4.1 Eulerian Tours. 4. Eulerian Tours and Trails. Königsberg. Seven Bridges. Try. Königsberg bridge problem

Size: px
Start display at page:

Download "4.1 Eulerian Tours. 4. Eulerian Tours and Trails. Königsberg. Seven Bridges. Try. Königsberg bridge problem"

Transcription

1 4. Eulerian Tours and Trails 4.1 Eulerian Tours FMONG NIE 1 FMONG NIE 2 Königsberg Königsberg was a city in eastern Prussia in 18 th century. river flowed through this city and separated it into four pieces. River Island ank ank Island FMONG NIE 3 Seven ridges Seven bridges connected the two islands and the two opposite banks. River Island ank ank Island FMONG NIE 4 Königsberg bridge problem Is there a tour that starts from any one of the places,, and, passes each bridge eactly once and returns to the starting place? Try an you find a tour that starts from any one of the places,, and, passes each bridge eactly once and returns to the starting place? River River FMONG NIE 5 FMONG NIE 6

2 River Transfer to a graph problem Is there a closed trail in the following graph which passes each edge eactly once? onverted into a graph FMONG NIE 7 FMONG NIE 8 Königsberg bridge problem This problem has no solutions. It was first proved by Euler, a Swiss mathematician in 18 century. This problem is also called the seven bridge problem. Generalization Euler generalized the Königsberg bridge problem to a general graph problem: What graphs have a closed trail which passes each edge eactly once? Erler characterized all such graphs. FMONG NIE 9 FMONG NIE 10 Eulerian Tours closed trail is a closed walk in a graph which does not repeat any edge. Eulerian tour in a graph G is a closed walk which goes through each edge in G eactly once. graph G is called an Euler graph if G has a Eulerian tour. Is the following graph an Euler graph? Yes FMONG NIE 11 FMONG NIE 12

3 Is the following graph an Euler graph? No. Is the following graph an Euler graph? Yes. FMONG NIE 13 FMONG NIE 14 Property If G is an Euler graph, then every verte of G has an even degree. Proof: Let T be an Eulerian tour of G and be any verte in G. If T passes eactly k times, then T goes into eactly k times and leaves also eactly k time. Thus d() = 2k. Hence every verte in G has an even degree. go in k times leave k times go in k times leave k times FMONG NIE 15 FMONG NIE 16 Sufficient condition The condition that every verte has an even degree is also sufficient for a connected graph to be Eulerian. FMONG NIE 17 Lemma If G has no verte of degree 1, then either G is empty or G contains a cycle. Proof. ssume that G is not empty. Then G has a component H which is not K 1. Since H has no verte of degree 1, H is not a tree. Thus H contains a cycle, which is also a cycle in G. FMONG NIE 18

4 Lemma If two edge-disjoint closed trails T 1 and T 2 in G have some vertices in common, then they can be merged into one closed trail. Let be a verte in botht 1 and T 2. ssume that the two closed trails are T e e Le e : s s s+ 1 T2 e' 1 y1e' 2 y2 Le' yte' : t t+ 1 T 1 T 2 FMONG NIE 19 where e i and e j are edges in G and i and y j are vertices in G. Then they can be merged into one closed trail: T : e 1e 22 Les ses + 1e' 1 y1e' 2 y2 Le' t yte' t+ 1 1 FMONG NIE 20. Theorem For any connected graph G, the following statements are equivalent: (i) G is an Euler graph; (ii) all vertices in G are of even degrees; (iii) there eists a collection of cycles in G such that each edge of G belongs to eactly one cycle of this collection. The following graph is Eulerian; Every verte has even degree; There is a collection of cycles such that every edge belongs to eactly one cycle. or FMONG NIE 21 FMONG NIE 22 Proof (i) (ii) (iii) (i). (i) (ii) follows from Lemma (ii) (iii) Suppose that all vertices in G are even degrees. Let k be the maimum integer such that G contains a collection of k edge-disjoint cycles 1, 2,, k. Let H be the graph obtained from G by deleting all edges in these cycles. FMONG NIE 23 Whenever all edges in a cycle are deleted from a graph, a verte in new graph has either the same degree or 2 less than its degree in the original graph. Since all vertices in G are of even degrees, all vertices in H are also even degrees. If H is not empty, by Lemma 4.1.2, H contains a cycle k+1, implying that 1, 2,, k, k+1 form a collection of edge-disjoint cycles in G, a contradiction. Hence H is empty, implying that (iii) holds. FMONG NIE 24

5 (iii) (i). Let T 1, T 2,, T k be a collection of cycles in G such that each edge of G belongs to eactly one cycle of this collection. Since G is connected, these cycles can be reordered such that for each i 2, V ( i j T ) V ( T ) φ holds for some 1 j<i. Suppose that T 1, T 2,, T s can be merged into a closed trail U s, where 1 s k-1. Since V(T s+1 ) V(T j ) for some j<s+1, T s+1 and U s has some vertices in common. y Lemma 4.1.2, T s+1 and U s can be merged into a closed trail U s+1. Hence T 1, T 2,, T k can be merged into a closed trail U k, which passes each edge eactly once. Therefore G is an Euler graph. FMONG NIE 25 FMONG NIE 26 Eulerian? To know whether a connected graph is an Euler graph, we just need to check its degrees. If some verte is not even degree, then this graph is not Eulerian. Verte has an odd degree and so the graph is not Eulerian. FMONG NIE 27 FMONG NIE 28 Eulerian? To know whether a connected graph is an Euler graph, we can also check it by (1) removing cycles one by one, until no cycles. (2) If there are no edges remaining, then this graph is Eulerian; otherwise, it is not. FMONG NIE 29 Not an Eulerian graph FMONG NIE 30

6 It is an Eulerian graph For what integers n, K n is Eulerian? Odd integers n. etermine integers m and n such that K m,n is Eulerian. oth m and n are even. FMONG NIE 31 FMONG NIE 32 Let n be an even positive integer. t least how many new edges should be added to K n so that the new graph (it is multigraph) is Eulerian? nswer: n/2 How do we add these edges? The n vertices in K n is partitioned into n/2 pairs, and add one edge to join each of these pairs of vertices. FMONG NIE 33 Let n be an even positive integer. t least how many edges should be removed from K n so that the new graph is Eulerian? n/2. FMONG NIE 34 Question Let G be any connected graph of order n, where n 2. t most how many new edges should be added to G so that the new graph is Eulerian? nswer: n / 2. t least how many edges should be added to this graph to change it into an Eulerian graph? FMONG NIE 35 FMONG NIE 36

7 4.2 Eulerian trails n Eulerian trail in G is a trail which passes each edge in G eactly once. oes the following has an Eulerian trail? yes. w y u z FMONG NIE 37 FMONG NIE 38 Eulerain graphs If G is an Euler graph, then G has a Eulerian trail. FMONG NIE 39 Theorem ssume that G has an Eulerian trail. Then we can get an Euler graph by adding at most one edge to G. Proof: Let T be an Eulerian trail of G. If the two ends of T are the same verte, then G is an Euler graph. If the two ends of T are different, then the new graph obtained from G by adding a new edge joining the two ends of T is an Euler graph. FMONG NIE 40 The following graph has an Euler trail. y adding one edge to it, it becomes an Eulerian graph. w y z FMONG NIE 41 u Theorem Let G be a connected graph. Then G has an Eulerian trail if and only if G has at most two vertices of odd degrees. Proof. (Necessity) Let G have an Eulerian trail. y Theorem 4.2.1, we can get an Eulerian graph by adding at most one edge to G. y Theorem 4.1.2, all vertices in this new graph are of even degrees. Thus G has at most two vertices of odd degrees. FMONG NIE 42

8 (Sufficiency) If G has no vertices of odd degree, then G has an Eulerian tour, which is also an Eulerian trail. G cannot have eactly one verte of odd degree. ssume that G has two vertices,y of odd degree. Let H be the graph obtained from G by adding a new edge e joining and y. Then all vertices in H are of even degree. y Theorem 4.1.2, H has an Eulerian tour T. Thus T-e is an Eulerian trail in G. FMONG NIE 43 FMONG NIE 44 Eercise Let m,n be positive integers, where m n. etermine the values of m and n such that K m,n has an Eulerian trail. nswer {(m,n): m n, K m,n has an Eulerian trail} = {(1,1),(1,2)} {(2,n):n 2} {(m,n): both m,n are even} FMONG NIE 45 FMONG NIE 46 Eercise What trees have an Eulerian trail? Why? nswer: Only path graphs have an Eulerian trail. Suppose that G has an Eulerian trail. s G is a tree, G has at least two vertices of degree 1. Since G has an Eulerian trail, G has at most two vertices of odd degrees. Thus G has only two vertices of degree 1. tree with eactly two vertices of degree 1 is a path graph, implying that G is a path graph. FMONG NIE 47 FMONG NIE 48

9 Let G be a connected graph with eactly 2k vertices of odd degrees, where k>0. Is there a collection of k edge-disjoint trails in G such that each edge in G belongs to eactly one of these trails? Why? Yes. FMONG NIE 49 fter adding two edges, the new graph has an Eulerian tour. Removing the two edges breaks the Eulerian tour into two edge-disjoint trails. FMONG NIE 50 Let 1, 2,, k and y 1,y 2,,y k be 2k vertices in G which are of odd degrees. Let H be the new graph obtained from G by adding k edges e 1, e 2,, e k joining i to y i for i=1,2,,k. Then in H all vertices are of even degrees. Thus H has an Eulerian tour T. Then T-{e 1,e 2,,e k } is the union of k trails, which are trails in G. 4.3 Eulerian Tours and Trails in digraphs FMONG NIE 51 FMONG NIE 52 efinitions Let be a digraph. directed Eulerian tour in is a directed closed trail which passes each arc of eactly once. digraph with a directed Eulerian tour is called an Euler digraph. directed Eulerian trail in is a directed trail which passes each arc of eactly once. Is the following digraph an Euler digraph? Yes. FMONG NIE 53 FMONG NIE 54

10 Is the following digraph an Euler digraph? No. oes it have a directed Eulerian trail? Yes. Theorem Let be a weakly connected digraph. The following statements are equivalent: (i) is an Euler digraph; (ii) od() = id() for each verte in ; (iii) There eists a collection of directed cycles in such that each arc of belongs to eactly one cycle of this collection. FMONG NIE 55 FMONG NIE 56 The following digraph is Eulerian. Every verte has the same in-degree and outdegree. There is a collection of arc-disjoint directed cycles such that every arc belongs to one cycle. (ii) (iii) Let k be the maimum integer such that has a collection of k arc-disjoint cycles. Let be the new digraph obtained from by deleting all arcs in these cycles. Observe that every verte in has the same in-degree and out-degree. FMONG NIE 57 FMONG NIE 58 Suppose that is not empty. Let H be a component of such that H is not K 1. Observe that H has no any verte with outdegree 0, implying that H is not acyclic. So H contains a cycle, which is also a cycle in. Hence has a collection of more than k arcdisjoint cycles, a contradiction. Therefore is empty, implying that has a collection of k cycles such that each arc is on eactly one of these cycles. FMONG NIE 59 FMONG NIE 60

11 Theorem Let be a weakly connected digraph which is not an Euler digraph. Then has a directed Eulerian trail if and only if there eists two vertices,y in such that id()=od()+1, id(y)=od(y)-1 and id(z)=od(z) for all other vertices z in. The following digraph has a directed Eulerian trail, but is not an Erler digraph. It has two vertices,y such that id()=od()+1, id(y)=od(y)-1 and id(z)=od(z) for all other vertices z in. y FMONG NIE 61 FMONG NIE 62 Proof (Necessity) ssume that has a directed Eulerian trail T with distinct starting verte y and ending verte. Then id() = od()+1, id(y)=od(y)-1 and id(z)=od(z) for all other vertices z. (Sufficiency) Let be the new digraph obtained from by adding a new arc (,y). Then for every verte w in, id (w)=od (w). y Theorem 4.3.1, has a directed Eulerian tour T. Then T-(,y) is a directed Eulerian trial of. FMONG NIE 63 FMONG NIE 64 Let be a weakly connected digraph. Let k = id( ) od( ) V ( ) 1. Then k is even. Why? 2. If k>0, then has a collection of k/2 directed trails such that each arc of is on eactly one of these trails. Why? k = V ( ) V ( ) id( ) od( ) [ id( ) od( )] id( ) V ( ) V ( ) od( ) (mod 2) ( ) ( ) (mod 2) = 0. (mod 2) FMONG NIE 65 FMONG NIE 66

12 End FMONG NIE 67

Varying Applications (examples)

Varying Applications (examples) Graph Theory Varying Applications (examples) Computer networks Distinguish between two chemical compounds with the same molecular formula but different structures Solve shortest path problems between cities

More information

Introduction to Graphs

Introduction to Graphs Introduction to Graphs Historical Motivation Seven Bridges of Königsberg Königsberg (now Kaliningrad, Russia) around 1735 Problem: Find a walk through the city that would cross each bridge once and only

More information

Math 776 Graph Theory Lecture Note 1 Basic concepts

Math 776 Graph Theory Lecture Note 1 Basic concepts Math 776 Graph Theory Lecture Note 1 Basic concepts Lectured by Lincoln Lu Transcribed by Lincoln Lu Graph theory was founded by the great Swiss mathematician Leonhard Euler (1707-178) after he solved

More information

Fundamental Properties of Graphs

Fundamental Properties of Graphs Chapter three In many real-life situations we need to know how robust a graph that represents a certain network is, how edges or vertices can be removed without completely destroying the overall connectivity,

More information

8.2 Paths and Cycles

8.2 Paths and Cycles 8.2 Paths and Cycles Degree a b c d e f Definition The degree of a vertex is the number of edges incident to it. A loop contributes 2 to the degree of the vertex. (G) is the maximum degree of G. δ(g) is

More information

Math 778S Spectral Graph Theory Handout #2: Basic graph theory

Math 778S Spectral Graph Theory Handout #2: Basic graph theory Math 778S Spectral Graph Theory Handout #: Basic graph theory Graph theory was founded by the great Swiss mathematician Leonhard Euler (1707-178) after he solved the Königsberg Bridge problem: Is it possible

More information

11.2 Eulerian Trails

11.2 Eulerian Trails 11.2 Eulerian Trails K.. onigsberg, 1736 Graph Representation A B C D Do You Remember... Definition A u v trail is a u v walk where no edge is repeated. Do You Remember... Definition A u v trail is a u

More information

Graph Theory CS/Math231 Discrete Mathematics Spring2015

Graph Theory CS/Math231 Discrete Mathematics Spring2015 1 Graphs Definition 1 A directed graph (or digraph) G is a pair (V, E), where V is a finite set and E is a binary relation on V. The set V is called the vertex set of G, and its elements are called vertices

More information

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. An Introduction to Graph Theory

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. An Introduction to Graph Theory SCHOOL OF ENGINEERING & BUILT ENVIRONMENT Mathematics An Introduction to Graph Theory. Introduction. Definitions.. Vertices and Edges... The Handshaking Lemma.. Connected Graphs... Cut-Points and Bridges.

More information

6.2. Paths and Cycles

6.2. Paths and Cycles 6.2. PATHS AND CYCLES 85 6.2. Paths and Cycles 6.2.1. Paths. A path from v 0 to v n of length n is a sequence of n+1 vertices (v k ) and n edges (e k ) of the form v 0, e 1, v 1, e 2, v 2,..., e n, v n,

More information

Graph Theory. 1 Introduction to Graphs. Martin Stynes Department of Mathematics, UCC January 26, 2011

Graph Theory. 1 Introduction to Graphs. Martin Stynes Department of Mathematics, UCC   January 26, 2011 Graph Theory Martin Stynes Department of Mathematics, UCC email: m.stynes@ucc.ie January 26, 2011 1 Introduction to Graphs 1 A graph G = (V, E) is a non-empty set of nodes or vertices V and a (possibly

More information

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 7

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 7 CS 70 Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 7 An Introduction to Graphs A few centuries ago, residents of the city of Königsberg, Prussia were interested in a certain problem.

More information

Dieter Jungnickel (2008), Graphs, Networks and Algorithms, 3rd edition, which is available online via SpringerLink.

Dieter Jungnickel (2008), Graphs, Networks and Algorithms, 3rd edition, which is available online via SpringerLink. Lecture 1 First Steps in Graph Theory This lecture introduces Graph Theory, the main subject of the course, and includes some basic definitions as well as a number of standard examples. Reading: Some of

More information

Graph Algorithms. Tours in Graphs. Graph Algorithms

Graph Algorithms. Tours in Graphs. Graph Algorithms Graph Algorithms Tours in Graphs Graph Algorithms Special Paths and Cycles in Graphs Euler Path: A path that traverses all the edges of the graph exactly once. Euler Cycle: A cycle that traverses all the

More information

CMSC 380. Graph Terminology and Representation

CMSC 380. Graph Terminology and Representation CMSC 380 Graph Terminology and Representation GRAPH BASICS 2 Basic Graph Definitions n A graph G = (V,E) consists of a finite set of vertices, V, and a finite set of edges, E. n Each edge is a pair (v,w)

More information

North Bank. West Island. East Island. South Bank

North Bank. West Island. East Island. South Bank Lecture 11 Eulerian Multigraphs This section of the notes revisits the Königsberg Bridge Problem and generalises it to explore Eulerian multigraphs: those that contain a closed walk that traverses every

More information

Introduction III. Graphs. Motivations I. Introduction IV

Introduction III. Graphs. Motivations I. Introduction IV Introduction I Graphs Computer Science & Engineering 235: Discrete Mathematics Christopher M. Bourke cbourke@cse.unl.edu Graph theory was introduced in the 18th century by Leonhard Euler via the Königsberg

More information

Chapter 3: Paths and Cycles

Chapter 3: Paths and Cycles Chapter 3: Paths and Cycles 5 Connectivity 1. Definitions: Walk: finite sequence of edges in which any two consecutive edges are adjacent or identical. (Initial vertex, Final vertex, length) Trail: walk

More information

1 Digraphs. Definition 1

1 Digraphs. Definition 1 1 Digraphs Definition 1 Adigraphordirected graphgisatriplecomprisedofavertex set V(G), edge set E(G), and a function assigning each edge an ordered pair of vertices (tail, head); these vertices together

More information

Chapter 11: Graphs and Trees. March 23, 2008

Chapter 11: Graphs and Trees. March 23, 2008 Chapter 11: Graphs and Trees March 23, 2008 Outline 1 11.1 Graphs: An Introduction 2 11.2 Paths and Circuits 3 11.3 Matrix Representations of Graphs 4 11.5 Trees Graphs: Basic Definitions Informally, a

More information

Module 11. Directed Graphs. Contents

Module 11. Directed Graphs. Contents Module 11 Directed Graphs Contents 11.1 Basic concepts......................... 256 Underlying graph of a digraph................ 257 Out-degrees and in-degrees.................. 258 Isomorphism..........................

More information

Characterizing Graphs (3) Characterizing Graphs (1) Characterizing Graphs (2) Characterizing Graphs (4)

Characterizing Graphs (3) Characterizing Graphs (1) Characterizing Graphs (2) Characterizing Graphs (4) S-72.2420/T-79.5203 Basic Concepts 1 S-72.2420/T-79.5203 Basic Concepts 3 Characterizing Graphs (1) Characterizing Graphs (3) Characterizing a class G by a condition P means proving the equivalence G G

More information

Lecture 5: Graphs. Rajat Mittal. IIT Kanpur

Lecture 5: Graphs. Rajat Mittal. IIT Kanpur Lecture : Graphs Rajat Mittal IIT Kanpur Combinatorial graphs provide a natural way to model connections between different objects. They are very useful in depicting communication networks, social networks

More information

Crossing bridges. Crossing bridges Great Ideas in Theoretical Computer Science. Lecture 12: Graphs I: The Basics. Königsberg (Prussia)

Crossing bridges. Crossing bridges Great Ideas in Theoretical Computer Science. Lecture 12: Graphs I: The Basics. Königsberg (Prussia) 15-251 Great Ideas in Theoretical Computer Science Lecture 12: Graphs I: The Basics February 22nd, 2018 Crossing bridges Königsberg (Prussia) Now Kaliningrad (Russia) Is there a way to walk through the

More information

CHAPTER 10 GRAPHS AND TREES. Alessandro Artale UniBZ - artale/z

CHAPTER 10 GRAPHS AND TREES. Alessandro Artale UniBZ -  artale/z CHAPTER 10 GRAPHS AND TREES Alessandro Artale UniBZ - http://www.inf.unibz.it/ artale/z SECTION 10.1 Graphs: Definitions and Basic Properties Copyright Cengage Learning. All rights reserved. Graphs: Definitions

More information

How can we lay cable at minimum cost to make every telephone reachable from every other? What is the fastest route between two given cities?

How can we lay cable at minimum cost to make every telephone reachable from every other? What is the fastest route between two given cities? 1 Introduction Graph theory is one of the most in-demand (i.e. profitable) and heavily-studied areas of applied mathematics and theoretical computer science. May graph theory questions are applied in this

More information

Theory of Computing. Lecture 10 MAS 714 Hartmut Klauck

Theory of Computing. Lecture 10 MAS 714 Hartmut Klauck Theory of Computing Lecture 10 MAS 714 Hartmut Klauck Seven Bridges of Königsberg Can one take a walk that crosses each bridge exactly once? Seven Bridges of Königsberg Model as a graph Is there a path

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 8

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 8 CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 8 An Introduction to Graphs Formulating a simple, precise specification of a computational problem is often a prerequisite

More information

Characterization of Graphs with Eulerian Circuits

Characterization of Graphs with Eulerian Circuits Eulerian Circuits 3. 73 Characterization of Graphs with Eulerian Circuits There is a simple way to determine if a graph has an Eulerian circuit. Theorems 3.. and 3..2: Let G be a pseudograph that is connected

More information

14 More Graphs: Euler Tours and Hamilton Cycles

14 More Graphs: Euler Tours and Hamilton Cycles 14 More Graphs: Euler Tours and Hamilton Cycles 14.1 Degrees The degree of a vertex is the number of edges coming out of it. The following is sometimes called the First Theorem of Graph Theory : Lemma

More information

Logic: The Big Picture. Axiomatizing Arithmetic. Tautologies and Valid Arguments. Graphs and Trees

Logic: The Big Picture. Axiomatizing Arithmetic. Tautologies and Valid Arguments. Graphs and Trees Axiomatizing Arithmetic Logic: The Big Picture Suppose we restrict the domain to the natural numbers, and allow only the standard symbols of arithmetic (+,, =, >, 0, 1). Typical true formulas include:

More information

Basic Combinatorics. Math 40210, Section 01 Fall Homework 4 Solutions

Basic Combinatorics. Math 40210, Section 01 Fall Homework 4 Solutions Basic Combinatorics Math 40210, Section 01 Fall 2012 Homework 4 Solutions 1.4.2 2: One possible implementation: Start with abcgfjiea From edge cd build, using previously unmarked edges: cdhlponminjkghc

More information

3 Euler Tours, Hamilton Cycles, and Their Applications

3 Euler Tours, Hamilton Cycles, and Their Applications 3 Euler Tours, Hamilton Cycles, and Their Applications 3.1 Euler Tours and Applications 3.1.1 Euler tours Carefully review the definition of (closed) walks, trails, and paths from Section 1... Definition

More information

Ordinary Differential Equation (ODE)

Ordinary Differential Equation (ODE) Ordinary Differential Equation (ODE) INTRODUCTION: Ordinary Differential Equations play an important role in different branches of science and technology In the practical field of application problems

More information

Understand graph terminology Implement graphs using

Understand graph terminology Implement graphs using raphs Understand graph terminology Implement graphs using djacency lists and djacency matrices Perform graph searches Depth first search Breadth first search Perform shortest-path algorithms Disjkstra

More information

Eulerian Cycle (2A) Young Won Lim 4/26/18

Eulerian Cycle (2A) Young Won Lim 4/26/18 Eulerian Cycle (2A) Copyright (c) 2015 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any

More information

Math 443/543 Graph Theory Notes 2: Transportation problems

Math 443/543 Graph Theory Notes 2: Transportation problems Math 443/543 Graph Theory Notes 2: Transportation problems David Glickenstein September 15, 2014 1 Readings This is based on Chartrand Chapter 3 and Bondy-Murty 18.1, 18.3 (part on Closure of a Graph).

More information

Graphs: Definitions Trails, Paths, and Circuits Matrix Representations Isomorphisms. 11. Graphs and Trees 1. Aaron Tan. 30 October 3 November 2017

Graphs: Definitions Trails, Paths, and Circuits Matrix Representations Isomorphisms. 11. Graphs and Trees 1. Aaron Tan. 30 October 3 November 2017 11. Graphs and Trees 1 Aaron Tan 30 October 3 November 2017 1 The origins of graph theory are humble, even frivolous. Whereas many branches of mathematics were motivated by fundamental problems of calculation,

More information

Chapter 9. Graph Theory

Chapter 9. Graph Theory Chapter 9. Graph Theory Prof. Tesler Math 8A Fall 207 Prof. Tesler Ch. 9. Graph Theory Math 8A / Fall 207 / 50 Graphs PC Computer network PC2 Modem ISP Remote server PC Emily Dan Friends Irene Gina Harry

More information

Assignment 4 Solutions of graph problems

Assignment 4 Solutions of graph problems Assignment 4 Solutions of graph problems 1. Let us assume that G is not a cycle. Consider the maximal path in the graph. Let the end points of the path be denoted as v 1, v k respectively. If either of

More information

BIL694-Lecture 1: Introduction to Graphs

BIL694-Lecture 1: Introduction to Graphs BIL694-Lecture 1: Introduction to Graphs Lecturer: Lale Özkahya Resources for the presentation: http://www.math.ucsd.edu/ gptesler/184a/calendar.html http://www.inf.ed.ac.uk/teaching/courses/dmmr/ Outline

More information

Discrete Mathematics for CS Spring 2008 David Wagner Note 13. An Introduction to Graphs

Discrete Mathematics for CS Spring 2008 David Wagner Note 13. An Introduction to Graphs CS 70 Discrete Mathematics for CS Spring 2008 David Wagner Note 13 An Introduction to Graphs Formulating a simple, precise specification of a computational problem is often a prerequisite to writing a

More information

Graphs and trees come up everywhere. We can view the internet as a graph (in many ways) Web search views web pages as a graph

Graphs and trees come up everywhere. We can view the internet as a graph (in many ways) Web search views web pages as a graph Graphs and Trees Graphs and trees come up everywhere. We can view the internet as a graph (in many ways) who is connected to whom Web search views web pages as a graph Who points to whom Niche graphs (Ecology):

More information

CHAPTER 10 GRAPHS AND TREES. Copyright Cengage Learning. All rights reserved.

CHAPTER 10 GRAPHS AND TREES. Copyright Cengage Learning. All rights reserved. CHAPTER 10 GRAPHS AND TREES Copyright Cengage Learning. All rights reserved. SECTION 10.1 Graphs: Definitions and Basic Properties Copyright Cengage Learning. All rights reserved. Graphs: Definitions and

More information

Number Theory and Graph Theory

Number Theory and Graph Theory 1 Number Theory and Graph Theory Chapter 7 Graph properties By A. Satyanarayana Reddy Department of Mathematics Shiv Nadar University Uttar Pradesh, India E-mail: satya8118@gmail.com 2 Module-2: Eulerian

More information

Lecture 3: Graphs and flows

Lecture 3: Graphs and flows Chapter 3 Lecture 3: Graphs and flows Graphs: a useful combinatorial structure. Definitions: graph, directed and undirected graph, edge as ordered pair, path, cycle, connected graph, strongly connected

More information

9.5 Equivalence Relations

9.5 Equivalence Relations 9.5 Equivalence Relations You know from your early study of fractions that each fraction has many equivalent forms. For example, 2, 2 4, 3 6, 2, 3 6, 5 30,... are all different ways to represent the same

More information

TWO CONTRIBUTIONS OF EULER

TWO CONTRIBUTIONS OF EULER TWO CONTRIBUTIONS OF EULER SIEMION FAJTLOWICZ. MATH 4315 Eulerian Tours. Although some mathematical problems which now can be thought of as graph-theoretical, go back to the times of Euclid, the invention

More information

Brief History. Graph Theory. What is a graph? Types of graphs Directed graph: a graph that has edges with specific directions

Brief History. Graph Theory. What is a graph? Types of graphs Directed graph: a graph that has edges with specific directions Brief History Graph Theory What is a graph? It all began in 1736 when Leonhard Euler gave a proof that not all seven bridges over the Pregolya River could all be walked over once and end up where you started.

More information

Sarah Will Math 490 December 2, 2009

Sarah Will Math 490 December 2, 2009 Sarah Will Math 490 December 2, 2009 Euler Circuits INTRODUCTION Euler wrote the first paper on graph theory. It was a study and proof that it was impossible to cross the seven bridges of Königsberg once

More information

Material handling and Transportation in Logistics. Paolo Detti Dipartimento di Ingegneria dell Informazione e Scienze Matematiche Università di Siena

Material handling and Transportation in Logistics. Paolo Detti Dipartimento di Ingegneria dell Informazione e Scienze Matematiche Università di Siena Material handling and Transportation in Logistics Paolo Detti Dipartimento di Ingegneria dell Informazione e Scienze Matematiche Università di Siena Introduction to Graph Theory Graph Theory As Mathematical

More information

THE EULER TOUR TECHNIQUE: EVALUATION OF TREE FUNCTIONS

THE EULER TOUR TECHNIQUE: EVALUATION OF TREE FUNCTIONS PARALLEL AND DISTRIBUTED ALGORITHMS BY DEBDEEP MUKHOPADHYAY AND ABHISHEK SOMANI http://cse.iitkgp.ac.in/~debdeep/courses_iitkgp/palgo/index.htm THE EULER TOUR TECHNIQUE: EVALUATION OF TREE FUNCTIONS 2

More information

Definition For vertices u, v V (G), the distance from u to v, denoted d(u, v), in G is the length of a shortest u, v-path. 1

Definition For vertices u, v V (G), the distance from u to v, denoted d(u, v), in G is the length of a shortest u, v-path. 1 Graph fundamentals Bipartite graph characterization Lemma. If a graph contains an odd closed walk, then it contains an odd cycle. Proof strategy: Consider a shortest closed odd walk W. If W is not a cycle,

More information

Lecture 22 Tuesday, April 10

Lecture 22 Tuesday, April 10 CIS 160 - Spring 2018 (instructor Val Tannen) Lecture 22 Tuesday, April 10 GRAPH THEORY Directed Graphs Directed graphs (a.k.a. digraphs) are an important mathematical modeling tool in Computer Science,

More information

Launch problem: Lining streets

Launch problem: Lining streets Math 5340 June 15,2012 Dr. Cordero Launch problem: Lining streets Lining Street Problem A Problem on Eulerian Circuits http://www.edmath.org/mattours/discrete/ Your job for the day is to drive slowly around

More information

The Konigsberg Bridge Problem

The Konigsberg Bridge Problem The Konigsberg Bridge Problem This is a classic mathematical problem. There were seven bridges across the river Pregel at Königsberg. Is it possible to take a walk in which each bridge is crossed exactly

More information

Eulerian circuits with no monochromatic transitions

Eulerian circuits with no monochromatic transitions Eulerian circuits with no monochromatic transitions James Carraher University of Nebraska Lincoln s-jcarrah1@math.unl.edu Joint Work with Stephen Hartke June 2012 James Carraher (UNL) Eulerian circuits

More information

PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS

PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS PAUL BALISTER Abstract It has been shown [Balister, 2001] that if n is odd and m 1,, m t are integers with m i 3 and t i=1 m i = E(K n) then K n can be decomposed

More information

Math 443/543 Graph Theory Notes

Math 443/543 Graph Theory Notes Math 443/543 Graph Theory Notes David Glickenstein September 3, 2008 1 Introduction We will begin by considering several problems which may be solved using graphs, directed graphs (digraphs), and networks.

More information

THE EULER TOUR TECHNIQUE: EVALUATION OF TREE FUNCTIONS

THE EULER TOUR TECHNIQUE: EVALUATION OF TREE FUNCTIONS PARALLEL AND DISTRIBUTED ALGORITHMS BY DEBDEEP MUKHOPADHYAY AND ABHISHEK SOMANI http://cse.iitkgp.ac.in/~debdeep/courses_iitkgp/palgo/index.htm THE EULER TOUR TECHNIQUE: EVALUATION OF TREE FUNCTIONS 2

More information

Notes slides from before lecture. CSE 21, Winter 2017, Section A00. Lecture 9 Notes. Class URL:

Notes slides from before lecture. CSE 21, Winter 2017, Section A00. Lecture 9 Notes. Class URL: Notes slides from before lecture CSE 21, Winter 2017, Section A00 Lecture 9 Notes Class URL: http://vlsicad.ucsd.edu/courses/cse21-w17/ Notes slides from before lecture Notes February 8 (1) HW4 is due

More information

Number Theory and Graph Theory

Number Theory and Graph Theory 1 Number Theory and Graph Theory Chapter 6 Basic concepts and definitions of graph theory By A. Satyanarayana Reddy Department of Mathematics Shiv Nadar University Uttar Pradesh, India E-mail: satya8118@gmail.com

More information

Introduction to Engineering Systems, ESD.00. Networks. Lecturers: Professor Joseph Sussman Dr. Afreen Siddiqi TA: Regina Clewlow

Introduction to Engineering Systems, ESD.00. Networks. Lecturers: Professor Joseph Sussman Dr. Afreen Siddiqi TA: Regina Clewlow Introduction to Engineering Systems, ESD.00 Lecture 7 Networks Lecturers: Professor Joseph Sussman Dr. Afreen Siddiqi TA: Regina Clewlow The Bridges of Königsberg The town of Konigsberg in 18 th century

More information

The clique number of a random graph in (,1 2) Let ( ) # -subgraphs in = 2 =: ( ) We will be interested in s.t. ( )~1. To gain some intuition note ( )

The clique number of a random graph in (,1 2) Let ( ) # -subgraphs in = 2 =: ( ) We will be interested in s.t. ( )~1. To gain some intuition note ( ) The clique number of a random graph in (,1 2) Let () # -subgraphs in = 2 =:() We will be interested in s.t. ()~1. To gain some intuition note ()~ 2 =2 and so ~2log. Now let us work rigorously. () (+1)

More information

MATH 113 Section 9.2: Topology

MATH 113 Section 9.2: Topology MATH 113 Section 9.2: Topology Prof. Jonathan Duncan Walla Walla College Winter Quarter, 2007 Outline 1 Introduction to Topology 2 Topology and Childrens Drawings 3 Networks 4 Conclusion Geometric Topology

More information

5.5 The Travelling Salesman Problem

5.5 The Travelling Salesman Problem 0 Matchings and Independent Sets 5.5 The Travelling Salesman Problem The Travelling Salesman Problem A travelling salesman, starting in his own town, has to visit each of towns where he should go to precisely

More information

v V Question: How many edges are there in a graph with 10 vertices each of degree 6?

v V Question: How many edges are there in a graph with 10 vertices each of degree 6? ECS20 Handout Graphs and Trees March 4, 2015 (updated 3/9) Notion of a graph 1. A graph G = (V,E) consists of V, a nonempty set of vertices (or nodes) and E, a set of pairs of elements of V called edges.

More information

Graphs. Pseudograph: multiple edges and loops allowed

Graphs. Pseudograph: multiple edges and loops allowed Graphs G = (V, E) V - set of vertices, E - set of edges Undirected graphs Simple graph: V - nonempty set of vertices, E - set of unordered pairs of distinct vertices (no multiple edges or loops) Multigraph:

More information

The clique number of a random graph in (,1 2) Let ( ) # -subgraphs in = 2 =: ( ) 2 ( ) ( )

The clique number of a random graph in (,1 2) Let ( ) # -subgraphs in = 2 =: ( ) 2 ( ) ( ) 1 The clique number of a random graph in (,1 2) Let () # -subgraphs in = 2 =:() We will be interested in s.t. ()~1. To gain some intuition note ()~ 2 =2 and so ~2log. Now let us work rigorously. () (+1)

More information

1 Undirected Vertex Geography UVG

1 Undirected Vertex Geography UVG Geography Start with a chip sitting on a vertex v of a graph or digraph G. A move consists of moving the chip to a neighbouring vertex. In edge geography, moving the chip from x to y deletes the edge (x,

More information

GRAPH THEORY AND LOGISTICS

GRAPH THEORY AND LOGISTICS GRAPH THEORY AND LOGISTICS Maja Fošner and Tomaž Kramberger University of Maribor Faculty of Logistics Mariborska cesta 2 3000 Celje Slovenia maja.fosner@uni-mb.si tomaz.kramberger@uni-mb.si Abstract This

More information

2 Eulerian digraphs and oriented trees.

2 Eulerian digraphs and oriented trees. 2 Eulerian digraphs and oriented trees. A famous problem which goes back to Euler asks for what graphs G is there a closed walk which uses every edge exactly once. (There is also a version for non-closed

More information

#30: Graph theory May 25, 2009

#30: Graph theory May 25, 2009 #30: Graph theory May 25, 2009 Graph theory is the study of graphs. But not the kind of graphs you are used to, like a graph of y = x 2 graph theory graphs are completely different from graphs of functions.

More information

An Introduction to Graph Theory

An Introduction to Graph Theory An Introduction to Graph Theory Evelyne Smith-Roberge University of Waterloo March 22, 2017 What is a graph? Definition A graph G is: a set V (G) of objects called vertices together with: a set E(G), of

More information

Compatible circuits in eulerian digraphs

Compatible circuits in eulerian digraphs Compatible circuits in eulerian digraphs James Carraher University of Nebraska Lincoln s-jcarrah1@math.unl.edu Joint Work with Stephen Hartke March 2012 James Carraher (UNL) Compatible circuits in eulerian

More information

Graphs. Reading Assignment. Mandatory: Chapter 3 Sections 3.1 & 3.2. Peeking into Computer Science. Jalal Kawash 2010

Graphs. Reading Assignment. Mandatory: Chapter 3 Sections 3.1 & 3.2. Peeking into Computer Science. Jalal Kawash 2010 Graphs Mandatory: hapter 3 Sections 3.1 & 3.2 Reading ssignment 2 Graphs bstraction of ata 3 t the end of this section, you will be able to: 1.efine directed and undirected graphs 2.Use graphs to model

More information

Math 443/543 Graph Theory Notes

Math 443/543 Graph Theory Notes Math 443/543 Graph Theory Notes David Glickenstein September 8, 2014 1 Introduction We will begin by considering several problems which may be solved using graphs, directed graphs (digraphs), and networks.

More information

CS473-Algorithms I. Lecture 13-A. Graphs. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 13-A. Graphs. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorithms I Lecture 3-A Graphs Graphs A directed graph (or digraph) G is a pair (V, E), where V is a finite set, and E is a binary relation on V The set V: Vertex set of G The set E: Edge set of

More information

Mohammad A. Yazdani, Ph.D. Abstract

Mohammad A. Yazdani, Ph.D. Abstract Utilizing Euler s Approach in Solving Konigsberg Bridge Problem to Identify Similar Traversable Networks in a Dynamic Geometry Teacher Education Environment: An Instructional Activity Mohammad A. Yazdani,

More information

Ma/CS 6b Class 4: Matchings in General Graphs

Ma/CS 6b Class 4: Matchings in General Graphs Ma/CS 6b Class 4: Matchings in General Graphs By Adam Sheffer Reminder: Hall's Marriage Theorem Theorem. Let G = V 1 V 2, E be a bipartite graph. There exists a matching of size V 1 in G if and only if

More information

Basics of Graph Theory

Basics of Graph Theory Basics of Graph Theory 1 Basic notions A simple graph G = (V, E) consists of V, a nonempty set of vertices, and E, a set of unordered pairs of distinct elements of V called edges. Simple graphs have their

More information

V1.0: Seth Gilbert, V1.1: Steven Halim August 30, Abstract. d(e), and we assume that the distance function is non-negative (i.e., d(x, y) 0).

V1.0: Seth Gilbert, V1.1: Steven Halim August 30, Abstract. d(e), and we assume that the distance function is non-negative (i.e., d(x, y) 0). CS4234: Optimisation Algorithms Lecture 4 TRAVELLING-SALESMAN-PROBLEM (4 variants) V1.0: Seth Gilbert, V1.1: Steven Halim August 30, 2016 Abstract The goal of the TRAVELLING-SALESMAN-PROBLEM is to find

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 The University of Sydney MTH 009 GRPH THORY Tutorial 10 Solutions 004 1. In a tournament, the score of a vertex is its out-degree, and the score sequence is a list of all the scores in non-decreasing order.

More information

Intermediate Math Circles Wednesday, February 22, 2017 Graph Theory III

Intermediate Math Circles Wednesday, February 22, 2017 Graph Theory III 1 Eulerian Graphs Intermediate Math Circles Wednesday, February 22, 2017 Graph Theory III Let s begin this section with a problem that you may remember from lecture 1. Consider the layout of land and water

More information

GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS

GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS DR. ANDREW SCHWARTZ, PH.D. 10.1 Graphs and Graph Models (1) A graph G = (V, E) consists of V, a nonempty set of vertices (or nodes)

More information

INTRODUCTION TO GRAPH THEORY. 1. Definitions

INTRODUCTION TO GRAPH THEORY. 1. Definitions INTRODUCTION TO GRAPH THEORY D. JAKOBSON 1. Definitions A graph G consists of vertices {v 1, v 2,..., v n } and edges {e 1, e 2,..., e m } connecting pairs of vertices. An edge e = (uv) is incident with

More information

Discrete Mathematics and Probability Theory Spring 2015 Vazirani Note 5

Discrete Mathematics and Probability Theory Spring 2015 Vazirani Note 5 CS 70 Discrete Mathematics and Probability Theory Spring 2015 Vazirani Note 5 1 Graph Theory: An Introduction One of the fundamental ideas in computer science is the notion of abstraction: capturing the

More information

ALGORITHMS FOR FINDING AN EULERIAN TRAIL

ALGORITHMS FOR FINDING AN EULERIAN TRAIL THE 1 ST INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS AND INFORMATICS AT UNIVERSITIES 2001 Section of didactic of mathematics and informatics, pp. 364-369 ALGORITHMS FOR FINDING AN EULERIAN TRAIL MILAN

More information

MA 111 Review for Exam 3

MA 111 Review for Exam 3 MA 111 Review for Exam 3 Exam 3 (given in class on Tuesday, March 27, 2012) will cover Chapter 5. You should: know what a graph is and how to use graphs to model geographic relationships. know how to describe

More information

Math 170- Graph Theory Notes

Math 170- Graph Theory Notes 1 Math 170- Graph Theory Notes Michael Levet December 3, 2018 Notation: Let n be a positive integer. Denote [n] to be the set {1, 2,..., n}. So for example, [3] = {1, 2, 3}. To quote Bud Brown, Graph theory

More information

Mathematics and Statistics, Part A: Graph Theory Problem Sheet 1, lectures 1-4

Mathematics and Statistics, Part A: Graph Theory Problem Sheet 1, lectures 1-4 1. Draw Mathematics and Statistics, Part A: Graph Theory Problem Sheet 1, lectures 1-4 (i) a simple graph. A simple graph has a non-empty vertex set and no duplicated edges. For example sketch G with V

More information

Chapter 4. Relations & Graphs. 4.1 Relations. Exercises For each of the relations specified below:

Chapter 4. Relations & Graphs. 4.1 Relations. Exercises For each of the relations specified below: Chapter 4 Relations & Graphs 4.1 Relations Definition: Let A and B be sets. A relation from A to B is a subset of A B. When we have a relation from A to A we often call it a relation on A. When we have

More information

EULERIAN GRAPHS AND ITS APPLICATIONS

EULERIAN GRAPHS AND ITS APPLICATIONS EULERIAN GRAPHS AND ITS APPLICATIONS Aruna R 1, Madhu N.R 2 & Shashidhar S.N 3 1.2&3 Assistant Professor, Department of Mathematics. R.L.Jalappa Institute of Technology, Doddaballapur, B lore Rural Dist

More information

Network Topology and Graph

Network Topology and Graph Network Topology Network Topology and Graph EEE442 Computer Method in Power System Analysis Any lumped network obeys 3 basic laws KVL KCL linear algebraic constraints Ohm s law Anawach Sangswang Dept.

More information

GRAPH THEORY AND COMBINATORICS ( Common to CSE and ISE ) UNIT 1

GRAPH THEORY AND COMBINATORICS ( Common to CSE and ISE ) UNIT 1 GRAPH THEORY AND COMBINATORICS ( Common to CSE and ISE ) Sub code : 06CS42 UNIT 1 Introduction to Graph Theory : Definition and Examples Subgraphs Complements, and Graph Isomorphism Vertex Degree, Euler

More information

Definition 1.1. A matching M in a graph G is called maximal if there is no matching M in G so that M M.

Definition 1.1. A matching M in a graph G is called maximal if there is no matching M in G so that M M. 1 Matchings Before, we defined a matching as a set of edges no two of which share an end in common. Suppose that we have a set of jobs and people and we want to match as many jobs to people as we can.

More information

Section Graphs, Paths, and Circuits. Copyright 2013, 2010, 2007, Pearson, Education, Inc.

Section Graphs, Paths, and Circuits. Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 14.1 Graphs, Paths, and Circuits INB Table of Contents Date Topic Page # January 27, 2014 Test #1 14 January 27, 2014 Test # 1 Corrections 15 January 27, 2014 Section 14.1 Examples 16 January 27,

More information

Counting. Andreas Klappenecker

Counting. Andreas Klappenecker Counting Andreas Klappenecker Counting k = 0; for(int i=1; i

More information

CHAPTER 8. Copyright Cengage Learning. All rights reserved.

CHAPTER 8. Copyright Cengage Learning. All rights reserved. CHAPTER 8 RELATIONS Copyright Cengage Learning. All rights reserved. SECTION 8.3 Equivalence Relations Copyright Cengage Learning. All rights reserved. The Relation Induced by a Partition 3 The Relation

More information

Graph Connectivity G G G

Graph Connectivity G G G Graph Connectivity 1 Introduction We have seen that trees are minimally connected graphs, i.e., deleting any edge of the tree gives us a disconnected graph. What makes trees so susceptible to edge deletions?

More information