Enumeration Algorithm for Lattice Model

Size: px
Start display at page:

Download "Enumeration Algorithm for Lattice Model"

Transcription

1 Enumeration Algorithm for Lattice Model Seungsang Oh Korea University International Workshop on Spatial Graphs 2016 Waseda University, August 5, 2016

2 Contents 1 State Matrix Recursion Algorithm 2 Monomer-Dimer Problem (best application) 3 Multiple Self-Avoiding Polygon Enumeration 4 Further Applications in Lattice Statistics

3 Contents 1 State Matrix Recursion Algorithm 2 Monomer-Dimer Problem (best application) 3 Multiple Self-Avoiding Polygon Enumeration 4 Further Applications in Lattice Statistics

4 State matrix recursion algorithm State matrix recursion algorithm enumerates 2-dimensional lattice models such as Monomer-dimer coverings Multiple self-avoiding walks and polygons Independent vertex sets Quantum knot mosaics These are famous problems in Combinatorics and Statistical Mechanics studied by topologists, combinatorialists and physicists alike.

5 State matrix recursion algorithm is divided into three stages: Stage 1. Conversion to appropriate mosaics Stage 2. State matrix recursion formula Stage 3. State matrix analyzing During this talk, the algorithm will be briefly demonstrated by solving the Monomer-Dimer Problem.

6 Contents 1 State Matrix Recursion Algorithm 2 Monomer-Dimer Problem (best application) 3 Multiple Self-Avoiding Polygon Enumeration 4 Further Applications in Lattice Statistics

7 Monomer-dimer coverings Monomer-dimer covering in m n rectangle on the square lattice Z m n Generating function D m n (z) = k(t) z t where k(t) is the number of monomer-dimer coverings with t monomers. D m n (1) is the number of monomer-dimer coverings. D m n (0) is the number of pure dimer coverings (i.e., no monomers).

8 [Kasteleyn and Temperley-Fisher 1961] Pure dimer problem for even mn m j=1 n k=1 ( 2 cos πj m + 1 ) ( ) πk + 2i cos n + 1 Breakthrough results [Tzeng-Wu 2003] Single boundary monomer problem for odd mn (it has a fixed single monomer on the boundary) m 1 2 j=1 n 1 2 k=1 [4 cos 2 ( πj ) ( )] πk + 4 cos 2 m + 1 n + 1 Question: How about if we allow many monomers? Generating function?

9 Monomer-Dimer Theorem Theorem D m n (z) = (1, 1)-entry of (A m ) n where A m is a 2 m 2 m matrix defined by the recurrence relation [ ] Ak 2 O z A A k = k 1 + k 2 A O k 2 O k 1 k 2 starting with A 0 = [ 1 ] and A 1 = A k 1 O k 1 [ ] z 1 where O 1 0 k is the 2 k 2 k zero-matrix. Note that it is not a closed form solution, but a sparse recurrence algorithm.

10 Exact enumeration n D n n (1) (D n n (1)) 1 n

11 Stage 1. Conversion to monomer-dimer mosaics 5 mosaic tiles labeled with two letters a, b Adjacency Rule : Attaching edges of adjacent tiles have the same letter. Boundary state requirement : All boundary edges are labeled with letter a.

12 Stage 2. State matrix recursion formula State polynomial : Twelve suitably adjacent 3 3-mosaics associated with b-state aba, t-state bab and the trivial l- and r-states aaa to produce the associated state polynomial 1 + 5z 2 + 5z 4 + z 6.

13 State matrix A m n for the set of suitably adjacent m n-mosaics is a 2 m 2 m matrix (a ij ) where a ij is the state polynomial associated to i-th b-state, j-th t-state, and the trivial l- and r-states. (Trivial state condition is needed for the boundary state requirement) We arrange 2 m states of length m in the lexicographic order. For example, (3,6)-entry of A 3 3 is a 3,6 = 1 + 5z 2 + 5z 4 + z 6.

14 Recursion strategy to find the state matrix A m n. 1. Find the starting state matrices A 1 and B 1 for 1 1-mosaics. 2. Find the bar state matrices A k and B k for suitably adjacent k 1-mosaics (or bar mosaics) by attaching a mosaic tile recursively on the right side. 3. Find the state matrix A m k for suitably adjacent m k-mosaics by attaching a bar mosaic of length m on the top side.

15 Summary First, we get the recursive relation from the bar state matrix recursion lemma [ ] [ ] z Ak 1 + B A k = k 1 A k 1 Ak 1 O and B A k 1 O k = k 1 k 1 O k 1 O k 1 starting with A 0 = [ 1 ] and B 0 = [ 0 ]. Then, we have the state matrix from the state matrix multiplication lemma A m n = (A m ) n.

16 Stage 3. State matrix analyzing Monomer-dimer generating function w.r.t. the number of monomers D m n (z) = (1,1)-entry of A m n.

17 Monomer-Dimer Theorem Theorem D m n (z) = (1, 1)-entry of (A m ) n where A m is a 2 m 2 m matrix defined by the recurrence relation [ ] Ak 2 O z A A k = k 1 + k 2 A O k 2 O k 1 k 2 starting with A 0 = [ 1 ] and A 1 = A k 1 O k 1 [ ] z 1 where O 1 0 k is the 2 k 2 k zero-matrix.

18 Contents 1 State Matrix Recursion Algorithm 2 Monomer-Dimer Problem (best application) 3 Multiple Self-Avoiding Polygon Enumeration 4 Further Applications in Lattice Statistics

19 Self-avoiding polygon (SAP) on the square lattice Z 2 Self-avoiding polygons p n = number of SAPs of length n up to translations Finding p n is the central unsolved problem during last 70 years in Combinatorics and Statistical Mechanics. There are many numerical datas, but few mathematically proved results.

20 Breakthrough results [Hammersley 1957] The limit µ = lim (p n ) 1 n exists. µ = ± : best estimate on Z 2 during 50 years. [Duminil-Copin and Smirnov 2012, Annals of Math.] µ = on the hexagonal lattice H 2 (easier than on Z 2 ). Nobody expects that there will be a closed form of p n.

21 Multiple self-avoiding polygons Multiple self-avoiding polygon (MSAP) in Z m n p m n = number of MSAPs in Z m n (not up to translations) Theorem p m n = (1, 1)-entry of (A m ) n 1 where the 2 m 2 m matrix A m is defined by [ ] [ ] Ak B A k+1 = k Bk A and B B k A k+1 = k k A k O k starting with A 0 = [ 1 ] and B 0 = [ 0 ].

22 MSAPs in the 1-slab square lattice Multiple self-avoiding polygons (links) in the 1-slab square lattice Z m n 2 (2 layers of the planes)

23 Conversion to 1-slab MSAP mosaics by using 65 mosaic tiles

24 MSAP enumeration in Z m n 2 Theorem The number of MSAPs in the 1-slab square lattice Z m n 2 is (1, 1)-entry of (A m ) n 1 where the 4 m 4 m matrix A m is defined by A k +D k B k +C k B k +C k A k +D k B k +C k A k A k +D k C k B A k+1 = k +C k A k A k +D k C k A, B B k +C k A k +D k A k B k+1 = k O k C k O k, k A k +D k C k B k A k A k +D k C k B k A k C k O k A k O k B k +C k A k +D k A k B k A k +D k C k B k A k A C k+1 = k +D k C k B k A k C and D A k B k O k O k+1 = k O k A k O k, k B k A k O k O k B k A k O k O k A k O k O k O k starting with A 0 = [ 1 ] and B 0 = C 0 = D 0 = [ 0 ]. - The number of MSAPs in Z is

25 Links in the 3-dimensional cubic lattice Links in the 3-dimensional cubic lattice Z l m n (not up to translations and ambient isotopies)

26 Contents 1 State Matrix Recursion Algorithm 2 Monomer-Dimer Problem (best application) 3 Multiple Self-Avoiding Polygon Enumeration 4 Further Applications in Lattice Statistics

27 Different regular lattices Hexagonal (honeycomb) lattice H m n (MSAP model)

28 Different regular lattices Triangular lattice T m n (Monomer-dimer model)

29 Different regular lattices 1-slab square lattice Z m n 2 (Multiple self-avoiding polygon (link) model)

30 Polymer model Monomer-dimer-trimer-tetramer covering

31 Polyomino model Monomino-domino-tromino tiling

32 Independent vertex model Independent vertex sets

33 Quantum knot model Quantum knot mosaic with 11 knot mosaic tiles as follows

34 Squared rectangle model Tiling a rectangle by squares with various integer sizes

35 Tetris configuration by 7 tetrominoes Tetris model

36 Thank you!

Plane Tilings. Richard P. Stanley M.I.T. Plane Tilings p.

Plane Tilings. Richard P. Stanley M.I.T. Plane Tilings p. Plane Tilings p. Plane Tilings Richard P. Stanley M.I.T. Plane Tilings p. region: tiles: 1 2 3 4 5 6 7 Plane Tilings p. tiling: 4 3 7 5 6 2 1 Plane Tilings p. Is there a tiling? How many? About how many?

More information

TILING PROBLEMS: FROM DOMINOES, CHECKERBOARDS, AND MAZES TO DISCRETE GEOMETRY

TILING PROBLEMS: FROM DOMINOES, CHECKERBOARDS, AND MAZES TO DISCRETE GEOMETRY TILING PROBLEMS: FROM DOMINOES, CHECKERBOARDS, AND MAZES TO DISCRETE GEOMETRY BERKELEY MATH CIRCLE 1. Looking for a number Consider an 8 8 checkerboard (like the one used to play chess) and consider 32

More information

Enumeration of Tilings and Related Problems

Enumeration of Tilings and Related Problems Enumeration of Tilings and Related Problems Tri Lai Institute for Mathematics and its Applications Minneapolis, MN 55455 Discrete Mathematics Seminar University of British Columbia Vancouver February 2016

More information

Enumeration of Polyomino Tilings via Hypergraphs

Enumeration of Polyomino Tilings via Hypergraphs Enumeration of Polyomino Tilings via Hypergraphs (Dedicated to Professor Károly Bezdek) Muhammad Ali Khan Centre for Computational and Discrete Geometry Department of Mathematics & Statistics, University

More information

Aztec diamond. An Aztec diamond of order n is the union of the unit squares with lattice point coordinates in the region given by...

Aztec diamond. An Aztec diamond of order n is the union of the unit squares with lattice point coordinates in the region given by... Aztec diamond An Aztec diamond of order n is the union of the unit squares with lattice point coordinates in the region given by x + y n + 1 Aztec diamond An Aztec diamond of order n is the union of the

More information

The Matrix-Tree Theorem and Its Applications to Complete and Complete Bipartite Graphs

The Matrix-Tree Theorem and Its Applications to Complete and Complete Bipartite Graphs The Matrix-Tree Theorem and Its Applications to Complete and Complete Bipartite Graphs Frankie Smith Nebraska Wesleyan University fsmith@nebrwesleyan.edu May 11, 2015 Abstract We will look at how to represent

More information

Enumerating Tilings of Rectangles by Squares with Recurrence Relations

Enumerating Tilings of Rectangles by Squares with Recurrence Relations Journal of Combinatorics Volume 0, Number 0, 1, 2014 Enumerating Tilings of Rectangles by Squares with Recurrence Relations Daryl DeFord Counting the number of ways to tile an m n rectangle with squares

More information

Steep tilings and sequences of interlaced partitions

Steep tilings and sequences of interlaced partitions Steep tilings and sequences of interlaced partitions Jérémie Bouttier Joint work with Guillaume Chapuy and Sylvie Corteel arxiv:1407.0665 Institut de Physique Théorique, CEA Saclay Département de mathématiques

More information

BINARY CODES AND KASTELEYN 3-MATRICES MARTIN LOEBL AND PAVEL RYTÍŘ

BINARY CODES AND KASTELEYN 3-MATRICES MARTIN LOEBL AND PAVEL RYTÍŘ BINARY CODES AND KASTELEYN -MATRICES MARTIN LOEBL AND PAVEL RYTÍŘ Department of Applied Mathematics, Charles University, Malostranské nám. 25, 8 00 Praha, Czech Republic. Abstract. Two cornerstones of

More information

Student Research. UBC Math Circle, January 25, Richard Anstee UBC, Vancouver

Student Research. UBC Math Circle, January 25, Richard Anstee UBC, Vancouver Richard Anstee UBC, Vancouver UBC Math Circle, January 25, 2016 Dominoes and Matchings The first set of problems I d like to mention are really graph theory problems disguised as covering a checkerboard

More information

arxiv: v1 [cs.cc] 29 May 2013

arxiv: v1 [cs.cc] 29 May 2013 Domino atami Covering is NP-complete Alejandro Erickson and rank Ruskey Department of Computer Science, University of Victoria, V8W 3P6, Canada arxiv:1305.6669v1 [cs.cc] 29 May 2013 Abstract. A covering

More information

Trees and Matchings. James G. Propp. University of Wisconsin Madison, Wisconsin

Trees and Matchings. James G. Propp. University of Wisconsin Madison, Wisconsin Trees and Matchings arxiv:math/99325v2 [math.co] 3 Apr 2 Richard W. Kenyon Laboratoire de Topologie Université Paris-Sud kenyon@topo.math.u-psud.fr James G. Propp University of Wisconsin Madison, Wisconsin

More information

Combinatorics I. , is unproved (it is possible that, for instance, P n instead).

Combinatorics I. , is unproved (it is possible that, for instance, P n instead). Combinatorics I Combinatorics is the study of discrete objects. Combinatorial problems are usually simple to define, but can be very difficult to solve. For example, a polyomino is a set of unit squares

More information

REGULAR GRAPHS OF GIVEN GIRTH. Contents

REGULAR GRAPHS OF GIVEN GIRTH. Contents REGULAR GRAPHS OF GIVEN GIRTH BROOKE ULLERY Contents 1. Introduction This paper gives an introduction to the area of graph theory dealing with properties of regular graphs of given girth. A large portion

More information

Instructor: Paul Zeitz, University of San Francisco

Instructor: Paul Zeitz, University of San Francisco Berkeley Math Circle Graph Theory and Ramsey Theory Instructor: Paul Zeitz, University of San Francisco (zeitz@usfca.edu) Definitions 1 A graph is a pair (V,E), where V is a finite set and E is a set of

More information

Integrated Math I. IM1.1.3 Understand and use the distributive, associative, and commutative properties.

Integrated Math I. IM1.1.3 Understand and use the distributive, associative, and commutative properties. Standard 1: Number Sense and Computation Students simplify and compare expressions. They use rational exponents and simplify square roots. IM1.1.1 Compare real number expressions. IM1.1.2 Simplify square

More information

Zero-Sum Flow Numbers of Triangular Grids

Zero-Sum Flow Numbers of Triangular Grids Zero-Sum Flow Numbers of Triangular Grids Tao-Ming Wang 1,, Shih-Wei Hu 2, and Guang-Hui Zhang 3 1 Department of Applied Mathematics Tunghai University, Taichung, Taiwan, ROC 2 Institute of Information

More information

CSE 20 DISCRETE MATH WINTER

CSE 20 DISCRETE MATH WINTER CSE 20 DISCRETE MATH WINTER 2016 http://cseweb.ucsd.edu/classes/wi16/cse20-ab/ Today's learning goals Explain the steps in a proof by (strong) mathematical induction Use (strong) mathematical induction

More information

MATRIX INTEGRALS AND MAP ENUMERATION 1

MATRIX INTEGRALS AND MAP ENUMERATION 1 MATRIX INTEGRALS AND MAP ENUMERATION 1 IVAN CORWIN Abstract. We explore the connection between integration with respect to the GUE and enumeration of maps. This connection is faciliated by the Wick Formula.

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 351 George Voutsadakis (LSSU) Introduction to Graph Theory August 2018 1 /

More information

where each number (after the first two 1 s) is the sum of the previous two numbers.

where each number (after the first two 1 s) is the sum of the previous two numbers. Fibonacci Numbers The Fibonacci numbers are the numbers in the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987,... where each number (after the first two 1 s) is the sum of the previous

More information

Some Open Problems in Polyomino Tilings

Some Open Problems in Polyomino Tilings Some Open Problems in Polyomino Tilings Andrew Winslow 1 University of Texas Rio Grande Valley, Edinburg, TX, USA andrew.winslow@utrgv.edu Abstract. The author surveys 15 open problems regarding the algorithmic,

More information

Monotone Paths in Geometric Triangulations

Monotone Paths in Geometric Triangulations Monotone Paths in Geometric Triangulations Adrian Dumitrescu Ritankar Mandal Csaba D. Tóth November 19, 2017 Abstract (I) We prove that the (maximum) number of monotone paths in a geometric triangulation

More information

Random Tilings with the GPU

Random Tilings with the GPU Random Tilings with the GPU David Keating Joint work with A. Sridhar University of California, Berkeley June 8, 2018 1 / 33 Outline 1 2 3 4 Lozenge Tilings Six Vertex Bibone Tilings Rectangle-triangle

More information

Tilings of the plane. Math 311. Handout /5/08. Regular Tilings

Tilings of the plane. Math 311. Handout /5/08. Regular Tilings Math 11. Handout 19. 11/5/08 Tilings of the plane Name: A tiling of the plane is an arrangement of polygons fitting together to cover the plane without leaving any gaps or overlapping. The tiles fit edge

More information

arxiv: v1 [cs.cc] 30 Jun 2017

arxiv: v1 [cs.cc] 30 Jun 2017 Hamiltonicity is Hard in Thin or Polygonal Grid Graphs, but Easy in Thin Polygonal Grid Graphs Erik D. Demaine Mikhail Rudoy arxiv:1706.10046v1 [cs.cc] 30 Jun 2017 Abstract In 2007, Arkin et al. [3] initiated

More information

Math 170- Graph Theory Notes

Math 170- Graph Theory Notes 1 Math 170- Graph Theory Notes Michael Levet December 3, 2018 Notation: Let n be a positive integer. Denote [n] to be the set {1, 2,..., n}. So for example, [3] = {1, 2, 3}. To quote Bud Brown, Graph theory

More information

Lattice Polygon s and Pick s Theorem From Dana Paquin and Tom Davis 1 Warm-Up to Ponder

Lattice Polygon s and Pick s Theorem From Dana Paquin and Tom Davis   1 Warm-Up to Ponder Lattice Polygon s and Pick s Theorem From Dana Paquin and Tom Davis http://www.geometer.org/mathcircles/pick.pdf 1 Warm-Up to Ponder 1. Is it possible to draw an equilateral triangle on graph paper so

More information

INTRODUCTION TO CLUSTER ALGEBRAS

INTRODUCTION TO CLUSTER ALGEBRAS INTRODUCTION TO CLUSTER ALGEBRAS NAN LI (MIT) Cluster algebras are a class of commutative ring, introduced in 000 by Fomin and Zelevinsky, originally to study Lusztig s dual canonical basis and total positivity.

More information

Lecture 1. 1 Notation

Lecture 1. 1 Notation Lecture 1 (The material on mathematical logic is covered in the textbook starting with Chapter 5; however, for the first few lectures, I will be providing some required background topics and will not be

More information

Alice through Looking Glass after Looking Glass: The Mathematics of Mirrors and Kaleidoscopes

Alice through Looking Glass after Looking Glass: The Mathematics of Mirrors and Kaleidoscopes Alice through Looking Glass after Looking Glass: The Mathematics of Mirrors and Kaleidoscopes Roe Goodman Rutgers Math Department U Seminar May 1, 2008 The Magic Mirrors of Alice Alice Through Looking

More information

TILING RECTANGLES SIMON RUBINSTEIN-SALZEDO

TILING RECTANGLES SIMON RUBINSTEIN-SALZEDO TILING RECTANGLES SIMON RUBINSTEIN-SALZEDO. A classic tiling problem Question.. Suppose we tile a (large) rectangle with small rectangles, so that each small rectangle has at least one pair of sides with

More information

From planar graphs to embedded graphs - a new approach to Kauffman and Vogel s polynomial

From planar graphs to embedded graphs - a new approach to Kauffman and Vogel s polynomial arxiv:math/0005128v1 [math.gt] 12 May 2000 From planar graphs to embedded graphs - a new approach to Kauffman and Vogel s polynomial Rui Pedro Carpentier Departamento de Matemática and Centro de Matemática

More information

Miquel dynamics for circle patterns

Miquel dynamics for circle patterns Miquel dynamics for circle patterns Sanjay Ramassamy ENS Lyon Partly joint work with Alexey Glutsyuk (ENS Lyon & HSE) Seminar of the Center for Advanced Studies Skoltech March 12 2018 Circle patterns form

More information

Pascal pyramid in the space H 2 R

Pascal pyramid in the space H 2 R Pascal pyramid in the space H 2 R László Németh arxiv:1701.06022v1 [math.co] 21 Jan 2017 Abstract In this article we introduce a new type of Pascal pyramids. A regular squared mosaic in the hyperbolic

More information

Practice A Introduction to Three-Dimensional Figures

Practice A Introduction to Three-Dimensional Figures Name Date Class Identify the base of each prism or pyramid. Then choose the name of the prism or pyramid from the box. rectangular prism square pyramid triangular prism pentagonal prism square prism triangular

More information

CS6702 GRAPH THEORY AND APPLICATIONS QUESTION BANK

CS6702 GRAPH THEORY AND APPLICATIONS QUESTION BANK CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 1 UNIT I INTRODUCTION CS6702 GRAPH THEORY AND APPLICATIONS QUESTION BANK 1. Define Graph. 2. Define Simple graph. 3. Write few problems

More information

Date: Wednesday, 18 January :00AM. Location: Barnard's Inn Hall

Date: Wednesday, 18 January :00AM. Location: Barnard's Inn Hall Wallpaper Patterns and Buckyballs Transcript Date: Wednesday, 18 January 2006-12:00AM Location: Barnard's Inn Hall WALLPAPER PATTERNS AND BUCKYBALLS Professor Robin Wilson My lectures this term will be

More information

On the Number of Tilings of a Square by Rectangles

On the Number of Tilings of a Square by Rectangles University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange University of Tennessee Honors Thesis Projects University of Tennessee Honors Program 5-2012 On the Number of Tilings

More information

Testing Isomorphism of Strongly Regular Graphs

Testing Isomorphism of Strongly Regular Graphs Spectral Graph Theory Lecture 9 Testing Isomorphism of Strongly Regular Graphs Daniel A. Spielman September 26, 2018 9.1 Introduction In the last lecture we saw how to test isomorphism of graphs in which

More information

Introductory Combinatorics

Introductory Combinatorics Introductory Combinatorics Third Edition KENNETH P. BOGART Dartmouth College,. " A Harcourt Science and Technology Company San Diego San Francisco New York Boston London Toronto Sydney Tokyo xm CONTENTS

More information

pα i + q, where (n, m, p and q depend on i). 6. GROMOV S INVARIANT AND THE VOLUME OF A HYPERBOLIC MANIFOLD

pα i + q, where (n, m, p and q depend on i). 6. GROMOV S INVARIANT AND THE VOLUME OF A HYPERBOLIC MANIFOLD 6. GROMOV S INVARIANT AND THE VOLUME OF A HYPERBOLIC MANIFOLD of π 1 (M 2 )onπ 1 (M 4 ) by conjugation. π 1 (M 4 ) has a trivial center, so in other words the action of π 1 (M 4 ) on itself is effective.

More information

planar graph embeddings and stat mech

planar graph embeddings and stat mech planar graph embeddings and stat mech Richard Kenyon (Brown University) In 2D stat mech models, appropriate graph embeddings are important e.g. Bond percolation on Z 2. p c = 1 2 What about unequal probabilities?

More information

arxiv:math/ v1 [math.co] 6 Mar 2000

arxiv:math/ v1 [math.co] 6 Mar 2000 Hard Tiling Problems with Simple Tiles Cristopher Moore 1,2,3 and John Michael Robson 4 arxiv:math/0003039v1 [math.co] 6 Mar 2000 1 Computer Science Department, University of New Mexico, Albuquerque NM

More information

Sequences from Centered Hexagons of Integers

Sequences from Centered Hexagons of Integers International Mathematical Forum, 4, 009, no. 39, 1949-1954 Sequences from Centered Hexagons of Integers T. Aaron Gulliver Department of Electrical and Computer Engineering University of Victoria, P.O.

More information

Fractal Gaskets: Reptiles, Hamiltonian Cycles, and Spatial Development

Fractal Gaskets: Reptiles, Hamiltonian Cycles, and Spatial Development Bridges Finland Conference Proceedings Fractal Gaskets: Reptiles, Hamiltonian Cycles, and Spatial Development Robert W. Fathauer Tessellations Company 3913 E. Bronco Trail Phoenix, AZ 85044, USA rob@tessellations.com

More information

Algebraic Graph Theory- Adjacency Matrix and Spectrum

Algebraic Graph Theory- Adjacency Matrix and Spectrum Algebraic Graph Theory- Adjacency Matrix and Spectrum Michael Levet December 24, 2013 Introduction This tutorial will introduce the adjacency matrix, as well as spectral graph theory. For those familiar

More information

Extremal Configurations of Polygonal Linkages

Extremal Configurations of Polygonal Linkages Extremal Configurations of Polygonal Linkages Dirk Siersma Department of Mathematics University of Utrecht Singularity Conference Bruce 60, Wall 75 Liverpool, June 18-22, 2012 Outline Introduction Planar

More information

Tiling with fences. 16:00 Wednesday 26th October 2016, Room 3303, MUIC. Michael A. Allen. Physics Department, Mahidol University, Bangkok

Tiling with fences. 16:00 Wednesday 26th October 2016, Room 3303, MUIC. Michael A. Allen. Physics Department, Mahidol University, Bangkok Tiling with fences 16:00 Wednesday 26th October 2016, Room 3303, MUIC Michael A. Allen Physics Department, Mahidol University, Bangkok We look at tiling an n-board (a linear array of n square cells of

More information

Proper Partitions of a Polygon and k-catalan Numbers

Proper Partitions of a Polygon and k-catalan Numbers Proper Partitions of a Polygon and k-catalan Numbers Bruce E. Sagan Department of Mathematics Michigan State University East Lansing, MI 48824-1027 USA sagan@math.msu.edu July 13, 2005 Abstract Let P be

More information

Key Graph Theory Theorems

Key Graph Theory Theorems Key Graph Theory Theorems Rajesh Kumar MATH 239 Intro to Combinatorics August 19, 2008 3.3 Binary Trees 3.3.1 Problem (p.82) Determine the number, t n, of binary trees with n edges. The number of binary

More information

arxiv: v1 [math.co] 25 Sep 2015

arxiv: v1 [math.co] 25 Sep 2015 A BASIS FOR SLICING BIRKHOFF POLYTOPES TREVOR GLYNN arxiv:1509.07597v1 [math.co] 25 Sep 2015 Abstract. We present a change of basis that may allow more efficient calculation of the volumes of Birkhoff

More information

Planar Graphs with Many Perfect Matchings and Forests

Planar Graphs with Many Perfect Matchings and Forests Planar Graphs with Many Perfect Matchings and Forests Michael Biro Abstract We determine the number of perfect matchings and forests in a family T r,3 of triangulated prism graphs. These results show that

More information

Grades 7 & 8, Math Circles 20/21/22 February, D Geometry

Grades 7 & 8, Math Circles 20/21/22 February, D Geometry Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing 2D Geometry Review Grades 7 & 8, Math Circles 20/21/22 February, 2018 3D Geometry Two-dimensional shapes

More information

Tiling de cient rectangles with trominoes

Tiling de cient rectangles with trominoes Tiling de cient rectangles with trominoes J. Marshall Ash and Solomon W. Golomb Introduction A tromino(rhymes with domino) is a shape made up of three 1 1 squares assembled as shown. Figure 1. A tromino

More information

arxiv: v1 [math.co] 20 Aug 2012

arxiv: v1 [math.co] 20 Aug 2012 ENUMERATING TRIANGULATIONS BY PARALLEL DIAGONALS Alon Regev Department of Mathematical Sciences, Northern Illinois University, DeKalb, Illinois regev@math.niu.edu arxiv:108.91v1 [math.co] 0 Aug 01 1 Introduction

More information

Trinities, hypergraphs, and contact structures

Trinities, hypergraphs, and contact structures Trinities, hypergraphs, and contact structures Daniel V. Mathews Daniel.Mathews@monash.edu Monash University Discrete Mathematics Research Group 14 March 2016 Outline 1 Introduction 2 Combinatorics of

More information

The Ultimate Maths Vocabulary List

The Ultimate Maths Vocabulary List The Ultimate Maths Vocabulary List The 96 Words Every Pupil Needs to Know by the End of Year 6 KS1 & KS2 How to Use This Resource An essential building block in pupil s understanding of maths is their

More information

Tiling Rectangles with Gaps by Ribbon Right Trominoes

Tiling Rectangles with Gaps by Ribbon Right Trominoes Open Journal of Discrete Mathematics, 2017, 7, 87-102 http://www.scirp.org/journal/ojdm ISSN Online: 2161-7643 ISSN Print: 2161-7635 Tiling Rectangles with Gaps by Ribbon Right Trominoes Premalatha Junius,

More information

Math Summer 2012

Math Summer 2012 Math 481 - Summer 2012 Final Exam You have one hour and fifty minutes to complete this exam. You are not allowed to use any electronic device. Be sure to give reasonable justification to all your answers.

More information

arxiv: v4 [math.co] 7 Sep 2014

arxiv: v4 [math.co] 7 Sep 2014 arxiv:1310.333v4 [math.co] 7 Sep 014 Enumeration of Hybrid Domino-Lozenge Tilings II: Quasi-octagonal regions TRI LAI Institute for Mathematics and Its Applications University of Minnesota Minneapolis,

More information

CSIT 691 Independent Project

CSIT 691 Independent Project CSIT 691 Independent Project A comparison of Mean Average Error (MAE) Based Image Search for Hexagonally and Regularly Structured Pixel Data Student: Sijing LIU Email: sijing@ust.hk Supervisor: Prof. David

More information

Lesson 9. Three-Dimensional Geometry

Lesson 9. Three-Dimensional Geometry Lesson 9 Three-Dimensional Geometry 1 Planes A plane is a flat surface (think tabletop) that extends forever in all directions. It is a two-dimensional figure. Three non-collinear points determine a plane.

More information

Random Tilings. Thomas Fernique. Moscow, Spring 2011

Random Tilings. Thomas Fernique. Moscow, Spring 2011 Random Tilings Thomas Fernique Moscow, Spring 2011 1 Random tilings 2 The Dimer case 3 Random assembly 4 Random sampling 1 Random tilings 2 The Dimer case 3 Random assembly 4 Random sampling Quenching

More information

IMO Training 2010 Double Counting Victoria Krakovna. Double Counting. Victoria Krakovna

IMO Training 2010 Double Counting Victoria Krakovna. Double Counting. Victoria Krakovna Double Counting Victoria Krakovna vkrakovna@gmail.com 1 Introduction In many combinatorics problems, it is useful to count a quantity in two ways. Let s start with a simple example. Example 1. (Iran 2010

More information

Geometric and algebraic properties of polyomino tilings

Geometric and algebraic properties of polyomino tilings Geometric and algebraic properties of polyomino tilings by Michael Robert Korn B.A., Princeton University, 2 Submitted to the Department of Mathematics in partial fulfillment of the requirements for the

More information

7. The Gauss-Bonnet theorem

7. The Gauss-Bonnet theorem 7. The Gauss-Bonnet theorem 7.1 Hyperbolic polygons In Euclidean geometry, an n-sided polygon is a subset of the Euclidean plane bounded by n straight lines. Thus the edges of a Euclidean polygon are formed

More information

On the Component Number of Links from Plane Graphs

On the Component Number of Links from Plane Graphs On the Component Number of Links from Plane Graphs Daniel S. Silver Susan G. Williams January 20, 2015 Abstract A short, elementary proof is given of the result that the number of components of a link

More information

Power Set of a set and Relations

Power Set of a set and Relations Power Set of a set and Relations 1 Power Set (1) Definition: The power set of a set S, denoted P(S), is the set of all subsets of S. Examples Let A={a,b,c}, P(A)={,{a},{b},{c},{a,b},{b,c},{a,c},{a,b,c}}

More information

Trail Making Game. Hyun Sung Jun Jaehoon Kim Sang-il Oum Department of Mathematical Sciences KAIST, Daejeon, , Republic of Korea.

Trail Making Game. Hyun Sung Jun Jaehoon Kim Sang-il Oum Department of Mathematical Sciences KAIST, Daejeon, , Republic of Korea. Trail Making Game Hyun Sung Jun Jaehoon Kim Sang-il Oum Department of Mathematical Sciences KAIST, Daejeon, 305-701, Republic of Korea. May 7, 2009 Abstract Trail Making is a game played on a graph with

More information

Vocabulary. Triangular pyramid Square pyramid Oblique square pyramid Pentagonal pyramid Hexagonal Pyramid

Vocabulary. Triangular pyramid Square pyramid Oblique square pyramid Pentagonal pyramid Hexagonal Pyramid CP1 Math 2 Unit 8: S.A., Volume, Trigonometry: Day 7 Name Surface Area Objectives: Define important vocabulary for 3-dimensional figures Find the surface area for various prisms Generalize a formula for

More information

Parameterization. Michael S. Floater. November 10, 2011

Parameterization. Michael S. Floater. November 10, 2011 Parameterization Michael S. Floater November 10, 2011 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to generate from point

More information

Treewidth and graph minors

Treewidth and graph minors Treewidth and graph minors Lectures 9 and 10, December 29, 2011, January 5, 2012 We shall touch upon the theory of Graph Minors by Robertson and Seymour. This theory gives a very general condition under

More information

PITSCO Math Individualized Prescriptive Lessons (IPLs)

PITSCO Math Individualized Prescriptive Lessons (IPLs) Orientation Integers 10-10 Orientation I 20-10 Speaking Math Define common math vocabulary. Explore the four basic operations and their solutions. Form equations and expressions. 20-20 Place Value Define

More information

RECURSIVE BIJECTIONS FOR CATALAN OBJECTS.

RECURSIVE BIJECTIONS FOR CATALAN OBJECTS. RECURSIVE BIJECTIONS FOR CATALAN OBJECTS. STEFAN FORCEY, MOHAMMADMEHDI KAFASHAN, MEHDI MALEKI, AND MICHAEL STRAYER Abstract. In this note we introduce several instructive examples of bijections found between

More information

Mathematics Masters Examination

Mathematics Masters Examination Mathematics Masters Examination OPTION 4 Fall 2011 COMPUTER SCIENCE??TIME?? NOTE: Any student whose answers require clarification may be required to submit to an oral examination. Each of the twelve numbered

More information

Combinatorial Interpretations of Spanning Tree Identities

Combinatorial Interpretations of Spanning Tree Identities Combinatorial Interpretations of Spanning Tree Identities Arthur T. Benjamin and Carl R. Yerger November 14, 2004 Abstract We present a combinatorial proof that the wheel graph W n has L 2n 2 spanning

More information

Lesson 10. Unit 3. Creating Designs. Transformational Designs. Reflection

Lesson 10. Unit 3. Creating Designs. Transformational Designs. Reflection Lesson 10 Transformational Designs Creating Designs M.C. Escher was an artist that made remarkable pieces of art using geometric transformations. He was first inspired by the patterns in mosaic tiles.

More information

ANS:

ANS: Math 15-Spring 17-Final Exam Solutions 1. Consider the following definition of the symbol. Definition. Let x and y be integers. Write x y if 5x + 7y = 11k for some integer k. (a) Show that 1 4, 2 8, and

More information

10.1 Prisms and Pyramids

10.1 Prisms and Pyramids AreasandVolumesofprismsandpyramids20052006.nb 0. Prisms and Pyramids We have already learned to calculate the areas of plane figures. In this chapter we will be calculating the surface areas and volumes

More information

2. Draw a non-isosceles triangle. Now make a template of this triangle out of cardstock or cardboard.

2. Draw a non-isosceles triangle. Now make a template of this triangle out of cardstock or cardboard. Tessellations The figure at the left shows a tiled floor. Because the floor is entirely covered by the tiles we call this arrangement a tessellation of the plane. A regular tessellation occurs when: The

More information

ACTUALLY DOING IT : an Introduction to Polyhedral Computation

ACTUALLY DOING IT : an Introduction to Polyhedral Computation ACTUALLY DOING IT : an Introduction to Polyhedral Computation Jesús A. De Loera Department of Mathematics Univ. of California, Davis http://www.math.ucdavis.edu/ deloera/ 1 What is a Convex Polytope? 2

More information

Cluster algebras and infinite associahedra

Cluster algebras and infinite associahedra Cluster algebras and infinite associahedra Nathan Reading NC State University CombinaTexas 2008 Coxeter groups Associahedra and cluster algebras Sortable elements/cambrian fans Infinite type Much of the

More information

Recursive Bijections for Catalan Objects

Recursive Bijections for Catalan Objects 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 16 (2013), Article 13.5.3 Recursive Bijections for Catalan Objects Stefan Forcey Department of Mathematics The University of Akron Akron, OH 44325-4002

More information

Mathematics and Statistics, Part A: Graph Theory Problem Sheet 1, lectures 1-4

Mathematics and Statistics, Part A: Graph Theory Problem Sheet 1, lectures 1-4 1. Draw Mathematics and Statistics, Part A: Graph Theory Problem Sheet 1, lectures 1-4 (i) a simple graph. A simple graph has a non-empty vertex set and no duplicated edges. For example sketch G with V

More information

Combinatorics Qualifying Exam August, 2016

Combinatorics Qualifying Exam August, 2016 Combinatorics Qualifying Exam August, 2016 This examination consists of two parts, Combinatorics and Graph Theory. Each part contains five problems of which you must select three to do. Each problem is

More information

Introduction III. Graphs. Motivations I. Introduction IV

Introduction III. Graphs. Motivations I. Introduction IV Introduction I Graphs Computer Science & Engineering 235: Discrete Mathematics Christopher M. Bourke cbourke@cse.unl.edu Graph theory was introduced in the 18th century by Leonhard Euler via the Königsberg

More information

Lecture 3: Tilings and undecidability

Lecture 3: Tilings and undecidability Lecture : Tilings and undecidability Wang tiles and the tiling problem A (relatively) small aperiodic tile set Undecidability of the tiling problem Wang tiles and decidability questions Suppose we are

More information

On Domino Tilings of Rectangles

On Domino Tilings of Rectangles On Domino Tilings of Rectangles Aztec Diamonds in the Rough Trevor Bass trev@math.rutgers.edu (67) 699-962 Supervised by Professor Doron Zeilberger of Rutgers University. A thesis presented to the Department

More information

About Finish Line Mathematics 5

About Finish Line Mathematics 5 Table of COntents About Finish Line Mathematics 5 Unit 1: Big Ideas from Grade 1 7 Lesson 1 1.NBT.2.a c Understanding Tens and Ones [connects to 2.NBT.1.a, b] 8 Lesson 2 1.OA.6 Strategies to Add and Subtract

More information

Semistandard Young Tableaux Polytopes. Sara Solhjem Joint work with Jessica Striker. April 9, 2017

Semistandard Young Tableaux Polytopes. Sara Solhjem Joint work with Jessica Striker. April 9, 2017 Semistandard Young Tableaux Polytopes Sara Solhjem Joint work with Jessica Striker North Dakota State University Graduate Student Combinatorics Conference 217 April 9, 217 Sara Solhjem (NDSU) Semistandard

More information

Math 7 Glossary Terms

Math 7 Glossary Terms Math 7 Glossary Terms Absolute Value Absolute value is the distance, or number of units, a number is from zero. Distance is always a positive value; therefore, absolute value is always a positive value.

More information

Tiling with Polyominoes, Polycubes, and Rectangles

Tiling with Polyominoes, Polycubes, and Rectangles University of Central Florida Electronic Theses and Dissertations Masters Thesis (Open Access) Tiling with Polyominoes, Polycubes, and Rectangles 2015 Michael Saxton University of Central Florida Find

More information

The extendability of matchings in strongly regular graphs

The extendability of matchings in strongly regular graphs The extendability of matchings in strongly regular graphs Sebastian Cioabă Department of Mathematical Sciences University of Delaware Villanova, June 5, 2014 Introduction Matching A set of edges M of a

More information

Twist knots and augmented links

Twist knots and augmented links CHAPTER 7 Twist knots and augmented links In this chapter, we study a class of hyperbolic knots that have some of the simplest geometry, namely twist knots. This class includes the figure-8 knot, the 5

More information

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings On the Relationships between Zero Forcing Numbers and Certain Graph Coverings Fatemeh Alinaghipour Taklimi, Shaun Fallat 1,, Karen Meagher 2 Department of Mathematics and Statistics, University of Regina,

More information

Number/Computation. addend Any number being added. digit Any one of the ten symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9

Number/Computation. addend Any number being added. digit Any one of the ten symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9 14 Number/Computation addend Any number being added algorithm A step-by-step method for computing array A picture that shows a number of items arranged in rows and columns to form a rectangle associative

More information

The packing chromatic number of infinite product graphs

The packing chromatic number of infinite product graphs The packing chromatic number of infinite product graphs Jiří Fiala a Sandi Klavžar b Bernard Lidický a a Department of Applied Mathematics and Inst. for Theoretical Computer Science (ITI), Charles University,

More information

Twenty-third Annual UNC Math Contest First Round November, 2014

Twenty-third Annual UNC Math Contest First Round November, 2014 Twenty-third nnual UNC Math Contest First Round November, 0 Rules: 90 minutes; no electronic devices The positive integers are,, 3,, rectangle 0 feet by 00 feet has a fence around its perimeter There are

More information

1. A busy airport has 1500 takeo s perday. Provetherearetwoplanesthatmusttake o within one minute of each other. This is from Bona Chapter 1 (1).

1. A busy airport has 1500 takeo s perday. Provetherearetwoplanesthatmusttake o within one minute of each other. This is from Bona Chapter 1 (1). Math/CS 415 Combinatorics and Graph Theory Fall 2017 Prof. Readdy Homework Chapter 1 1. A busy airport has 1500 takeo s perday. Provetherearetwoplanesthatmusttake o within one minute of each other. This

More information