Classroom Tips and Techniques: Solving Algebraic Equations by the Dragilev Method

Size: px
Start display at page:

Download "Classroom Tips and Techniques: Solving Algebraic Equations by the Dragilev Method"

Transcription

1 Classroom Tips and Techniques: Solving Algebraic Equations by the Dragilev Method Introduction Robert J. Lopez Emeritus Professor of Mathematics and Maple Fellow Maplesoft On February 13, 2013, Markian Hirnyk posted an animation to MaplePrimes, one frame of which is shown in Figure 1. He asked how this animation might be coded in Maple. A reply on February 14 by one_man contained a link to the worksheet MECAN1.mw in which the source of the red curve in Figure 1, and a full coding of the animation, appeared. In passing, he commented "The Draghilev method is used in my animation." On April 2, 2013, Markian Hirnyk made two posts to MaplePrimes, the first detailing the Dragilev method; and the second, Maple code for the animation - essentially the same as found in the MECAN1.mw worksheet. Figure 1 One frame of Hirnyk's animation (The alternate spelling Draghilev appears in some references.)

2 This month's article examines the Dragilev method for solving certain systems of algebraic equations, and details how it is used to obtain a parametrization of the red curve in Figure 1, the curve of intersection of two surfaces. The reader should feel free to study Hirnyk's own description of the method. Parametrizing the Intersection of Two Surfaces The red curve in Figure 1 is the intersection of the surfaces defined by two equations,, where and are given respectively by The first equation defines a sphere with center at and with radius 3; the second, a box-like closed surface drawn in green in Figure 2. The curve of intersection, drawn by Maple's intersectplot command, can be seen in Figure 2. and Figure 2 Surfaces defined by Figure 3 Curve of intersection: When the algebra is tractable, the following procedure would provide a parametric representation of the curve of intersection of two surfaces defined respectively by equations of the form and. Solve for, so that becomes. Solve for, so that. Then, the parametrization is.

3 Applied to the given functions and, this process meets two difficulties. First, the attempt to obtain results in, so this will result in a piecewise-defined parametrization. Second, and more important, solving for requires finding the roots of polynomials of degree greater than five. Maple uses the RootOf construct to represent these solutions, but computationally, they are intractable. A naive approach to obtaining a computationally useful parametric representation of the curve in Figure 3 is out of the question. A Numeric Approach to the Parametrization Since the surface defined by itself. Table 1 contains the details. is a sphere, a conversion to spherical coordinates suggests Table 1 The functions and converted to spherical coordinates Unfortunately, extracting either or from results in complicated RootOf expressions that can only be evaluated numerically and with great difficulty. Instead, a direct numeric solution for, say,, given a value of, would result in a numeric parametrization of the intersection curve shown in red in Figure 1. Because the function has two branches (upper and lower), some method of returning a continuous value of as varies is needed. The circle drawn in black in Figure 4 is the basis of the numeric approach taken. For each point on, compute the nearest point on the graph of, the green curve in Figure 4.

4 Let be the circle defined by For each pair on determined by the parameter, the nearest point on the curve defined by is to be computed. The commands in the Optimization package minimize this distance numerically, but the most successful approach is to solve numerically the analytic equations and where is computed implicitly from. Figure 4 Graph of and circle This equation is nothing more that the derivative of the square of the distance between on and on, since this is the objective function to be minimized. The expedient of starting Newton iteration from is the magic that lets Maple's fsolve command quickly and robustly return a unique -pair on for each value of on. The function, defined in Table 2 and which returns the Cartesian point employs this approach to compute. Table 2 The function that returns on the intersection of and Figure 5 shows a graph of the intersection of and drawn by Maple's pointplot3d command with 500 points generated by the function. (The command itself is

5 hidden input in the table containing the figure.) It would be difficult to distinguish between the curves in Figures 3 and 5. Figure 5 Numerically parametrized intersection of and The Dragilev Method Markian Hirnyk's April 2, 2013, post to MaplePrimes details the Dragilev method. For the reader's convenience, the highlights of that post are paraphrased here. In principle, equations, in variables, can solved for, say, the first of the unknowns in terms of. This amounts to a parametrization of the solution of the equations. The Dragilev method obtains this parametrization by assuming solving the following initial-value problem., and

6 If F is the vector whose components are the functions, and x is the vector whose components are the parametrized variables, then the left-hand sides of the first differential equations can be realized as the product of the Jacobian matrix for F (taken with with respect to x) times. The right-hand side of the last differential equation is the negative of the Jacobian of F taken with respect to. The numbers, are the coordinates of one solution of. Table 3 displays the Dragilev differential equations for the case. Note that the right-hand side of the last equation is the negative of the Jacobian of and considered as functions of just and. = = Table 3 The equations of the Dragilev method for If Cramer's rule is used to solve for and in the first two equations of Table 3, the equations for Dragilev's method when can be written as the explicit equations in Table 4. = = = Table 4 Explicit equations for Dragilev's method when

7 Notice that the right-hand side of each equation is actually a Jacobian. An application of the formalism in Table 4 to the equations and results in the equations listed in Table 5, where subscripts indicate partial derivatives. Table 5 The Dragilev differential equations for and Table 6 lists the Dragilev differential equations in the case. Table 6 The Dragilev differential equations for, where It should be easy to visualize the right-hand sides of the Dragilev differential equations when ; each is a Jacobian with the variables of differentiation systematically varied with the pattern in Cramer's rule. Example To apply Dragilev's method to the equations and, the initial solution, computed in Table 7, is first found. Table 7 Calculation of an initial point for Dragilev's method The right-hand sides of the differential equations required for applying Dragilev's method to the equations, are listed in Table 8.

8 Table 8 Right-hand sides of the differential equations needed when applying Dragilev's method to The numeric solutions for are found with the calculations in Table 9. Table 9 Numeric solutions for Figures 3 and 5 show that, defines a closed curve in. One way to determine is suggested by Figure 6, a graph of.

9 Figures 3 and 5 show that,, defines a closed curve in, provided. One way to determine an appropriate value of is suggested by Figure 6, a graph of. The zero of in the interval is the first for which the loop in Figures 3 and 5 closes. Apply the fsolve command to determine this value of. Figure 6 Graph of Figure 7 is a graph of the intersection of and drawn from the parametric representation determined by the Dragilev method. Figure 7 Graph of the intersection of and drawn from the parametric representation obtained with the Dragilev method

10 The graph in Figure 7 is consistent with the graphs in Figures 3 and 5. Legal Notice: Maplesoft, a division of Waterloo Maple Inc Maplesoft and Maple are trademarks of Waterloo Maple Inc. This application may contain errors and Maplesoft is not liable for any damages resulting from the use of this material. This application is intended for non-commercial, non-profit use only. Contact Maplesoft for permission if you wish to use this application in for-profit activities.

Classroom Tips and Techniques: Branch Cuts for a Product of Two Square-Roots

Classroom Tips and Techniques: Branch Cuts for a Product of Two Square-Roots Classroom Tips and Techniques: Branch Cuts for a Product of Two Square-Roots Robert J. Lopez Emeritus Professor of Mathematics and Maple Fellow Maplesoft Introduction Naive simplification of to results

More information

Classroom Tips and Techniques: Interactive Plotting of Points on a Curve

Classroom Tips and Techniques: Interactive Plotting of Points on a Curve Classroom Tips and Techniques: Interactive Plotting of Points on a Curve Robert J. Lopez Emeritus Professor of Mathematics and Maple Fellow Maplesoft Introduction Recently, I needed to draw points on the

More information

Classroom Tips and Techniques: Maple Meets Marden's Theorem. Robert J. Lopez Emeritus Professor of Mathematics and Maple Fellow Maplesoft

Classroom Tips and Techniques: Maple Meets Marden's Theorem. Robert J. Lopez Emeritus Professor of Mathematics and Maple Fellow Maplesoft Introduction Classroom Tips and Techniques: Maple Meets Marden's Theorem Robert J. Lopez Emeritus Professor of Mathematics and Maple Fellow Maplesoft The statement of Marden's theorem in Table 1 is taken

More information

Classroom Tips and Techniques: Nonlinear Curve Fitting. Robert J. Lopez Emeritus Professor of Mathematics and Maple Fellow Maplesoft

Classroom Tips and Techniques: Nonlinear Curve Fitting. Robert J. Lopez Emeritus Professor of Mathematics and Maple Fellow Maplesoft Classroom Tips and Techniques: Nonlinear Curve Fitting Robert J. Lopez Emeritus Professor of Mathematics and Maple Fellow Maplesoft Introduction I was recently asked for help in fitting a nonlinear curve

More information

Visualizing Regions of Integration in 2-D Cartesian Coordinates

Visualizing Regions of Integration in 2-D Cartesian Coordinates Classroom Tips and Techniques: Visualizing Regions of Integration Robert J. Lopez Emeritus Professor of Mathematics and Maple Fellow Maplesoft Introduction Five of the new task templates in Maple 14 are

More information

Classroom Tips and Techniques: Drawing a Normal and Tangent Plane on a Surface

Classroom Tips and Techniques: Drawing a Normal and Tangent Plane on a Surface Classroom Tips and Techniques: Drawing a Normal and Tangent Plane on a Surface Robert J. Lopez Emeritus Professor of Mathematics and Maple Fellow Maplesoft Introduction A question posted to MaplePrimes

More information

Classroom Tips and Techniques: Stepwise Solutions in Maple - Part 2 - Linear Algebra

Classroom Tips and Techniques: Stepwise Solutions in Maple - Part 2 - Linear Algebra Introduction Classroom Tips and Techniques: Stepwise Solutions in Maple - Part 2 - Linear Algebra Robert J. Lopez Emeritus Professor of Mathematics and Maple Fellow Maplesoft In the preceding article Stepwise

More information

Integration by Parts in Maple

Integration by Parts in Maple Classroom Tips and Techniques: Integration by Parts in Maple Robert J. Lopez Emeritus Professor of Mathematics and Maple Fellow Maplesoft Introduction Maple implements "integration by parts" with two different

More information

Classroom Tips and Techniques: Plotting Curves Defined Parametrically

Classroom Tips and Techniques: Plotting Curves Defined Parametrically Classroom Tips and Techniques: Plotting Curves Defined Parametrically Robert J. Lopez Emeritus Professor of Mathematics and Maple Fellow Maplesoft Introduction If the vector representation of a curve is

More information

Classroom Tips and Techniques: The Lagrange Multiplier Method

Classroom Tips and Techniques: The Lagrange Multiplier Method Classroom Tips and Techniques: The Lagrange Multiplier Method Initializations Robert J. Lopez Emeritus Professor of Mathematics and Maple Fellow Maplesoft, a division of Waterloo Maple Inc., 2006 Introduction

More information

Introduction. Classroom Tips and Techniques: The Lagrange Multiplier Method

Introduction. Classroom Tips and Techniques: The Lagrange Multiplier Method Classroom Tips and Techniques: The Lagrange Multiplier Method Robert J. Lopez Emeritus Professor of Mathematics and Maple Fellow Maplesoft Introduction The typical multivariate calculus course contains

More information

Classroom Tips and Techniques: Notational Devices for ODEs

Classroom Tips and Techniques: Notational Devices for ODEs Classroom Tips and Techniques: Notational Devices for ODEs Introduction Robert J. Lopez Emeritus Professor of Mathematics and Maple Fellow Maplesoft One of the earliest notational devices relevant to differential

More information

Classroom Tips and Techniques: Least-Squares Fits. Robert J. Lopez Emeritus Professor of Mathematics and Maple Fellow Maplesoft

Classroom Tips and Techniques: Least-Squares Fits. Robert J. Lopez Emeritus Professor of Mathematics and Maple Fellow Maplesoft Introduction Classroom Tips and Techniques: Least-Squares Fits Robert J. Lopez Emeritus Professor of Mathematics and Maple Fellow Maplesoft The least-squares fitting of functions to data can be done in

More information

A Maple Package for Solving and Displaying

A Maple Package for Solving and Displaying Classroom Tips and Techniques: A Package for Graphing Solution Sets of Nonlinear Inequalities Introduction Robert J. Lopez Emeritus Professor of Mathematics and Maple Fellow Maplesoft, a division of Waterloo

More information

Maple as an Instructional Tool

Maple as an Instructional Tool Maple as an Instructional Tool Terence A. Weigel 1 Abstract Computer algebra software such as Maple is an important component of the engineer s toolkit, much as are Matlib, MathCAD and Excel. However,

More information

Maple Quick Start. Maplesoft, a division of Waterloo Maple Inc.

Maple Quick Start. Maplesoft, a division of Waterloo Maple Inc. Maple Quick Start Maplesoft, a division of Waterloo Maple Inc. This tutorial is designed to help you become familiar with the Maple environment and teach you the few fundamental concepts and tools you

More information

Solve, RootOf, fsolve, isolve

Solve, RootOf, fsolve, isolve Solve, RootOf, fsolve, isolve Maple is capable of solving a huge class of equations: (the solution tells us that can be arbitrary). One may extract the solutions using the "[ ]" notation (we will learn

More information

Systematic Calculation of Loop Points for Parametric Curves

Systematic Calculation of Loop Points for Parametric Curves Systematic Calculation of Loop Points for Parametric Curves Skip Thompson Department of Mathematics & Statistics Radford University Radford, VA 24142 thompson@radford.edu January 11, 2013 Abstract We consider

More information

COMPUTER AIDED ENGINEERING DESIGN (BFF2612)

COMPUTER AIDED ENGINEERING DESIGN (BFF2612) COMPUTER AIDED ENGINEERING DESIGN (BFF2612) BASIC MATHEMATICAL CONCEPTS IN CAED by Dr. Mohd Nizar Mhd Razali Faculty of Manufacturing Engineering mnizar@ump.edu.my COORDINATE SYSTEM y+ y+ z+ z+ x+ RIGHT

More information

3.7. Vertex and tangent

3.7. Vertex and tangent 3.7. Vertex and tangent Example 1. At the right we have drawn the graph of the cubic polynomial f(x) = x 2 (3 x). Notice how the structure of the graph matches the form of the algebraic expression. The

More information

CPSC / Scan Conversion

CPSC / Scan Conversion CPSC 599.64 / 601.64 Computer Screens: Raster Displays pixel rasters (usually) square pixels in rectangular raster evenly cover the image problem no such things such as lines, circles, etc. scan conversion

More information

7 Fractions. Number Sense and Numeration Measurement Geometry and Spatial Sense Patterning and Algebra Data Management and Probability

7 Fractions. Number Sense and Numeration Measurement Geometry and Spatial Sense Patterning and Algebra Data Management and Probability 7 Fractions GRADE 7 FRACTIONS continue to develop proficiency by using fractions in mental strategies and in selecting and justifying use; develop proficiency in adding and subtracting simple fractions;

More information

This blog addresses the question: how do we determine the intersection of two circles in the Cartesian plane?

This blog addresses the question: how do we determine the intersection of two circles in the Cartesian plane? Intersecting Circles This blog addresses the question: how do we determine the intersection of two circles in the Cartesian plane? This is a problem that a programmer might have to solve, for example,

More information

Math 083 Final Exam Practice

Math 083 Final Exam Practice Math 083 Final Exam Practice Name: 1. Simplify the expression. Remember, negative exponents give reciprocals.. Combine the expressions. 3. Write the expression in simplified form. (Assume the variables

More information

Look up partial Decomposition to use for problems #65-67 Do Not solve problems #78,79

Look up partial Decomposition to use for problems #65-67 Do Not solve problems #78,79 Franklin Township Summer Assignment 2017 AP calculus AB Summer assignment Students should use the Mathematics summer assignment to identify subject areas that need attention in preparation for the study

More information

WHICH GRAPH REPRESENTS THE FOLLOWING PIECEWISE DEFINED FUNCTION FILE

WHICH GRAPH REPRESENTS THE FOLLOWING PIECEWISE DEFINED FUNCTION FILE 22 March, 2018 WHICH GRAPH REPRESENTS THE FOLLOWING PIECEWISE DEFINED FUNCTION FILE Document Filetype: PDF 404.36 KB 0 WHICH GRAPH REPRESENTS THE FOLLOWING PIECEWISE DEFINED FUNCTION FILE Which of the

More information

2.1 Basics of Functions and Their Graphs

2.1 Basics of Functions and Their Graphs .1 Basics of Functions and Their Graphs Section.1 Notes Page 1 Domain: (input) all the x-values that make the equation defined Defined: There is no division by zero or square roots of negative numbers

More information

Assignment 1, MACM 204, Fall Question 1. Solution 1. Question 2. Solution 2. Question 3

Assignment 1, MACM 204, Fall Question 1. Solution 1. Question 2. Solution 2. Question 3 Assignment 1, MACM 204, Fall 2013 Due Tuesday September 17th at 4:30pm at the beginning of class. Late penalty: -20% for up to 24 hours late. 0 after that. Michael Monagan. There are 9 questions. Please

More information

Chapter 5 Partial Differentiation

Chapter 5 Partial Differentiation Chapter 5 Partial Differentiation For functions of one variable, y = f (x), the rate of change of the dependent variable can dy be found unambiguously by differentiation: f x. In this chapter we explore

More information

An Efficient Method for Solving the Direct Kinematics of Parallel Manipulators Following a Trajectory

An Efficient Method for Solving the Direct Kinematics of Parallel Manipulators Following a Trajectory An Efficient Method for Solving the Direct Kinematics of Parallel Manipulators Following a Trajectory Roshdy Foaad Abo-Shanab Kafr Elsheikh University/Department of Mechanical Engineering, Kafr Elsheikh,

More information

Graphing and Equations

Graphing and Equations Graphing and Equations Plotting Functions (Graphing) Let's see how to plot the graphs of functions. If we want to graph the function f(x) on the interval [a,b] then we type in: plot(f(x), x=a..b) That

More information

Columbus State Community College Mathematics Department Public Syllabus. Course and Number: MATH 1172 Engineering Mathematics A

Columbus State Community College Mathematics Department Public Syllabus. Course and Number: MATH 1172 Engineering Mathematics A Columbus State Community College Mathematics Department Public Syllabus Course and Number: MATH 1172 Engineering Mathematics A CREDITS: 5 CLASS HOURS PER WEEK: 5 PREREQUISITES: MATH 1151 with a C or higher

More information

Functions 3.6. Fall Math (Math 1010) M / 13

Functions 3.6. Fall Math (Math 1010) M / 13 Functions 3.6 Fall 2013 - Math 1010 (Math 1010) M 1010 3.6 1 / 13 Roadmap 3.6 - Functions: Relations, Functions 3.6 - Evaluating Functions, Finding Domains and Ranges (Math 1010) M 1010 3.6 2 / 13 3.6

More information

USING DUAL GRAPHICS VIEWS IN GEOGEBRA

USING DUAL GRAPHICS VIEWS IN GEOGEBRA USING DUAL GRAPHICS VIEWS IN GEOGEBRA Barbara K. D Ambrosia Carl R. Spitznagel John Carroll University Department of Mathematics and Computer Science Cleveland, OH 44118 bdambrosia@jcu.edu spitz@jcu.edu

More information

Proceedings of the Third International DERIVE/TI-92 Conference

Proceedings of the Third International DERIVE/TI-92 Conference Using the TI-92 and TI-92 Plus to Explore Derivatives, Riemann Sums, and Differential Equations with Symbolic Manipulation, Interactive Geometry, Scripts, Regression, and Slope Fields Sally Thomas, Orange

More information

Revision Problems for Examination 2 in Algebra 1

Revision Problems for Examination 2 in Algebra 1 Centre for Mathematical Sciences Mathematics, Faculty of Science Revision Problems for Examination in Algebra. Let l be the line that passes through the point (5, 4, 4) and is at right angles to the plane

More information

In this first example, we build a question that asks for the derivative of sec(x) and uses Maple to grade the response.

In this first example, we build a question that asks for the derivative of sec(x) and uses Maple to grade the response. Writing Maple-graded questions and questions with Maple plots Maple T.A. can use the Maple engine to grade students responses. One advantage of this is that the system will give credit for any response

More information

Slope, Distance, Midpoint

Slope, Distance, Midpoint Line segments in a coordinate plane can be analyzed by finding various characteristics of the line including slope, length, and midpoint. These values are useful in applications and coordinate proofs.

More information

Increasing/Decreasing Behavior

Increasing/Decreasing Behavior Derivatives and the Shapes of Graphs In this section, we will specifically discuss the information that f (x) and f (x) give us about the graph of f(x); it turns out understanding the first and second

More information

Concept of Curve Fitting Difference with Interpolation

Concept of Curve Fitting Difference with Interpolation Curve Fitting Content Concept of Curve Fitting Difference with Interpolation Estimation of Linear Parameters by Least Squares Curve Fitting by Polynomial Least Squares Estimation of Non-linear Parameters

More information

SKILL: What we want students to DO. Students will be able to: (pp. 1 61)

SKILL: What we want students to DO. Students will be able to: (pp. 1 61) TIME FRAME [By Date/Week/ Month] STANDARD OR BENCHMARK CURRICULUM End Product of Learning, What You Teach CONTENT: What we want students to KNOW. SKILL: What we want students to DO. INSTRUCTION Means to

More information

Dimensional Optimization for the Crank-Rocker Mechanism using TK Solver

Dimensional Optimization for the Crank-Rocker Mechanism using TK Solver Int. J. Engng Ed. Vol. 13, No. 6, p. 417±425, 1997 0949-149X/91 $3.00+0.00 Printed in Great Britain. # 1997 TEMPUS Publications. Dimensional Optimization for the Crank-Rocker Mechanism using TK Solver

More information

Choose the file menu, and select Open. Input to be typed at the Maple prompt. Output from Maple. An important tip.

Choose the file menu, and select Open. Input to be typed at the Maple prompt. Output from Maple. An important tip. MAPLE Maple is a powerful and widely used mathematical software system designed by the Computer Science Department of the University of Waterloo. It can be used for a variety of tasks, such as solving

More information

TIME 2014 Technology in Mathematics Education July 1 st -5 th 2014, Krems, Austria

TIME 2014 Technology in Mathematics Education July 1 st -5 th 2014, Krems, Austria TIME 2014 Technology in Mathematics Education July 1 st -5 th 2014, Krems, Austria Overview Introduction Using a 2D Plot Window in a CAS Perspective Plotting a circle and implicit differentiation Helping

More information

A Short Introduction to Maple

A Short Introduction to Maple A Short Introduction to Maple Math 232, Fall 2018 Instructor: Dr. Doreen De Leon The following sections can be seen by clicking on the arrow to the left of the section name. To hide the material, just

More information

The Bisection Method versus Newton s Method in Maple (Classic Version for Windows)

The Bisection Method versus Newton s Method in Maple (Classic Version for Windows) The Bisection Method versus (Classic Version for Windows) Author: Barbara Forrest Contact: baforres@uwaterloo.ca Copyrighted/NOT FOR RESALE version 1.1 Contents 1 Objectives for this Lab i 2 Approximate

More information

Modeling and Prototypes

Modeling and Prototypes Modeling and Prototypes 4.4.1 Unit 4, Lesson 4 Explanation The Unit Big Idea The Engineering Design process is a systematic, iterative problem solving method which produces solutions to meet human wants

More information

1. On a separate sheet of paper, the recorder will write the original equation. 2x + 8 = 14 or 2(x + 4) = 14

1. On a separate sheet of paper, the recorder will write the original equation. 2x + 8 = 14 or 2(x + 4) = 14 1 TASK 2.9.1: ALGEBRA TILES Solutions Work with a partner. One person will use the tiles to solve the equations. The partner will record the steps symbolically. Both will answer the questions. 1. On a

More information

USING TEMATH S VISUALIZATION TOOLS IN CALCULUS 1

USING TEMATH S VISUALIZATION TOOLS IN CALCULUS 1 USING TEMATH S VISUALIZATION TOOLS IN CALCULUS 1 Robert E. Kowalczyk and Adam O. Hausknecht University of Massachusetts Dartmouth North Dartmouth, MA 02747 TEMATH (Tools for Exploring Mathematics) is a

More information

Fill in the Blank Modeling and Prototypes. Name: Class: Date:

Fill in the Blank Modeling and Prototypes. Name: Class: Date: Fill in the Blank - 4.4.1 Modeling and Prototypes Name: Class: Date: Fill in the blanks in these sentences with the word that fits. 1. The Design process is a systematic, iterative problem solving methodwhich

More information

MA 323 Geometric Modelling Course Notes: Day 10 Higher Order Polynomial Curves

MA 323 Geometric Modelling Course Notes: Day 10 Higher Order Polynomial Curves MA 323 Geometric Modelling Course Notes: Day 10 Higher Order Polynomial Curves David L. Finn December 14th, 2004 Yesterday, we introduced quintic Hermite curves as a higher order variant of cubic Hermite

More information

Math 206 First Midterm October 5, 2012

Math 206 First Midterm October 5, 2012 Math 206 First Midterm October 5, 2012 Name: EXAM SOLUTIONS Instructor: Section: 1. Do not open this exam until you are told to do so. 2. This exam has 8 pages including this cover AND IS DOUBLE SIDED.

More information

Lagrange Multipliers and Problem Formulation

Lagrange Multipliers and Problem Formulation Lagrange Multipliers and Problem Formulation Steven J. Miller Department of Mathematics and Statistics Williams College Williamstown, MA 01267 Abstract The method of Lagrange Multipliers (and its generalizations)

More information

MATH 2400, Analytic Geometry and Calculus 3

MATH 2400, Analytic Geometry and Calculus 3 MATH 2400, Analytic Geometry and Calculus 3 List of important Definitions and Theorems 1 Foundations Definition 1. By a function f one understands a mathematical object consisting of (i) a set X, called

More information

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below:

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below: Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

For each question, indicate whether the statement is true or false by circling T or F, respectively.

For each question, indicate whether the statement is true or false by circling T or F, respectively. True/False For each question, indicate whether the statement is true or false by circling T or F, respectively. 1. (T/F) Rasterization occurs before vertex transformation in the graphics pipeline. 2. (T/F)

More information

Curve and Surface Basics

Curve and Surface Basics Curve and Surface Basics Implicit and parametric forms Power basis form Bezier curves Rational Bezier Curves Tensor Product Surfaces ME525x NURBS Curve and Surface Modeling Page 1 Implicit and Parametric

More information

Increasing/Decreasing Behavior

Increasing/Decreasing Behavior Derivatives and the Shapes of Graphs In this section, we will specifically discuss the information that f (x) and f (x) give us about the graph of f(x); it turns out understanding the first and second

More information

Singularity Loci of Planar Parallel Manipulators with Revolute Joints

Singularity Loci of Planar Parallel Manipulators with Revolute Joints Singularity Loci of Planar Parallel Manipulators with Revolute Joints ILIAN A. BONEV AND CLÉMENT M. GOSSELIN Département de Génie Mécanique Université Laval Québec, Québec, Canada, G1K 7P4 Tel: (418) 656-3474,

More information

MATHEMATICS Curriculum Grades 10 to 12

MATHEMATICS Curriculum Grades 10 to 12 MATHEMATICS Curriculum Grades 10 to 12 Grade 10 Number systems Algebraic Expressions expressions Products (Ch. 1) Factorisation Term 1 Exponents (Ch. 2) Number patterns (Ch. 3) (CH.4) Notation, rules,

More information

In this chapter, we will investigate what have become the standard applications of the integral:

In this chapter, we will investigate what have become the standard applications of the integral: Chapter 8 Overview: Applications of Integrals Calculus, like most mathematical fields, began with trying to solve everyday problems. The theory and operations were formalized later. As early as 70 BC,

More information

Sung-Eui Yoon ( 윤성의 )

Sung-Eui Yoon ( 윤성의 ) CS480: Computer Graphics Curves and Surfaces Sung-Eui Yoon ( 윤성의 ) Course URL: http://jupiter.kaist.ac.kr/~sungeui/cg Today s Topics Surface representations Smooth curves Subdivision 2 Smooth Curves and

More information

Functions of Several Variables

Functions of Several Variables Chapter 3 Functions of Several Variables 3.1 Definitions and Examples of Functions of two or More Variables In this section, we extend the definition of a function of one variable to functions of two or

More information

Optimizations and Lagrange Multiplier Method

Optimizations and Lagrange Multiplier Method Introduction Applications Goal and Objectives Reflection Questions Once an objective of any real world application is well specified as a function of its control variables, which may subject to a certain

More information

International Conference Las Vegas, NV, USA March 7-9, 2014

International Conference Las Vegas, NV, USA March 7-9, 2014 International Conference Las Vegas, NV, USA March 7-9, 2014 Overview About ETS (engineering school) Why Nspire CAS? Why Computer Algebra? Examples in pre-calculus Examples in single variable calculus Examples

More information

CMPSCI 145 MIDTERM #2 SOLUTION KEY SPRING 2015 April 3, 2015 Professor William T. Verts

CMPSCI 145 MIDTERM #2 SOLUTION KEY SPRING 2015 April 3, 2015 Professor William T. Verts CMPSCI 145 MIDTERM #2 SOLUTION KEY SPRING 2015 April 3, 2015 Page 1 15 Points Answer 15 of the following problems (1 point each). Answer more than 15 for extra credit. Incorrect or blank answers will

More information

CURVES OF CONSTANT WIDTH AND THEIR SHADOWS. Have you ever wondered why a manhole cover is in the shape of a circle? This

CURVES OF CONSTANT WIDTH AND THEIR SHADOWS. Have you ever wondered why a manhole cover is in the shape of a circle? This CURVES OF CONSTANT WIDTH AND THEIR SHADOWS LUCIE PACIOTTI Abstract. In this paper we will investigate curves of constant width and the shadows that they cast. We will compute shadow functions for the circle,

More information

YOGYAKARTA STATE UNIVERSITY MATHEMATICS AND NATURAL SCIENCES FACULTY MATHEMATICS EDUCATION STUDY PROGRAM

YOGYAKARTA STATE UNIVERSITY MATHEMATICS AND NATURAL SCIENCES FACULTY MATHEMATICS EDUCATION STUDY PROGRAM YOGYAKARTA STATE UNIVERSITY MATHEMATICS AND NATURAL SCIENCES FACULTY MATHEMATICS EDUCATION STUDY PROGRAM TOPIC 1 INTRODUCING SOME MATHEMATICS SOFTWARE (Matlab, Maple and Mathematica) This topic provides

More information

PARAMETERIZATIONS OF PLANE CURVES

PARAMETERIZATIONS OF PLANE CURVES PARAMETERIZATIONS OF PLANE CURVES Suppose we want to plot the path of a particle moving in a plane. This path looks like a curve, but we cannot plot it like we would plot any other type of curve in the

More information

Dgp _ lecture 2. Curves

Dgp _ lecture 2. Curves Dgp _ lecture 2 Curves Questions? This lecture will be asking questions about curves, their Relationship to surfaces, and how they are used and controlled. Topics of discussion will be: Free form Curves

More information

Chapter - 2: Geometry and Line Generations

Chapter - 2: Geometry and Line Generations Chapter - 2: Geometry and Line Generations In Computer graphics, various application ranges in different areas like entertainment to scientific image processing. In defining this all application mathematics

More information

Towards Intelligent Summarising and Browsing of Mathematical Expressions

Towards Intelligent Summarising and Browsing of Mathematical Expressions Towards Intelligent Summarising and Browsing of Mathematical Expressions Ivelina Stoyanova I.Stoyanova@alumni.bath.ac.uk Department of Computer Science University of Bath, Bath BA2 7AY United Kingdom Abstract.

More information

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a coordinate system and then the measuring of the point with

More information

9.1 Parametric Curves

9.1 Parametric Curves Math 172 Chapter 9A notes Page 1 of 20 9.1 Parametric Curves So far we have discussed equations in the form. Sometimes and are given as functions of a parameter. Example. Projectile Motion Sketch and axes,

More information

ORDINARY DIFFERENTIAL EQUATIONS

ORDINARY DIFFERENTIAL EQUATIONS Page 1 of 22 ORDINARY DIFFERENTIAL EQUATIONS Lecture 5 Visualization Tools for Solutions of First-Order ODEs (Revised 02 February, 2009 @ 08:05) Professor Stephen H Saperstone Department of Mathematical

More information

Worksheet A GRAPHS OF FUNCTIONS

Worksheet A GRAPHS OF FUNCTIONS C GRAPHS F FUNCTINS Worksheet A Sketch and label each pair of graphs on the same set of aes showing the coordinates of any points where the graphs intersect. Write down the equations of any asymptotes.

More information

Math B Regents Exam 0808 Page b, P.I. G.G.53 The NUK Energy Company is designing a new logo, as shown in the accompanying

Math B Regents Exam 0808 Page b, P.I. G.G.53 The NUK Energy Company is designing a new logo, as shown in the accompanying Math B Regents Eam 0808 Page 1 1. 080801b, P.I. G.G.61 Which transformation of y = results in the function y =? [A] T 0, 1 [B] r y ais. 08080b, P.I. G.G.5 The NUK Energy Company is designing a new logo,

More information

Transformation of curve. a. reflect the portion of the curve that is below the x-axis about the x-axis

Transformation of curve. a. reflect the portion of the curve that is below the x-axis about the x-axis Given graph of y f = and sketch:. Linear Transformation cf ( b + a) + d a. translate a along the -ais. f b. scale b along the -ais c. scale c along the y-ais d. translate d along the y-ais Transformation

More information

AN INTRODUCTION TO MAPLE

AN INTRODUCTION TO MAPLE AN INTRODUCTION TO MAPLE CHRISTOPHER J HILLAR Introduction This document introduces Maple, a commercial computer program for mathematical computation. You can learn about Maple from its website http://www.maplesoft.com/.

More information

12 m. 30 m. The Volume of a sphere is 36 cubic units. Find the length of the radius.

12 m. 30 m. The Volume of a sphere is 36 cubic units. Find the length of the radius. NAME DATE PER. REVIEW #18: SPHERES, COMPOSITE FIGURES, & CHANGING DIMENSIONS PART 1: SURFACE AREA & VOLUME OF SPHERES Find the measure(s) indicated. Answers to even numbered problems should be rounded

More information

Lesson 10. Student Outcomes. Lesson Notes

Lesson 10. Student Outcomes. Lesson Notes Student Outcomes Students understand that a function from one set (called the domain) to another set (called the range) assigns each element of the domain to exactly one element of the range and understand

More information

1

1 Zeros&asymptotes Example 1 In an early version of this activity I began with a sequence of simple examples (parabolas and cubics) working gradually up to the main idea. But now I think the best strategy

More information

Math (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines

Math (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines Math 18.02 (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines February 12 Reading Material: From Simmons: 17.1 and 17.2. Last time: Square Systems. Word problem. How many solutions?

More information

February 8 th February 12 th. Unit 6: Polynomials & Introduction to Quadratics

February 8 th February 12 th. Unit 6: Polynomials & Introduction to Quadratics Algebra I February 8 th February 12 th Unit 6: Polynomials & Introduction to Quadratics Jump Start 1) Use the elimination method to solve the system of equations below. x + y = 2 3x + y = 8 2) Solve: 13

More information

Principles of Linear Algebra With Maple TM The Newton Raphson Method

Principles of Linear Algebra With Maple TM The Newton Raphson Method Principles of Linear Algebra With Maple TM The Newton Raphson Method Kenneth Shiskowski and Karl Frinkle c Draft date July 26, 2010 Contents 1 The Newton-Raphson Method for a Single Equation 1 1.1 The

More information

Computational Photonics, Summer Term 2012, Abbe School of Photonics, FSU Jena, Prof. Thomas Pertsch

Computational Photonics, Summer Term 2012, Abbe School of Photonics, FSU Jena, Prof. Thomas Pertsch Computational Photonics Seminar 02, 30 April 2012 Programming in MATLAB controlling of a program s flow of execution branching loops loop control several programming tasks 1 Programming task 1 Plot the

More information

Lesson 3: Solving Equations; Floating-point Computation

Lesson 3: Solving Equations; Floating-point Computation Lesson 3: Solving Equations; Floating-point Computation restart; A hard equation Last time we were looking at this equation. eq := * sin() = Pi/2; (1.1) Maple didn't know the solutions. solve(eq,,allsolutions);

More information

16.6 Parametric Surfaces and Their Areas

16.6 Parametric Surfaces and Their Areas SECTION 6.6 PARAMETRIC SURFACES AND THEIR AREAS i j k (b) From (a), v = w r = =( ) i +( ) j +( ) k = i + j i j k (c) curl v = v = = () () i + ( ) () j + () ( ) k =[ ( )] k = k =w 9. For any continuous

More information

Planes Intersecting Cones: Static Hypertext Version

Planes Intersecting Cones: Static Hypertext Version Page 1 of 12 Planes Intersecting Cones: Static Hypertext Version On this page, we develop some of the details of the plane-slicing-cone picture discussed in the introduction. The relationship between the

More information

2007 Maplesoft, a division of Waterloo Maple Inc.

2007 Maplesoft, a division of Waterloo Maple Inc. The Maplesoft Product Line Introduction to Maple 11 It takes a lot to impress most jaded software reviewers, especially with a product that we first reviewed in 1989. But we were totally blown away by

More information

9-1 GCSE Maths. GCSE Mathematics has a Foundation tier (Grades 1 5) and a Higher tier (Grades 4 9).

9-1 GCSE Maths. GCSE Mathematics has a Foundation tier (Grades 1 5) and a Higher tier (Grades 4 9). 9-1 GCSE Maths GCSE Mathematics has a Foundation tier (Grades 1 5) and a Higher tier (Grades 4 9). In each tier, there are three exams taken at the end of Year 11. Any topic may be assessed on each of

More information

Florida Math 0018 Correlation of the ALEKS course Florida Math 0018 to the Florida Mathematics Competencies - Lower

Florida Math 0018 Correlation of the ALEKS course Florida Math 0018 to the Florida Mathematics Competencies - Lower Florida Math 0018 Correlation of the ALEKS course Florida Math 0018 to the Florida Mathematics Competencies - Lower Whole Numbers MDECL1: Perform operations on whole numbers (with applications, including

More information

2.4. A LIBRARY OF PARENT FUNCTIONS

2.4. A LIBRARY OF PARENT FUNCTIONS 2.4. A LIBRARY OF PARENT FUNCTIONS 1 What You Should Learn Identify and graph linear and squaring functions. Identify and graph cubic, square root, and reciprocal function. Identify and graph step and

More information

User s Guide Version 4

User s Guide Version 4 User s Guide Version 4 Contents Introduction MATH-TEACHER PLUS series Tutorial Program For Student Exploration Environment The Curriculum Teachers Toolkit Technical Information Copyright 2004 Hickerson

More information

Why can you be sure that the second number in the ordered pairs for this data is always greater than or equal to the first?

Why can you be sure that the second number in the ordered pairs for this data is always greater than or equal to the first? Algebra II A Guided Notes Name 2-1 Guided Notes Period Relations and Functions Learning Matrix Goal #1: I can identify x & y intercepts in a graph or a set of ordered pairs. Learning Matrix Goal #2: I

More information

Mathematically, the path or the trajectory of a particle moving in space in described by a function of time.

Mathematically, the path or the trajectory of a particle moving in space in described by a function of time. Module 15 : Vector fields, Gradient, Divergence and Curl Lecture 45 : Curves in space [Section 45.1] Objectives In this section you will learn the following : Concept of curve in space. Parametrization

More information

Appendix E Calculating Normal Vectors

Appendix E Calculating Normal Vectors OpenGL Programming Guide (Addison-Wesley Publishing Company) Appendix E Calculating Normal Vectors This appendix describes how to calculate normal vectors for surfaces. You need to define normals to use

More information

Properties of Blending Functions

Properties of Blending Functions Chapter 5 Properties of Blending Functions We have just studied how the Bernstein polynomials serve very nicely as blending functions. We have noted that a degree n Bézier curve always begins at P 0 and

More information

Modern techniques bring system-level modeling to the automation industry

Modern techniques bring system-level modeling to the automation industry Modern techniques bring system-level modeling to the automation industry Philipp Wallner, Global Technology Manager, Bernecker + Rainer Industrie and Johannes Friebe, MapleSim Europe Director, Maplesoft

More information

Activity overview. Background. Concepts. Teacher preparation and Classroom management tips. Off on a Tangent

Activity overview. Background. Concepts. Teacher preparation and Classroom management tips. Off on a Tangent By: Russell Brown Grade level: secondary (Years 10-12) Activity overview Many special properties can be shown to be associated with cubic functions. This activity investigates tangents to the cubic function

More information