K. Pakhira Assistant Professor Department of Computer Science and Engineering Kalyani Government Engineering College Kalyani New Delhi110001
More informationCS230 : Computer Graphics Lecture 4. Tamar Shinar Computer Science & Engineering UC Riverside
CS230 : Computer Graphics Lecture 4 Tamar Shinar Computer Science & Engineering UC Riverside Shadows Shadows for each pixel do compute viewing ray if ( ray hits an object with t in [0, inf] ) then compute
More informationCourse Title: Computer Graphics Course no: CSC209
Course Title: Computer Graphics Course no: CSC209 Nature of the Course: Theory + Lab Semester: III Full Marks: 60+20+20 Pass Marks: 24 +8+8 Credit Hrs: 3 Course Description: The course coversconcepts of
More informationIntroduction to Computer Graphics with WebGL
Introduction to Computer Graphics with WebGL Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science Laboratory University of New Mexico Models and Architectures
More informationPipeline Operations. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 11
Pipeline Operations CS 4620 Lecture 11 1 Pipeline you are here APPLICATION COMMAND STREAM 3D transformations; shading VERTEX PROCESSING TRANSFORMED GEOMETRY conversion of primitives to pixels RASTERIZATION
More informationCS452/552; EE465/505. Clipping & Scan Conversion
CS452/552; EE465/505 Clipping & Scan Conversion 331 15 Outline! From Geometry to Pixels: Overview Clipping (continued) Scan conversion Read: Angel, Chapter 8, 8.18.9 Project#1 due: this week Lab4 due:
More informationPipeline Operations. CS 4620 Lecture 14
Pipeline Operations CS 4620 Lecture 14 2014 Steve Marschner 1 Pipeline you are here APPLICATION COMMAND STREAM 3D transformations; shading VERTEX PROCESSING TRANSFORMED GEOMETRY conversion of primitives
More informationCHETTINAD COLLEGE OF ENGINEERING & TECHNOLOGY CS2401 COMPUTER GRAPHICS QUESTION BANK
CHETTINAD COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING CS2401 COMPUTER GRAPHICS QUESTION BANK PART A UNIT I2D PRIMITIVES 1. Define Computer graphics. 2. Define refresh
More informationComputer Graphics: Programming, Problem Solving, and Visual Communication
Computer Graphics: Programming, Problem Solving, and Visual Communication Dr. Steve Cunningham Computer Science Department California State University Stanislaus Turlock, CA 95382 copyright 2002, Steve
More informationPipeline Operations. CS 4620 Lecture 10
Pipeline Operations CS 4620 Lecture 10 2008 Steve Marschner 1 Hidden surface elimination Goal is to figure out which color to make the pixels based on what s in front of what. Hidden surface elimination
More informationOXFORD ENGINEERING COLLEGE (NAAC Accredited with B Grade) DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING LIST OF QUESTIONS
OXFORD ENGINEERING COLLEGE (NAAC Accredited with B Grade) DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING LIST OF QUESTIONS YEAR/SEM.: III/V STAFF NAME: T.ELANGOVAN SUBJECT NAME: Computer Graphics SUB. CODE:
More informationEndTerm Examination
Paper Code: MCA108 Paper ID : 44108 Second Semester [MCA] MAYJUNE 2006 Q. 1 Describe the following in brief : (3 x 5 = 15) (a) QUADRATIC SURFACES (b) RGB Color Models. (c) BSP Tree (d) Solid Modeling
More informationModels and Architectures. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico
Models and Architectures Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico 1 Objectives Learn the basic design of a graphics system Introduce
More informationCS 464 Review. Review of Computer Graphics for Final Exam
CS 464 Review Review of Computer Graphics for Final Exam Goal: Draw 3D Scenes on Display Device 3D Scene Abstract Model Framebuffer Matrix of Screen Pixels In Computer Graphics: If it looks right then
More informationOrthogonal Projection Matrices. Angel and Shreiner: Interactive Computer Graphics 7E AddisonWesley 2015
Orthogonal Projection Matrices 1 Objectives Derive the projection matrices used for standard orthogonal projections Introduce oblique projections Introduce projection normalization 2 Normalization Rather
More informationGraphics and Interaction Rendering pipeline & object modelling
433324 Graphics and Interaction Rendering pipeline & object modelling Department of Computer Science and Software Engineering The Lecture outline Introduction to Modelling Polygonal geometry The rendering
More informationTopics and things to know about them:
Practice Final CMSC 427 Distributed Tuesday, December 11, 2007 Review Session, Monday, December 17, 5:00pm, 4424 AV Williams Final: 10:30 AM Wednesday, December 19, 2007 General Guidelines: The final will
More informationVALLIAMMAI ENGNIEERING COLLEGE SRM Nagar, Kattankulathur 603203. DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Year & Semester : III Year, V Semester Section : CSE  1 & 2 Subject Code : CS6504 Subject
More informationLahore University of Management Sciences. CS 452 Computer Graphics
CS 452 Computer Graphics Fall 201516 Instructor Murtaza Taj Room No. SSE Block 10301 Office Hours TBA Email murtaza.taj@lums.edu.pk Telephone 3301 Secretary/TA TBA TA Office Hours TBA Course URL (if
More informationCS451Realtime Rendering Pipeline
1 CS451Realtime Rendering Pipeline JYHMING LIEN DEPARTMENT OF COMPUTER SCIENCE GEORGE MASON UNIVERSITY Based on Tomas AkenineMöller s lecture note You say that you render a 3D 2 scene, but what does
More informationComputer Graphics Disciplines. Grading. Textbooks. Course Overview. Assignment Policies. Computer Graphics Goals I
CSCI 480 Computer Graphics Lecture 1 Course Overview January 10, 2011 Jernej Barbic University of Southern California Administrative Issues Modeling Animation Rendering OpenGL Programming Course Information
More informationInstitutionen för systemteknik
Code: Day: Lokal: M7002E 19 March E1026 Institutionen för systemteknik Examination in: M7002E, Computer Graphics and Virtual Environments Number of sections: 7 Max. score: 100 (normally 60 is required
More informationGEOMETRIC TOOLS FOR COMPUTER GRAPHICS
GEOMETRIC TOOLS FOR COMPUTER GRAPHICS PHILIP J. SCHNEIDER DAVID H. EBERLY MORGAN KAUFMANN PUBLISHERS A N I M P R I N T O F E L S E V I E R S C I E N C E A M S T E R D A M B O S T O N L O N D O N N E W
More informationMathematical Tools in Computer Graphics with C# Implementations Table of Contents
Mathematical Tools in Computer Graphics with C# Implementations by Hardy Alexandre, WilliHans Steeb, World Scientific Publishing Company, Incorporated, 2008 Table of Contents List of Figures Notation
More informationFor each question, indicate whether the statement is true or false by circling T or F, respectively.
True/False For each question, indicate whether the statement is true or false by circling T or F, respectively. 1. (T/F) Rasterization occurs before vertex transformation in the graphics pipeline. 2. (T/F)
More informationComputer Graphics CS 543 Lecture 13a Curves, Tesselation/Geometry Shaders & Level of Detail
Computer Graphics CS 54 Lecture 1a Curves, Tesselation/Geometry Shaders & Level of Detail Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) So Far Dealt with straight lines
More informationCS 130 Exam I. Fall 2015
S 3 Exam I Fall 25 Name Student ID Signature You may not ask any questions during the test. If you believe that there is something wrong with a question, write down what you think the question is trying
More information1 Preview. Dr. Scott Gordon Computer Science Dept. CSUS. Virtual Cameras, Viewing Transformations: CSc155 Advanced Computer Graphics
CSc155 Advanced Computer Graphics 1 Preview Dr. Scott Gordon Computer Science Dept. CSUS Course Description Modeling, viewing, and rendering techniques in 3D computer graphics systems. Topics include:
More informationLahore University of Management Sciences. CS 452 Computer Graphics
CS 452 Computer Graphics Fall 2067 Instructor Room No. Office Hours Email Murtaza Taj 9GA TBA murtaza.taj@lums.edu.pk Telephone 330 Secretary/TA TA Office Hours Course URL (if any) TBA TBA LMS Course
More informationFROM VERTICES TO FRAGMENTS. Lecture 5 Comp3080 Computer Graphics HKBU
FROM VERTICES TO FRAGMENTS Lecture 5 Comp3080 Computer Graphics HKBU OBJECTIVES Introduce basic implementation strategies Clipping Scan conversion OCTOBER 9, 2011 2 OVERVIEW At end of the geometric pipeline,
More informationIntroduction to 3D Graphics
Graphics Without Polygons Volume Rendering May 11, 2010 So Far Volumetric Rendering Techniques Misc. So Far Extended the Fixed Function Pipeline with a Programmable Pipeline Programming the pipeline is
More informationMODELING AND HIERARCHY
MODELING AND HIERARCHY Introduction Models are abstractions of the world both of the real world in which we live and of virtual worlds that we create with computers. We are all familiar with mathematical
More information3D Rasterization II COS 426
3D Rasterization II COS 426 3D Rendering Pipeline (for direct illumination) 3D Primitives Modeling Transformation Lighting Viewing Transformation Projection Transformation Clipping Viewport Transformation
More informationModule Contact: Dr Stephen Laycock, CMP Copyright of the University of East Anglia Version 1
UNIVERSITY OF EAST ANGLIA School of Computing Sciences Main Series PG Examination 201314 COMPUTER GAMES DEVELOPMENT CMPSME27 Time allowed: 2 hours Answer any THREE questions. (40 marks each) Notes are
More informationGraphics Pipeline 2D Geometric Transformations
Graphics Pipeline 2D Geometric Transformations CS 4620 Lecture 8 1 Plane projection in drawing Albrecht Dürer 2 Plane projection in drawing source unknown 3 Rasterizing triangles Summary 1 evaluation of
More informationThe University of Calgary
The University of Calgary Department of Computer Science Final Examination, Questions ENEL/CPSC 555 Computer Graphics Time: 2 Hours Closed Book, calculators are permitted. The questions carry equal weight.
More informationChapter 2 A topdown approach  How to make shaded images?
Chapter 2 A topdown approach  How to make shaded images? Comp. Graphics (U), Chap 2 Global View 1 CGGM Lab., CS Dept., NCTU Jung Hong Chuang Graphics API vs. application API Graphics API Support rendering
More informationReview. Stephen J. Guy
Review Stephen J. Guy Overview Pixar short Review last class Review course Area of Graphics Image Processing Rendering Modeling Animation Misc Area of Graphics Image Processing Rendering Modeling Animation
More informationOverview. Pipeline implementation I. Overview. Required Tasks. Preliminaries Clipping. Hidden Surface removal
Overview Pipeline implementation I Preliminaries Clipping Line clipping Hidden Surface removal Overview At end of the geometric pipeline, vertices have been assembled into primitives Must clip out primitives
More informationRealTime Rendering. Tomas Möller Eric Haines. A K Peters Natick, Massachusetts
RealTime Rendering Tomas Möller Eric Haines n A K Peters Natick, Massachusetts Contents Preface 1 Introduction 1 1.1 Contents Overview 2 1.2 Notation and Definitions 3 1.2.1 Mathematical Notation 3 1.2.2
More informationRendering. Converting a 3D scene to a 2D image. Camera. Light. Rendering. View Plane
Rendering Pipeline Rendering Converting a 3D scene to a 2D image Rendering Light Camera 3D Model View Plane Rendering Converting a 3D scene to a 2D image Basic rendering tasks: Modeling: creating the world
More informationSpring 2009 Prof. Hyesoon Kim
Spring 2009 Prof. Hyesoon Kim Application Geometry Rasterizer CPU Each stage cane be also pipelined The slowest of the pipeline stage determines the rendering speed. Frames per second (fps) Executes on
More informationHomework #2. Hidden Surfaces, Projections, Shading and Texture, Ray Tracing, and Parametric Curves
Computer Graphics Instructor: Brian Curless CSE 457 Spring 2013 Homework #2 Hidden Surfaces, Projections, Shading and Texture, Ray Tracing, and Parametric Curves Assigned: Sunday, May 12 th Due: Thursday,
More informationTDA362/DIT223 Computer Graphics EXAM (Same exam for both CTH and GU students)
TDA362/DIT223 Computer Graphics EXAM (Same exam for both CTH and GU students) Saturday, January 13 th, 2018, 08:3012:30 Examiner Ulf Assarsson, tel. 031772 1775 Permitted Technical Aids None, except
More informationComputer Graphics. Instructor: Oren Kapah. Office Hours: T.B.A.
Computer Graphics Instructor: Oren Kapah (orenkapahbiu@gmail.com) Office Hours: T.B.A. The CGIDC slides for this course were created by Toky & Hagit HelOr 1 CGIDC 2 Exercise and Homework The exercise
More informationCOMP30019 Graphics and Interaction Rendering pipeline & object modelling
COMP30019 Graphics and Interaction Rendering pipeline & object modelling Department of Computer Science and Software Engineering The Lecture outline Introduction to Modelling Polygonal geometry The rendering
More informationLecture outline. COMP30019 Graphics and Interaction Rendering pipeline & object modelling. Introduction to modelling
Lecture outline COMP30019 Graphics and Interaction Rendering pipeline & object modelling Department of Computer Science and Software Engineering The Introduction to Modelling Polygonal geometry The rendering
More informationIntroduction to Visualization and Computer Graphics
Introduction to Visualization and Computer Graphics DH2320, Fall 2015 Prof. Dr. Tino Weinkauf Introduction to Visualization and Computer Graphics Visibility Shading 3D Rendering Geometric Model Color Perspective
More informationgraphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1
graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline sequence of operations to generate an image using objectorder processing primitives processed oneatatime
More informationWelcome to COMP 770 (236) Introduction. Prerequisites. Prerequisites
Welcome to COMP 770 (236) Introduction Computer Graphics COMP 770 (236) Spring 2007 Instructor: Brandon Lloyd Instructor: Brandon Lloyd Email: blloyd@cs.unc.edu Office: SN349 Office hours: MW 1:00 2:00
More informationgraphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1
graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline sequence of operations to generate an image using objectorder processing primitives processed oneatatime
More informationShape Representation Basic problem We make pictures of things How do we describe those things? Many of those things are shapes Other things include
Shape Representation Basic problem We make pictures of things How do we describe those things? Many of those things are shapes Other things include motion, behavior Graphics is a form of simulation and
More informationPoints and lines, Line drawing algorithms. Circle generating algorithms, Midpoint circle Parallel version of these algorithms
Jahangirabad Institute Of Technology Assistant Prof. Ankur Srivastava COMPUTER GRAPHICS Semester IV, 2016 MASTER SCHEDULE UnitI UnitII Class 1,2,3,4 Mon, Jan19,Tue20,Sat23,Mon 25 Class 5 Wed, Jan 27
More informationCOURSE DELIVERY PLAN  THEORY Page 1 of 6
COURSE DELIVERY PLAN  THEORY Page 1 of 6 Department of Department of Computer Science and Engineering B.E/B.Tech/M.E/M.Tech : Department of Computer Science and Engineering Regulation : 2013 Sub. Code
More informationRasterization Overview
Rendering Overview The process of generating an image given a virtual camera objects light sources Various techniques rasterization (topic of this course) raytracing (topic of the course Advanced Computer
More informationTopic 12: Texture Mapping. Motivation Sources of texture Texture coordinates Bump mapping, mipmapping & env mapping
Topic 12: Texture Mapping Motivation Sources of texture Texture coordinates Bump mapping, mipmapping & env mapping Texture sources: Photographs Texture sources: Procedural Texture sources: Solid textures
More informationThe Traditional Graphics Pipeline
Last Time? The Traditional Graphics Pipeline Participating Media Measuring BRDFs 3D Digitizing & Scattering BSSRDFs Monte Carlo Simulation Dipole Approximation Today Ray Casting / Tracing Advantages? Ray
More informationSAZ4C COMPUTER GRAPHICS. Unit : 15. SAZ4C Computer Graphics
SAZ4C COMPUTER GRAPHICS Unit : 15 1 UNIT :1 SYLLABUS Introduction to computer Graphics Video display devices Raster scan Systems Random Scan Systems Interactive input devices Hard copy devices Graphics
More informationBlue colour text questions Black colour text sample answers Red colour text further explanation or references for the sample answers
Blue colour text questions Black colour text sample answers Red colour text further explanation or references for the sample answers Question 1. a) (5 marks) Explain the OpenGL synthetic camera model,
More informationReading. 18. Projections and Zbuffers. Required: Watt, Section , 6.3, 6.6 (esp. intro and subsections 1, 4, and 8 10), Further reading:
Reading Required: Watt, Section 5.2.2 5.2.4, 6.3, 6.6 (esp. intro and subsections 1, 4, and 8 10), Further reading: 18. Projections and Zbuffers Foley, et al, Chapter 5.6 and Chapter 6 David F. Rogers
More informationTopic 11: Texture Mapping 11/13/2017. Texture sources: Solid textures. Texture sources: Synthesized
Topic 11: Texture Mapping Motivation Sources of texture Texture coordinates Bump mapping, mip mapping & env mapping Texture sources: Photographs Texture sources: Procedural Texture sources: Solid textures
More informationAdvanced 3D Game Programming with DirectX* 10.0
Advanced 3D Game Programming with DirectX* 10.0 Peter Walsh Wordware Publishing, Inc. Acknowledgments Introduction xiii xv Chapter I Windows I A Word about Windows I Hungarian Notation 3 General Windows
More informationComputer Graphics Introduction. Taku Komura
Computer Graphics Introduction Taku Komura What s this course all about? We will cover Graphics programming and algorithms Graphics data structures Applied geometry, modeling and rendering Not covering
More informationRASTERISED RENDERING
DH2323 DGI16 INTRODUCTION TO COMPUTER GRAPHICS AND INTERACTION RASTERISED RENDERING Christopher Peters HPCViz, KTH Royal Institute of Technology, Sweden chpeters@kth.se http://kth.academia.edu/christopheredwardpeters
More informationAptitude Test Question
Aptitude Test Question Q.1) Which software is not used for Image processing? a) MatLab b) Visual Basic c) Java d) Fortran Q.2) Which software is not used for Computer graphics? a) C b) Java c) Fortran
More informationAdaptive Point Cloud Rendering
1 Adaptive Point Cloud Rendering Project Plan Final Group: May1311 Christopher Jeffers Eric Jensen Joel Rausch Client: Siemens PLM Software Client Contact: Michael Carter Adviser: Simanta Mitra 4/29/13
More informationThe Traditional Graphics Pipeline
Final Projects Proposals due Thursday 4/8 Proposed project summary At least 3 related papers (read & summarized) Description of series of test cases Timeline & initial task assignment The Traditional Graphics
More informationThree Main Themes of Computer Graphics
Three Main Themes of Computer Graphics Modeling How do we represent (or model) 3D objects? How do we construct models for specific objects? Animation How do we represent the motion of objects? How do
More informationTopic 11: Texture Mapping 10/21/2015. Photographs. Solid textures. Procedural
Topic 11: Texture Mapping Motivation Sources of texture Texture coordinates Bump mapping, mip mapping & env mapping Topic 11: Photographs Texture Mapping Motivation Sources of texture Texture coordinates
More informationTopics. From vertices to fragments
Topics From vertices to fragments From Vertices to Fragments Assign a color to every pixel Pass every object through the system Required tasks: Modeling Geometric processing Rasterization Fragment processing
More informationInformation Coding / Computer Graphics, ISY, LiTH. Splines
28(69) Splines Originally a drafting tool to create a smooth curve In computer graphics: a curve built from sections, each described by a 2nd or 3rd degree polynomial. Very common in nonrealtime graphics,
More informationGraphics Hardware and Display Devices
Graphics Hardware and Display Devices CSE328 Lectures Graphics/Visualization Hardware Many graphics/visualization algorithms can be implemented efficiently and inexpensively in hardware Facilitates interactive
More informationDirect Rendering of Trimmed NURBS Surfaces
Direct Rendering of Trimmed NURBS Surfaces Hardware Graphics Pipeline 2/ 81 Hardware Graphics Pipeline GPU Video Memory CPU Vertex Processor Raster Unit Fragment Processor Render Target Screen Extended
More information6.837 Introduction to Computer Graphics Quiz 2 Thursday November 20, :404pm One handwritten sheet of notes allowed
6.837 Introduction to Computer Graphics Quiz 2 Thursday November 20, 2003 2:404pm One handwritten sheet of notes allowed Name: 1 2 3 4 5 6 7 / 4 / 15 / 5 / 5 / 12 / 2 / 7 Total / 50 1 Animation [ /4]
More informationптта,.л^яшнря i #*% I C!# % л«*у1 W\ I I "в С^ Ш* I jy* #*% **% ^^ I g"% C"" Prentice Hall Upper Saddle River, NJ PEARSON
птта,.л^яшнря THIRD EDITION C!#% л«*у1 W\ I I "в С^ Ш* I jy* #*% **% ^^ I g"% C"" i #*% I %ьж I I I W*J Werl W ^»* I ^tmnp I ЧыЛ P^r I I I ^^» ta^ with OpenGL Donald Hearn M. Pauline Baker Computer Science
More informationPROFESSIONAL. WebGL Programming DEVELOPING 3D GRAPHICS FOR THE WEB. Andreas Anyuru WILEY. John Wiley & Sons, Ltd.
PROFESSIONAL WebGL Programming DEVELOPING 3D GRAPHICS FOR THE WEB Andreas Anyuru WILEY John Wiley & Sons, Ltd. INTRODUCTION xxl CHAPTER 1: INTRODUCING WEBGL 1 The Basics of WebGL 1 So Why Is WebGL So Great?
More informationComputer Graphics 1. Chapter 7 (June 17th, 2010, 24pm): Shading and rendering. LMU München Medieninformatik Andreas Butz Computergraphik 1 SS2010
Computer Graphics 1 Chapter 7 (June 17th, 2010, 24pm): Shading and rendering 1 The 3D rendering pipeline (our version for this class) 3D models in model coordinates 3D models in world coordinates 2D Polygons
More informationCS GAME PROGRAMMING Question bank
CS6006  GAME PROGRAMMING Question bank Part A Unit I 1. List the different types of coordinate systems. 2. What is ray tracing? Mention some applications of ray tracing. 3. Discuss the stages involved
More informationLecture 12: Advanced Rendering
Lecture 12: Advanced Rendering CSE 40166 Computer Graphics Peter Bui University of Notre Dame, IN, USA November 30, 2010 Limitations of OpenGL Pipeline Rendering Good Fast, realtime graphics rendering.
More information9. Three Dimensional Object Representations
9. Three Dimensional Object Representations Methods: Polygon and Quadric surfaces: For simple Euclidean objects Spline surfaces and construction: For curved surfaces Procedural methods: Eg. Fractals, Particle
More informationCS 465 Program 4: Modeller
CS 465 Program 4: Modeller out: 30 October 2004 due: 16 November 2004 1 Introduction In this assignment you will work on a simple 3D modelling system that uses simple primitives and curved surfaces organized
More information(a) rotating 45 0 about the origin and then translating in the direction of vector I by 4 units and (b) translating and then rotation.
Code No: R05221201 Set No. 1 1. (a) List and explain the applications of Computer Graphics. (b) With a neat cross sectional view explain the functioning of CRT devices. 2. (a) Write the modified version
More informationLets assume each object has a defined colour. Hence our illumination model is looks unrealistic.
Shading Models There are two main types of rendering that we cover, polygon rendering ray tracing Polygon rendering is used to apply illumination models to polygons, whereas ray tracing applies to arbitrary
More informationCS 381 Computer Graphics, Fall 2008 Midterm Exam Solutions. The Midterm Exam was given in class on Thursday, October 23, 2008.
CS 381 Computer Graphics, Fall 2008 Midterm Exam Solutions The Midterm Exam was given in class on Thursday, October 23, 2008. 1. [4 pts] Drawing Where? Your instructor says that objects should always be
More informationSpring 2011 Prof. Hyesoon Kim
Spring 2011 Prof. Hyesoon Kim Application Geometry Rasterizer CPU Each stage cane be also pipelined The slowest of the pipeline stage determines the rendering speed. Frames per second (fps) Executes on
More informationCEng 477 Introduction to Computer Graphics Fall 2007
Visible Surface Detection CEng 477 Introduction to Computer Graphics Fall 2007 Visible Surface Detection Visible surface detection or hidden surface removal. Realistic scenes: closer objects occludes the
More informationClipping and Scan Conversion
15462 Computer Graphics I Lecture 14 Clipping and Scan Conversion Line Clipping Polygon Clipping Clipping in Three Dimensions Scan Conversion (Rasterization) [Angel 7.37.6, 7.87.9] March 19, 2002 Frank
More informationBeginning Direct3D Game Programming: 1. The History of Direct3D Graphics
Beginning Direct3D Game Programming: 1. The History of Direct3D Graphics jintaeks@gmail.com Division of Digital Contents, DongSeo University. April 2016 Long time ago Before Windows, DOS was the most popular
More informationGame Architecture. 2/19/16: Rasterization
Game Architecture 2/19/16: Rasterization Viewing To render a scene, need to know Where am I and What am I looking at The view transform is the matrix that does this Maps a standard view space into world
More informationGraphics and Visualization (GV)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Graphics and Visualization (GV) Computer graphics is the term commonly used to describe the computer generation and manipulation
More informationThe Traditional Graphics Pipeline
Last Time? The Traditional Graphics Pipeline Reading for Today A Practical Model for Subsurface Light Transport, Jensen, Marschner, Levoy, & Hanrahan, SIGGRAPH 2001 Participating Media Measuring BRDFs
More information