APPLICATION OF ARTIFICIAL NEURAL NETWORK FOR MODELING SURFACE ROUGHNESS IN CENTERLESS GRINDING OPERATION

Size: px
Start display at page:

Download "APPLICATION OF ARTIFICIAL NEURAL NETWORK FOR MODELING SURFACE ROUGHNESS IN CENTERLESS GRINDING OPERATION"

Transcription

1 5 th International & 26 th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12 th 14 th, 2014, IIT Guwahati, Assam, India APPLICATION OF ARTIFICIAL NEURAL NETWORK FOR MODELING SURFACE ROUGHNESS IN CENTERLESS GRINDING OPERATION Mondal 1* S.C., Mandal 2 P. 1* Assistant Professor, Department of Mechanical Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah , India, scmondall@gmail.com 2 PG Scholar, Department of Mechanical Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah , India, prosun.mech@gmail.com Abstract There is growing need among the manufacturers to model process performance in a centreless grinding process using appropriate modelling techniques. This paper presents an application of artificial neural network (ANN) for modeling surface roughness in centreless grinding process. The design of grinding factors is based on a full factorial design of experiment. Centerless grinding operation is widely used in modern manufacturing industry because of its high level of accuracy for micro-finishing of shaft, pin material compare to conventional grinding operation. The experimental data is collected for machining a pin of C 40 steel material used in the bottom block of crane-hook. The design factors (regulating wheel speed, depth of cut and coolant flow) are selected based on experimental design methodology. Full factorial design method is applied for taking three factors at three levels each and a total 3 3 or 27 number of experiments are done in all possible combination of these parameters. The network model is trained by back propagation algorithm. Out of 27 data 20 experiments used to train the network and for validation and the rest 7 data used for test. The learning rate, momentum co-efficient and the number of neurons in the hidden layer are found by trial error method. Optimum architecture has been found based on mean square error and convergence rate. The learning rate, momentum co-efficient and the number of neurons in the hidden layers are found by trial and error method. In present work for architecture network with α =0.02, and η= 0.6, the mean square error for training is and for testing is which is minimum. So it is found that optimum network is The performance of this particular trained neural network has been tested with the experimental data and found to be satisfactory. Thus the proposed ANN model is efficiently used for predicting surface roughness in centerless grinding operation. Keyword: Centre-less Grinding, Surface roughness, Modelling, Design of experiment, Artificial Neural Network 1 Introduction Today s manufacturing industries are very much concerned about the quality of their products. Manufacturing industries are focused on producing high quality products in time at minimum cost. Surface finish is one of the crucial performance parameters that have to be controlled within suitable limits in a grinding process. Therefore, prediction or monitoring of the surface roughness of machined components has been an important area of research. Centre-less grinding is characterized by its complexity, nonlinearity and sensibility to a large number of input factors e.g. Depth of cut, regulating wheel speed and coolant supply that influence system stability and output performance. The most important quality characteristics for the input factor like Depth of cut, regulating wheel speed and coolant supply of centre-less grinding process are mrr and surface roughness. The enhancement of such complex process efficiency requires model based process simulation, which is a powerful tool for evaluating the performance of complex systems. Empirical models, such as the regression analysis model, the fuzzy logic model, and the neural network model, have, generally, shown satisfactory prediction accuracy, particularly useful for the on-line response evaluation and control. In many cases, data from design of experiment (DOE) were used to establish the regression models or to develop the fuzzy rule sets or 608-1

2 APPLICATION OF ARTIFICIAL NEURAL NETWORK FOR MODELING SURFACE ROUGHNESS IN CENTERLESS GRINDING OPERATION to train the neural networks. For better performance researchers have done a lot of work on surface roughness modeling in grinding operation. Aguiar et al. (2008) predicted surface roughness in grinding using artificial neural network. Shrivastava et al. (2011) developed an Intelligent Modeling of Surface Roughness during Diamond Grinding of Advanced Ceramics by two different approaches multiple regression analysis (MRA) and artificial neural network (ANN) and compared the same. They found that ANN gave more accurate result. From the above literature, very little work has been done for modeling of centerless grinding process. This paper applied artificial neural network for modeling surface roughness in centerless grinding process. 2 Literature review Brinkseier et al. (1998) described grinding as a very complex manufacturing process. Various factors have affect on this process. Thus reproducible results (output) are rarely obtained. The most important one is that the cutting ability of the grinding wheel changes considerably during the grinding time. In practice, the grinding process is carried out with cutting parameters which are safe but not optimal. Hashimoto et al. (2004) described the stability of the centerless grinding process to the optimum set-up condition for precision or productive operations. Billerman et al. (2012) developed a novel nonlinear model for centerless grinding process. The model describes the dynamic behavior of the process. The result shows that the dynamic behavior of the centerless grinding process can be represented with a cubic stiffness function that is obtained from the analysis of the surface topology. Zhou et al, (1996) investigates the relationship between the process setup parameters and lobing behavior of the centerless grinding, and provides general guidelines for selecting proper setup parameters to minimize the lobing effect. Li et al. (2007) presented a dynamic model that simulated plunge centerless grinding and predicted its instability-related characteristics. The work-piece quality depends to a great extent on the experience of the operator according to Kim et al. (2001). Artificial neural networks have been studied for many years in the hope of achieving the humanlike performance in the field of speech, image recognition and the pattern classification. These neural networks are composed of many non-linear computational elements operating in parallel. Neural networks, because of their massive nature, can perform computations at a higher rate, according to Augier et al. (2008). Because of their adaptive nature using the learning process, neural networks can adapt to changes in the data and learn the characteristics of the input signals. According to Kwak et al. (2004), the ability to learn is a fundamental trait of the neural network. Although a precise definition of learning is difficult to formulate. The learning in a neural network means to find an appropriate set of weights that are connection strengths from the elements to the other layer elements. For this reason artificial neural network tool has attracted interest of several researchers in the surface roughness prediction. Shrivastava et al. (2011) developed an Intelligent Modeling of Surface Roughness during Diamond Grinding of Advanced Ceramics. They have done a comparative study between two different approaches namely multiple regression analysis (MRA) and artificial neural network. Mukhopadhyay et al. (2005) reviewed the application of acoustic emission techniques for monitoring forming and grinding processes. Aguiar et al. (2006) developed a model to predict Surface Roughness in Grinding using Neural Networks. Mamun et al. (2012) developed Numerical Model of Surface Roughness in Grinding under Minimum Quantity Lubricants (MQL) using Response Surface Method (RSM). Kumar et al. (2007) also developed model to predict wear and surface roughness in electro-discharge diamond grinding using two techniques, namely design of experiments and neural network 3 Artificial neural network Artificial neural network models are inspired by animals central nervous systems (in particular the brain) that are capable of machine learning and pattern recognition. A neural network is a massively parallel distributed processor that has a natural propensity for storing experimental knowledge and making it available for use. In this study, to construct the neural network models, three cutting parameters viz., depth of cut, regulating wheel speed and coolant flow rate are used as the input neurons and corresponding surface roughness as the output neuron. Figure 1 shows typical architecture of neural network. To construct the models, the hyperbolic tangent sigmoid function in the hidden layer and linear activation function in the output layer are considered Figure 1 Artificial neural network architecture

3 5 th International & 26 th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12 th 14 th, 2014, IIT Guwahati, Assam, India Determination of hidden layer(s) and numbers of neurons in the hidden layer(s), learning rate (η) and momentum coefficient (α) are the considerable task. Optimum number of neurons in the hidden layer learning rate (η) and momentum coefficient (α) are decided by trial with increasing the number of neurons. Minimum mean square error (MSE) is the selection criteria. In this study, to train the network, Levenberg-Marquardt algorithm is selected for training (Eq. 1). The best network is selected based on the minimum mean square error (MSE). 4.1 Data collection for the centerless grinding process Grinding experiments were conducted on centerless grinding machine-tool as shown in Figure 3 which was made by MIC machine tool and industries, Ghaziabad, Machine No-616 and model is GCL 63.The range of the diameter of the workpiece that can be ground is 2-100mm. E 1 p n p k = 1 = 1 p p 2 ( d ) k C k (1) Eq. 1 is the expression for mean square error (MSE) where, N is the number of pattern, n is the number of p node in the output layer, Ck is the desired/experimental output for k th node of the p th p pattern and C k is the calculated/predicted output of kth node of pth pattern. Nguyen-Widrow weight initialization algorithm has been applied which generates initial weight and bias values for a layer so that the active regions of the layer's neurons will be distributed roughly evenly over the input space (Demuth H. et. al., 1998). 4 Experimentation The component material was C40 mild steel rod of 17 mm diameter and 100 mm by length, used as crane-hook-pin as shown in the figure 2. In experiment C40 mild steel was used because this grade of steel offers better forming & bending quality. It was used for applications, where critical bending operations were required. Due to carbon range of 0.4% and that of manganese of 0.9%, it can also be quenched & tempered and thus it is very suitable for components where, critical bending has to be achieved & high tensile and toughness can be obtained by means of quenching & tempering. The component used in the experimentation was supported by specially made work rest blade with a 30 angle. A vitrified grinding wheel A463V5L10, with an abrasive of aluminum oxide, was used. Maximum grinding wheel speed was 1910 rpm. Maximum regulating wheel speed was 450 rpm and constant infeed is 95mm. The machine was equipped with dynamic grinding wheel balancing. The measurements were carried out with a Mitutoyo Surftest SJ-301 with cutoff length 2.5 mm and number of sampling length 5, stylus type surface texture-measuring instrument. The measurement results are displayed digitally or graphically on the touch panel, and output to the built in printer. It has a maximum measuring range of 350 µm (-200 to +150µm). It can support various surface parameters for evaluating surface texture. The input process parameters and there level is shown in the Table 1. Table 1 Input process parameters and their levels Factors Symbols Low level Wheel speed Depth of cut Coolant flow Figure 3 Experimental Set-up Medium level High level V w d c C f 1/3 2/ Figure 2 Finished Jobs

4 APPLICATION OF ARTIFICIAL NEURAL NETWORK FOR MODELING SURFACE ROUGHNESS IN CENTERLESS GRINDING OPERATION 4.2 Experimental Design A series of experiments have been conducted to evaluate which grinding parameters affect the surface roughness. Three grinding parameters such as wheel speed (V w ), depth of cut (d c ), and Coolant flow valve opening (C f ) were selected for experimentation. Grinding wheel adopting aluminum oxide abrasives with vitrified bond in the grinding wheel was used to grind C40 steel pin. A surface roughness tester (Mitutoyo SJ-301) was used to measure the roughness. Table 1 listed controllable factors (grinding parameters) and their levels considered in this study. Each factor had three levels (process ranges). 5 Analysis and Results In Table 2 there are total 27 different experimentations performed for different conditions. Back propagation neural network algorithm has been used in the present work. To train the neural network, depth of cut, regulating wheel speed and coolant flow valve opening are used as input parameters, and corresponding surface roughness of the machined product as the output parameter. Table 2 Experimental design matrix ExNo d c (µm) V w (rpm) C f (% of / / / / / / / / / / / / / / / / / / In the current study, early stopping technique was implemented. For this, out of 27 datasets, randomly 20 sets were used for training, 7 datasets for testing and validation purpose. The validation set determines when the training should stop by monitoring the error. Testing set does not participate in the training of the network but is used to test the generalization of the trained network. The number of hidden layer, number of nodes in the hidden layer, learning rate (η), and momentum coefficient (α) are decided by trial and error. Table 3 shows that mean square error of training and testing for different network architecture, learning rate (η), and momentum coefficient (α).different combinations of learning rate (η), and momentum coefficient (α) and number of hidden layer have been tried. Depending upon the mean square error, optimum network architecture has been arrived at. In the present case, from table 3 for architecture network with η=0.02, and α=0.6 mean square error for training is and for mean square error for testing is is minimum. So it is found that optimum network is Figure 4 shows performance curve for architecture Figure 4 Variation of MSE for network Regression analysis was conducted for training, validation and testing pattern and it was observed from the regression analysis that correlation 608-4

5 5 th International & 26 th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12 th 14 th, 2014, IIT Guwahati, Assam, India coefficient (R) for training(figure 5) was ;. For testing (Figure 6), correlation coefficient(r) was and overall R value is which implies moderate correlation between experimental and predicted surface responses. Figure 6 ANN model regression plot for neural network for testing Figure 5 ANN model regression plot for neural network for training Figure 7 Bar chart predicted and experimental Ra value testing set Comparative study of experimental and ANN predicted surface roughness for randomly selected seven testing have been shown in Figure 7 bar chart. In the bar chart along the X-axis is Experiment No which is selected for testing and along the Y-axis is Surface roughness (Ra) in µm. Bar chart shows that experimental Ra value and predicted Ra value are very close to each other. So we can say that network architecture will give very satisfactory result. 6 Conclusions Back propagation neural network based surface roughness prediction methodology has been adopted using various important parameters like depth of cut, regulating wheel speed and coolant flow valve opening influencing the surface roughness. It has been observed that neural network could well learn the pattern and could be used for future prediction of surface roughness. The predicted surface roughness from the present neural network model is very close to the values measured experimentally, thus showing the efficacy of back propagation neural network for predicting surface roughness in centerless grinding. Future work can be done using response surface modeling and compared the results to infer the best alternatives for modeling surface roughness in centerless grinding operation

6 APPLICATION OF ARTIFICIAL NEURAL NETWORK FOR MODELING SURFACE ROUGHNESS IN CENTERLESS GRINDING OPERATION Acknowledgement The author gratefully acknowledges the kind support and cooperation provided by the technical staffs at Machine shop of IIEST, Shibpur, Howrah. References Augier, P.R. Cruz, E.D.C. Paula, W.C.F. and Bianchi C.E. (2008), Predicting Surface Roughness in Grinding using Neural Networks, Advances in Robotics, Automation and Control, CC BY-NC-SA 3.0 license. Researches in Engineering Mechanical and Mechanics Engineering, Vol. 12(5). Mukhopadhyay, C.K. Jayakumar, T. Venugopal, S. Mannan, S.L. and Raj, B. (2005), A review of the application of acoustic emission techniques for monitoring forming and grinding processes, Journal of Materials Processing Technology, Vol. 159(1), pp Shrivastava, P.K. and Dubey, A.K. (2011), Intelligent Modeling of Surface Roughness during Diamond Grinding of Advanced Ceramics, Proceedings of the World Congress on Engineering, Vol. I, WCE 2011, London, U.K. Brinksmeier, H. K. Toe, N. and Czenkusch, C. (1998), Modeling and optimization of grinding processes, Journal of Intelligent Manufacturing, Vol. 9, pp Hashimoto F.and Lahoti (2004), Optimization of Setup Conditions for Stability of the grinding Process, CIRP Annals Manufacturing Technology, Vol 53(1), pp Zhou S., Gartner J. R., Howes T.D.( 1996) On the Relationship between Setup Parameters and Lobing Behavior in Centerless Grinding CIRP Annals - Manufacturing Technology,Vol. 45(1), pp Li, H., Shin, Y.C. (2007), A time domain dynamic simulation model for stability prediction on infeed centerless grinding processes. ASME Journal of Manufacturing Science and Engineering, vol. 129(1), pp Kim, H.Y. Kim, S.R. Ahn, J.H. and Kim, S.H. (2011), Process monitoring of centreless grinding using acoustic emission, Journal of Material Processing Technology, Vol. 111, pp Kwak, J.S. and Ha, M.K. (2004), Neural network approach for diagnosis of grinding operation by acoustic emission and power signals, Journal of Materials Processing Technology, Vol. 147(1), pp Kumar, S. and Choudhury, S.K. (2007), Prediction of wear and surface roughness in electro-discharge diamond grinding, Journal of Materials Processing Technology, Vol. 191, pp Mamun, A.A. and Dhar, N.R. (2012), Numerical Modeling of Surface Roughness in Grinding under Minimum Quantity Lubricants (MQL) using Response Surface Method (RSM), Global Journal of 608-6

Volume 1, Issue 3 (2013) ISSN International Journal of Advance Research and Innovation

Volume 1, Issue 3 (2013) ISSN International Journal of Advance Research and Innovation Application of ANN for Prediction of Surface Roughness in Turning Process: A Review Ranganath M S *, Vipin, R S Mishra Department of Mechanical Engineering, Dehli Technical University, New Delhi, India

More information

Central Manufacturing Technology Institute, Bangalore , India,

Central Manufacturing Technology Institute, Bangalore , India, 5 th International & 26 th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12 th 14 th, 2014, IIT Guwahati, Assam, India Investigation on the influence of cutting

More information

Mathematically Modeling and Optimization by Artificial Neural Network of Surface Roughness in CNC Milling A Case Study

Mathematically Modeling and Optimization by Artificial Neural Network of Surface Roughness in CNC Milling A Case Study WWJMRD 2017; 3(8): 299-307 www.wwjmrd.com International Journal Peer Reviewed Journal Refereed Journal Indexed Journal UGC Approved Journal Impact Factor MJIF: 4.25 e-issn: 2454-6615 Bekir Cirak Siirt

More information

Development of an Artificial Neural Network Surface Roughness Prediction Model in Turning of AISI 4140 Steel Using Coated Carbide Tool

Development of an Artificial Neural Network Surface Roughness Prediction Model in Turning of AISI 4140 Steel Using Coated Carbide Tool ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology An ISO 3297: 2007 Certified Organization, Volume 2, Special Issue

More information

[Mahajan*, 4.(7): July, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

[Mahajan*, 4.(7): July, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785 [Mahajan*, 4.(7): July, 05] ISSN: 77-9655 (IOR), Publication Impact Factor:.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY OPTIMIZATION OF SURFACE GRINDING PROCESS PARAMETERS

More information

CORRELATION AMONG THE CUTTING PARAMETERS, SURFACE ROUGHNESS AND CUTTING FORCES IN TURNING PROCESS BY EXPERIMENTAL STUDIES

CORRELATION AMONG THE CUTTING PARAMETERS, SURFACE ROUGHNESS AND CUTTING FORCES IN TURNING PROCESS BY EXPERIMENTAL STUDIES 5 th International & 26 th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12 th 14 th, 2014, IIT Guwahati, Assam, India CORRELATION AMONG THE CUTTING PARAMETERS,

More information

An Experimental Analysis of Surface Roughness

An Experimental Analysis of Surface Roughness An Experimental Analysis of Surface Roughness P.Pravinkumar, M.Manikandan, C.Ravindiran Department of Mechanical Engineering, Sasurie college of engineering, Tirupur, Tamilnadu ABSTRACT The increase of

More information

Use of Artificial Neural Networks to Investigate the Surface Roughness in CNC Milling Machine

Use of Artificial Neural Networks to Investigate the Surface Roughness in CNC Milling Machine Use of Artificial Neural Networks to Investigate the Surface Roughness in CNC Milling Machine M. Vijay Kumar Reddy 1 1 Department of Mechanical Engineering, Annamacharya Institute of Technology and Sciences,

More information

An Investigation of Effect of Dressing Parameters for Minimum Surface Roughness using CNC Cylindrical Grinding Machine. Dadaso D.

An Investigation of Effect of Dressing Parameters for Minimum Surface Roughness using CNC Cylindrical Grinding Machine. Dadaso D. An Investigation of Effect of Dressing Parameters for Minimum Surface Roughness using CNC Cylindrical Grinding Machine Dadaso D. Mohite 1, PG Scholar, Pune University, NBN Sinhgad School of Engineering,

More information

Experimental Study of the Effects of Machining Parameters on the Surface Roughness in the Turning Process

Experimental Study of the Effects of Machining Parameters on the Surface Roughness in the Turning Process International Journal of Computer Engineering in Research Trends Multidisciplinary, Open Access, Peer-Reviewed and fully refereed Research Paper Volume-5, Issue-5,2018 Regular Edition E-ISSN: 2349-7084

More information

Available online at ScienceDirect. Procedia Engineering 97 (2014 )

Available online at   ScienceDirect. Procedia Engineering 97 (2014 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 97 (2014 ) 365 371 12th GLOBAL CONGRESS ON MANUFACTURING AND MANAGEMENT, GCMM 2014 Optimization and Prediction of Parameters

More information

EFFECT OF CUTTING SPEED, FEED RATE AND DEPTH OF CUT ON SURFACE ROUGHNESS OF MILD STEEL IN TURNING OPERATION

EFFECT OF CUTTING SPEED, FEED RATE AND DEPTH OF CUT ON SURFACE ROUGHNESS OF MILD STEEL IN TURNING OPERATION EFFECT OF CUTTING SPEED, FEED RATE AND DEPTH OF CUT ON SURFACE ROUGHNESS OF MILD STEEL IN TURNING OPERATION Mr. M. G. Rathi1, Ms. Sharda R. Nayse2 1 mgrathi_kumar@yahoo.co.in, 2 nsharda@rediffmail.com

More information

Study & Optimization of Parameters for Optimum Cutting condition during Turning Process using Response Surface Methodology

Study & Optimization of Parameters for Optimum Cutting condition during Turning Process using Response Surface Methodology 5 th International & 26 th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12 th 14 th, 2014, IIT Guwahati, Assam, India Study & Optimization of Parameters for

More information

Optimization of Turning Process during Machining of Al-SiCp Using Genetic Algorithm

Optimization of Turning Process during Machining of Al-SiCp Using Genetic Algorithm Optimization of Turning Process during Machining of Al-SiCp Using Genetic Algorithm P. G. Karad 1 and D. S. Khedekar 2 1 Post Graduate Student, Mechanical Engineering, JNEC, Aurangabad, Maharashtra, India

More information

International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 INTERNATIONAL JOURNAL OF MECHANICAL

International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 INTERNATIONAL JOURNAL OF MECHANICAL INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) ISSN 0976 6340 (Print) ISSN 0976 6359 (Online) Volume 3, Issue 2, May-August (2012), pp. 162-170 IAEME: www.iaeme.com/ijmet.html Journal

More information

ANN Based Prediction of Surface Roughness in Turning

ANN Based Prediction of Surface Roughness in Turning ANN Based Prediction of Surface Roughness in Turning Diwakar Reddy.V, Krishnaiah.G, A. Hemanth Kumar and Sushil Kumar Priya Abstract Surface roughness, an indicator of surface quality is one of the most

More information

Multi-Objective Optimization of Milling Parameters for Machining Cast Iron on Machining Centre

Multi-Objective Optimization of Milling Parameters for Machining Cast Iron on Machining Centre Research Journal of Engineering Sciences ISSN 2278 9472 Multi-Objective Optimization of Milling Parameters for Machining Cast Iron on Machining Centre Abstract D.V.V. Krishna Prasad and K. Bharathi R.V.R

More information

Optimization of Process Parameters of CNC Milling

Optimization of Process Parameters of CNC Milling Optimization of Process Parameters of CNC Milling Malay, Kishan Gupta, JaideepGangwar, Hasrat Nawaz Khan, Nitya Prakash Sharma, Adhirath Mandal, Sudhir Kumar, RohitGarg Department of Mechanical Engineering,

More information

Key Words: DOE, ANOVA, RSM, MINITAB 14.

Key Words: DOE, ANOVA, RSM, MINITAB 14. ISO 9:28 Certified Volume 4, Issue 4, October 24 Experimental Analysis of the Effect of Process Parameters on Surface Finish in Radial Drilling Process Dayal Saran P BalaRaju J Associate Professor, Department

More information

Prediction of Drill Flank Wear Using Radial Basis Function Neural Network

Prediction of Drill Flank Wear Using Radial Basis Function Neural Network Prediction of Drill Flank Wear Using Radial Basis Function Neural Network S. S. Panda 1, # D. Chakraborty 1, S. K. Pal 2 1 Department of Mechanical Engineering, Indian Institute of Technology, Guwahati,

More information

Keywords: Turning operation, Surface Roughness, Machining Parameter, Software Qualitek 4, Taguchi Technique, Mild Steel.

Keywords: Turning operation, Surface Roughness, Machining Parameter, Software Qualitek 4, Taguchi Technique, Mild Steel. Optimizing the process parameters of machinability through the Taguchi Technique Mukesh Kumar 1, Sandeep Malik 2 1 Research Scholar, UIET, Maharshi Dayanand University, Rohtak, Haryana, India 2 Assistant

More information

Experimental Investigations to Determine Optimal Cutting Parameters in Grinding Operations by Design of Experiments

Experimental Investigations to Determine Optimal Cutting Parameters in Grinding Operations by Design of Experiments Experimental Investigations to Determine Optimal Cutting Parameters in Grinding Operations by Design of Experiments Bareddy Ramamohan Reddy Indira Institute of Technology and Science, JNTU, Kakinada, Andhra

More information

ANN Based Surface Roughness Prediction In Turning Of AA 6351

ANN Based Surface Roughness Prediction In Turning Of AA 6351 ANN Based Surface Roughness Prediction In Turning Of AA 6351 Konani M. Naidu 1, Sadineni Rama Rao 2 1, 2 (Department of Mechanical Engineering, SVCET, RVS Nagar, Chittoor-517127, A.P, India) ABSTRACT Surface

More information

Pradeep Kumar J, Giriprasad C R

Pradeep Kumar J, Giriprasad C R ISSN: 78 7798 Investigation on Application of Fuzzy logic Concept for Evaluation of Electric Discharge Machining Characteristics While Machining Aluminium Silicon Carbide Composite Pradeep Kumar J, Giriprasad

More information

Optimisation of Quality and Prediction of Machining Parameter for Surface Roughness in CNC Turning on EN8

Optimisation of Quality and Prediction of Machining Parameter for Surface Roughness in CNC Turning on EN8 Indian Journal of Science and Technology, Vol 9(48), DOI: 10.17485/ijst/2016/v9i48/108431, December 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Optimisation of Quality and Prediction of Machining

More information

CHAPTER 5 SINGLE OBJECTIVE OPTIMIZATION OF SURFACE ROUGHNESS IN TURNING OPERATION OF AISI 1045 STEEL THROUGH TAGUCHI S METHOD

CHAPTER 5 SINGLE OBJECTIVE OPTIMIZATION OF SURFACE ROUGHNESS IN TURNING OPERATION OF AISI 1045 STEEL THROUGH TAGUCHI S METHOD CHAPTER 5 SINGLE OBJECTIVE OPTIMIZATION OF SURFACE ROUGHNESS IN TURNING OPERATION OF AISI 1045 STEEL THROUGH TAGUCHI S METHOD In the present machine edge, surface roughness on the job is one of the primary

More information

Predetermination of Surface Roughness by the Cutting Parameters Using Turning Center

Predetermination of Surface Roughness by the Cutting Parameters Using Turning Center Predetermination of Surface Roughness by the Cutting Parameters Using Turning Center 1 N.MANOJ, 2 A.DANIEL, 3 A.M.KRUBAKARA ADITHHYA, 4 P.BABU, 5 M.PRADEEP Assistant Professor, Dept. of Mechanical Engineering,

More information

SURFACE ROUGHNESS MONITORING IN CUTTING FORCE CONTROL SYSTEM

SURFACE ROUGHNESS MONITORING IN CUTTING FORCE CONTROL SYSTEM Proceedings in Manufacturing Systems, Volume 10, Issue 2, 2015, 59 64 ISSN 2067-9238 SURFACE ROUGHNESS MONITORING IN CUTTING FORCE CONTROL SYSTEM Uros ZUPERL 1,*, Tomaz IRGOLIC 2, Franc CUS 3 1) Assist.

More information

Optimization of Process Parameters for Wire Electrical Discharge Machining of High Speed Steel using Response Surface Methodology

Optimization of Process Parameters for Wire Electrical Discharge Machining of High Speed Steel using Response Surface Methodology Optimization of Process Parameters for Wire Electrical Discharge Machining of High Speed Steel using Response Surface Methodology Avinash K 1, R Rajashekar 2, B M Rajaprakash 3 1 Research scholar, 2 Assistance

More information

MODELLING AND OPTIMIZATION OF WIRE EDM PROCESS PARAMETERS

MODELLING AND OPTIMIZATION OF WIRE EDM PROCESS PARAMETERS MODELLING AND OPTIMIZATION OF WIRE EDM PROCESS PARAMETERS K. Kumar 1, R. Ravikumar 2 1 Research Scholar, Department of Mechanical Engineering, Anna University, Chennai, Tamilnadu, (India) 2 Professor,

More information

Experimental Study and Parameter Optimization of Turning Operation of Aluminium Alloy-2014

Experimental Study and Parameter Optimization of Turning Operation of Aluminium Alloy-2014 Experimental Study and Parameter Optimization of Turning Operation of Aluminium Alloy-2014 Arjun Pridhvijit 1, Dr. Binu C Yeldose 2 1PG Scholar, Department of Mechanical Engineering, MA college of Engineering

More information

Analyzing the Effect of Overhang Length on Vibration Amplitude and Surface Roughness in Turning AISI 304. Farhana Dilwar, Rifat Ahasan Siddique

Analyzing the Effect of Overhang Length on Vibration Amplitude and Surface Roughness in Turning AISI 304. Farhana Dilwar, Rifat Ahasan Siddique 173 Analyzing the Effect of Overhang Length on Vibration Amplitude and Surface Roughness in Turning AISI 304 Farhana Dilwar, Rifat Ahasan Siddique Abstract In this paper, the experimental investigation

More information

Parameter optimization model in electrical discharge machining process *

Parameter optimization model in electrical discharge machining process * 14 Journal of Zhejiang University SCIENCE A ISSN 1673-565X (Print); ISSN 1862-1775 (Online) www.zju.edu.cn/jzus; www.springerlink.com E-mail: jzus@zju.edu.cn Parameter optimization model in electrical

More information

A COUPLED ARTIFICIAL NEURAL NETWORK AND RESPONSE SURFACE METHODOLOGY MODEL FOR THE PREDICTION OF AVERAGE SURFACE ROUGHNESS IN END MILLING OF PREHEATED

A COUPLED ARTIFICIAL NEURAL NETWORK AND RESPONSE SURFACE METHODOLOGY MODEL FOR THE PREDICTION OF AVERAGE SURFACE ROUGHNESS IN END MILLING OF PREHEATED A COUPLED ARTIFICIAL NEURAL NETWORK AND RESPONSE SURFACE METHODOLOGY MODEL FOR THE PREDICTION OF AVERAGE SURFACE ROUGHNESS IN END MILLING OF PREHEATED Ti6Al4V ALLOY Md. Anayet U. PATWARI,, A.K.M. Nurul

More information

Liquefaction Analysis in 3D based on Neural Network Algorithm

Liquefaction Analysis in 3D based on Neural Network Algorithm Liquefaction Analysis in 3D based on Neural Network Algorithm M. Tolon Istanbul Technical University, Turkey D. Ural Istanbul Technical University, Turkey SUMMARY: Simplified techniques based on in situ

More information

DESIGN OF EXPERIMENTS AND RESPONSE SURFACE METHOD IN CONTEXT TO GRINDING PROCESS

DESIGN OF EXPERIMENTS AND RESPONSE SURFACE METHOD IN CONTEXT TO GRINDING PROCESS DESIGN OF EXPERIMENTS AND RESPONSE SURFACE METHOD IN CONTEXT TO GRINDING PROCESS 1 Prof R. G. Jivani, 2 Prof Dr. P. M. George, 3 Prof. B. S. Patel Asso. Professor 1,2,3, B. V. M. Engg. College, V. V. Nagar,

More information

REST Journal on Emerging trends in Modelling and Manufacturing Vol:3(3),2017 REST Publisher ISSN:

REST Journal on Emerging trends in Modelling and Manufacturing Vol:3(3),2017 REST Publisher ISSN: REST Journal on Emerging trends in Modelling and Manufacturing Vol:3(3),2017 REST Publisher ISSN: 2455-4537 Website: www.restpublisher.com/journals/jemm Modeling for investigation of effect of cutting

More information

Optimization of Milling Parameters for Minimum Surface Roughness Using Taguchi Method

Optimization of Milling Parameters for Minimum Surface Roughness Using Taguchi Method Optimization of Milling Parameters for Minimum Surface Roughness Using Taguchi Method Mahendra M S 1, B Sibin 2 1 PG Scholar, Department of Mechanical Enginerring, Sree Narayana Gurukulam College of Engineering

More information

CHAPTER 7 MASS LOSS PREDICTION USING ARTIFICIAL NEURAL NETWORK (ANN)

CHAPTER 7 MASS LOSS PREDICTION USING ARTIFICIAL NEURAL NETWORK (ANN) 128 CHAPTER 7 MASS LOSS PREDICTION USING ARTIFICIAL NEURAL NETWORK (ANN) Various mathematical techniques like regression analysis and software tools have helped to develop a model using equation, which

More information

OPTIMIZATION OF TURNING PROCESS USING A NEURO-FUZZY CONTROLLER

OPTIMIZATION OF TURNING PROCESS USING A NEURO-FUZZY CONTROLLER Sixteenth National Convention of Mechanical Engineers and All India Seminar on Future Trends in Mechanical Engineering, Research and Development, Deptt. Of Mech. & Ind. Engg., U.O.R., Roorkee, Sept. 29-30,

More information

On the description of the bearing capacity of electro-discharge machined surfaces

On the description of the bearing capacity of electro-discharge machined surfaces On the description of the bearing capacity of electro-discharge machined surfaces G.P Petropoulos a, C. Pantazaras a, N.M. Vaxevanidis b and A. Antoniadis c a Department of Mechanical and Industrial Engineering,

More information

Multiple Objective Optimizations of Parameters in Rotary Edm of P20 Steel

Multiple Objective Optimizations of Parameters in Rotary Edm of P20 Steel IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 13, Issue 1 Ver. IV(Jan. - Feb. 2016), PP 41-49 www.iosrjournals.org Multiple Objective Optimizations

More information

Experimental Investigation and Development of Multi Response ANN Modeling in Turning Al-SiCp MMC using Polycrystalline Diamond Tool

Experimental Investigation and Development of Multi Response ANN Modeling in Turning Al-SiCp MMC using Polycrystalline Diamond Tool Research Article International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347-5161 2014 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Experimental

More information

Optimization of Surface Roughness in End Milling of Medium Carbon Steel by Coupled Statistical Approach with Genetic Algorithm

Optimization of Surface Roughness in End Milling of Medium Carbon Steel by Coupled Statistical Approach with Genetic Algorithm Optimization of Surface Roughness in End Milling of Medium Carbon Steel by Coupled Statistical Approach with Genetic Algorithm Md. Anayet Ullah Patwari Islamic University of Technology (IUT) Department

More information

Optimization of Roughness Value by using Tool Inserts of Nose Radius 0.4mm in Finish Hard-Turning of AISI 4340 Steel

Optimization of Roughness Value by using Tool Inserts of Nose Radius 0.4mm in Finish Hard-Turning of AISI 4340 Steel http:// Optimization of Roughness Value by using Tool Inserts of Nose Radius 0.4mm in Finish Hard-Turning of AISI 4340 Steel Mr. Pratik P. Mohite M.E. Student, Mr. Vivekanand S. Swami M.E. Student, Prof.

More information

Application of Taguchi Method in the Optimization of Cutting Parameters for Surface Roughness in Turning on EN-362 Steel

Application of Taguchi Method in the Optimization of Cutting Parameters for Surface Roughness in Turning on EN-362 Steel IJIRST International Journal for Innovative Research in Science & Technology Volume 2 Issue 02 July 2015 ISSN (online): 2349-6010 Application of Taguchi Method in the Optimization of Cutting Parameters

More information

A Fuzzy-ICA Based Hybrid Approach for Parametric Appraisal in Machining (Turning) of GFRP Composites

A Fuzzy-ICA Based Hybrid Approach for Parametric Appraisal in Machining (Turning) of GFRP Composites , pp. 15-19 Krishi Sanskriti Publications http://www. krishisanskriti.org/ijbasr.html A Fuzzy-ICA Based Hybrid Approach for Parametric Appraisal in Machining (Turning) of GFRP Composites Kumar Abhishek

More information

EXPERIMENTAL INVESTIGATIONS AND OPTIMIZATION OF JIG GRINDING PROCESS

EXPERIMENTAL INVESTIGATIONS AND OPTIMIZATION OF JIG GRINDING PROCESS IMPACT: International Journal of Research in Engineering &Technology (IMPACT: IJRET) ISSN 2321-8843 Vol. 1, Issue 3, Aug 2013, 65-76 Impact Journals EXPERIMENTAL INVESTIGATIONS AND OPTIMIZATION OF JIG

More information

OPTIMIZING GRINDING PARAMETERS FOR SURFACE ROUGHNESS WHEN GRINDING TABLET BY CBN GRINDING WHEEL ON CNC MILLING MACHINE

OPTIMIZING GRINDING PARAMETERS FOR SURFACE ROUGHNESS WHEN GRINDING TABLET BY CBN GRINDING WHEEL ON CNC MILLING MACHINE International Journal of Mechanical Engineering and Technology (IJMET) Volume 10, Issue 01, January 2019, pp. 1112 1119, Article ID: IJMET_10_01_114 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=10&itype=1

More information

Analysis and Optimization of Machining Process Parameters Using Design of Experiments

Analysis and Optimization of Machining Process Parameters Using Design of Experiments Analysis and Optimization of Machining Process Parameters Using Design of Experiments Dr. M. Naga Phani Sastry, K. Devaki Devi, Dr, K. Madhava Reddy Department of Mechanical Engineering, G Pulla Reddy

More information

ANN-Based Modeling for Load and Main Steam Pressure Characteristics of a 600MW Supercritical Power Generating Unit

ANN-Based Modeling for Load and Main Steam Pressure Characteristics of a 600MW Supercritical Power Generating Unit ANN-Based Modeling for Load and Main Steam Pressure Characteristics of a 600MW Supercritical Power Generating Unit Liangyu Ma, Zhiyuan Gao Automation Department, School of Control and Computer Engineering

More information

Optimization and Analysis of Dry Turning of EN-8 Steel for Surface Roughness

Optimization and Analysis of Dry Turning of EN-8 Steel for Surface Roughness Optimization and Analysis of Dry Turning of EN-8 Steel for Surface Roughness Sudhir B Desai a, Sunil J Raykar b *,Dayanand N Deomore c a Yashwantrao Chavan School of Rural Development, Shivaji University,Kolhapur,416004,India.

More information

Parametric Optimization of Machining Parameters using Graph Theory and Matrix Approach

Parametric Optimization of Machining Parameters using Graph Theory and Matrix Approach 5 th International & 26 th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12 th 14 th, 2014, IIT Guwahati, Assam, India Parametric Optimization of Machining Parameters

More information

Analysis and Optimization of Parameters Affecting Surface Roughness in Boring Process

Analysis and Optimization of Parameters Affecting Surface Roughness in Boring Process International Journal of Advanced Mechanical Engineering. ISSN 2250-3234 Volume 4, Number 6 (2014), pp. 647-655 Research India Publications http://www.ripublication.com Analysis and Optimization of Parameters

More information

Image Compression: An Artificial Neural Network Approach

Image Compression: An Artificial Neural Network Approach Image Compression: An Artificial Neural Network Approach Anjana B 1, Mrs Shreeja R 2 1 Department of Computer Science and Engineering, Calicut University, Kuttippuram 2 Department of Computer Science and

More information

Prediction of False Twist Textured Yarn Properties by Artificial Neural Network Methodology

Prediction of False Twist Textured Yarn Properties by Artificial Neural Network Methodology Prediction of False Twist Textured Yarn Properties by Artificial Neural Network Methodology Bahareh Azimi, Mohammad Amani Tehran, PhD, Mohammad Reza Mohades Mojtahedi Amir Kabir University, Tehran IRAN

More information

NUMERICAL SIMULATION OF GRINDING FORCES BY SIMULINK

NUMERICAL SIMULATION OF GRINDING FORCES BY SIMULINK Int. J. Mech. Eng. & Rob. Res. 14 Rahul S and Nadeera M, 14 Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 3, No. 4, October, 14 14 IJMERR. All Rights Reserved NUMERICAL SIMULATION OF GRINDING FORCES

More information

Artificial Neural Network (ANN) Approach for Predicting Friction Coefficient of Roller Burnishing AL6061

Artificial Neural Network (ANN) Approach for Predicting Friction Coefficient of Roller Burnishing AL6061 International Journal of Machine Learning and Computing, Vol. 2, No. 6, December 2012 Artificial Neural Network (ANN) Approach for Predicting Friction Coefficient of Roller Burnishing AL6061 S. H. Tang,

More information

RESEARCH ABOUT ROUGHNESS FOR MATING MEMBERS OF A CYLINDRICAL FINE FIT AFTER TURNING WITH SMALL CUTTING FEEDS

RESEARCH ABOUT ROUGHNESS FOR MATING MEMBERS OF A CYLINDRICAL FINE FIT AFTER TURNING WITH SMALL CUTTING FEEDS International Conference on Economic Engineering and Manufacturing Systems Braşov, 26 27 November 2009 RESEARCH ABOUT ROUGHNESS FOR MATING MEMBERS OF A CYLINDRICAL FINE FIT AFTER TURNING WITH SMALL CUTTING

More information

MODELING AND OPTIMIZATION OF SURFACE ROUGHNESS IN SURFACE GRINDING OFSiC ADVANCED CERAMIC MATERIAL

MODELING AND OPTIMIZATION OF SURFACE ROUGHNESS IN SURFACE GRINDING OFSiC ADVANCED CERAMIC MATERIAL MODELING AND OPTIMIZATION OF SURFACE ROUGHNESS IN SURFACE GRINDING OFSiC ADVANCED CERAMIC MATERIAL Binu Thomas 1,Eby David 2,Manu R 3*, 1 M.Tech Scholar,MED,NIT,Calicut,673601,binukthomas@rediffmail.com

More information

Optimization of Surface Roughness in cylindrical grinding

Optimization of Surface Roughness in cylindrical grinding Optimization of Surface Roughness in cylindrical grinding Rajani Sharma 1, Promise Mittal 2, Kuldeep Kaushik 3, Pavan Agrawal 4 1Research Scholar, Dept. Of Mechanical Engineering, Vikrant Institute of

More information

Review on Methods of Selecting Number of Hidden Nodes in Artificial Neural Network

Review on Methods of Selecting Number of Hidden Nodes in Artificial Neural Network Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 11, November 2014,

More information

Parametric Investigation of Single Point Incremental Forming For Al 8011A H-14

Parametric Investigation of Single Point Incremental Forming For Al 8011A H-14 Parametric Investigation of Single Point Incremental Forming For Al 8011A H-14 Bhavesh Sonagra 1, Jayendra B. Kanani 2 1 Student M.E. CAD/CAM, A.I.T.S, Rajkot, Gujarat, India 2 Assistant Professor, A.I.T.S,

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March ISSN International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 976 Selection of Optimum Machining Parameters For EN36 Alloy Steel in CNC Turning Using Taguchi Method Kaushal

More information

Prediction of surface roughness of turned surfaces using neural networks

Prediction of surface roughness of turned surfaces using neural networks Int J Adv Manuf Technol (2006) 28: 688 693 DOI 10.1007/s00170-004-2429-4 ORIGINAL ARTICLE Z.W. Zhong L.P. Khoo S.T. Han Prediction of surface roughness of turned surfaces using neural networks Received:

More information

[Rao* et al., 5(9): September, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116

[Rao* et al., 5(9): September, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY MULTI-OBJECTIVE OPTIMIZATION OF MRR, Ra AND Rz USING TOPSIS Ch. Maheswara Rao*, K. Jagadeeswara Rao, K. Laxmana Rao Department

More information

Empirical Modeling of Cutting Forces in Ball End Milling using Experimental Design

Empirical Modeling of Cutting Forces in Ball End Milling using Experimental Design 5 th International & 26 th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12 th 14 th, 2014, IIT Guwahati, Assam, India Empirical Modeling of Cutting Forces in

More information

ANALYSIS OF BOX CULVERT - COST OPTIMIZATION FOR DIFFERENT ASPECT RATIOS OF CELL

ANALYSIS OF BOX CULVERT - COST OPTIMIZATION FOR DIFFERENT ASPECT RATIOS OF CELL ANALYSIS OF BOX CULVERT - COST OPTIMIZATION FOR DIFFERENT ASPECT RATIOS OF CELL M.G. Kalyanshetti 1, S.A. Gosavi 2 1 Assistant professor, Civil Engineering Department, Walchand Institute of Technology,

More information

Advanced Materials Manufacturing & Characterization. Multi-Objective Optimization in Traverse Cut Cylindrical Grinding

Advanced Materials Manufacturing & Characterization. Multi-Objective Optimization in Traverse Cut Cylindrical Grinding Advanced Materials Manufacturing & Characterization Vol 3 Issue 1 (2013) Advanced Materials Manufacturing & Characterization journal home page: www.ijammc-griet.com Multi-Objective Optimization in Traverse

More information

Tribology in Industry. Cutting Parameters Optimization for Surface Roughness in Turning Operation of Polyethylene (PE) Using Taguchi Method

Tribology in Industry. Cutting Parameters Optimization for Surface Roughness in Turning Operation of Polyethylene (PE) Using Taguchi Method Vol. 34, N o (0) 68-73 Tribology in Industry www.tribology.fink.rs RESEARCH Cutting Parameters Optimization for Surface Roughness in Turning Operation of Polyethylene (PE) Using Taguchi Method D. Lazarević

More information

Evaluation of Surface Roughness of Machined Components using Machine Vision Technique

Evaluation of Surface Roughness of Machined Components using Machine Vision Technique 217 IJEDR Volume 5, Issue 4 ISSN: 2321-9939 Evaluation of Surface Roughness of Machined Components using Machine Vision Technique 1 Manjunatha, 2 Dr R Rajashekar, 3 Dr B M Rajaprakash, 4 Naveen S, 5 Mohan

More information

Analysis of Surface Roughness in Turning with Coated Carbide Cutting Tools: Prediction Model and Cutting Conditions Optimization

Analysis of Surface Roughness in Turning with Coated Carbide Cutting Tools: Prediction Model and Cutting Conditions Optimization 5 th International & 26 th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12 th 14 th, 2014, IIT Guwahati, Assam, India Analysis of Surface Roughness in Turning

More information

A STUDY ON PROCESS PARAMETERS EFFECT IN HARD TURNING OF EN24 STEEL USING MINIMUM QUANTITY LUBRICATION (MQL)

A STUDY ON PROCESS PARAMETERS EFFECT IN HARD TURNING OF EN24 STEEL USING MINIMUM QUANTITY LUBRICATION (MQL) International Journal of Modern Manufacturing Technologies ISSN 2067 3604, Vol. VIII, No. 2 / 2016 A STUDY ON PROCESS PARAMETERS EFFECT IN HARD TURNING OF EN24 STEEL USING MINIMUM QUANTITY LUBRICATION

More information

MATHEMATICAL MODEL FOR SURFACE ROUGHNESS OF 2.5D MILLING USING FUZZY LOGIC MODEL.

MATHEMATICAL MODEL FOR SURFACE ROUGHNESS OF 2.5D MILLING USING FUZZY LOGIC MODEL. INTERNATIONAL JOURNAL OF R&D IN ENGINEERING, SCIENCE AND MANAGEMENT Vol.1, Issue I, AUG.2014 ISSN 2393-865X Research Paper MATHEMATICAL MODEL FOR SURFACE ROUGHNESS OF 2.5D MILLING USING FUZZY LOGIC MODEL.

More information

Surface Roughness Prediction of Al2014t4 by Responsive Surface Methodology

Surface Roughness Prediction of Al2014t4 by Responsive Surface Methodology IJIRST International Journal for Innovative Research in Science & Technology Volume 2 Issue 02 July 2015 ISSN (online): 2349-6010 Surface Roughness Prediction of Al2014t4 by Responsive Surface Methodology

More information

A Review on Mild Steel Drilling Process Parameters for Quality Enhancement

A Review on Mild Steel Drilling Process Parameters for Quality Enhancement BUSINESS AND TECHNOLOGY (IJSSBT), Vol. 4, No. 1, Nov. 015 ISSN (Print) 77 761 A Review on Mild Steel Drilling Process Parameters for Quality Enhancement 1 Tilottama A. Chaudhari 1 P.G. Student, Department

More information

Volume 3, Special Issue 3, March 2014

Volume 3, Special Issue 3, March 2014 ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology Volume 3, Special Issue 3, March 2014 2014 International Conference

More information

International Journal of Industrial Engineering Computations

International Journal of Industrial Engineering Computations International Journal of Industrial Engineering Computations 4 (2013) 325 336 Contents lists available at GrowingScience International Journal of Industrial Engineering Computations homepage: www.growingscience.com/ijiec

More information

APPLICATION OF MODELING TOOLS IN MANUFACTURING TO IMPROVE QUALITY AND PRODUCTIVITY WITH CASE STUDY

APPLICATION OF MODELING TOOLS IN MANUFACTURING TO IMPROVE QUALITY AND PRODUCTIVITY WITH CASE STUDY Proceedings in Manufacturing Systems, Volume 7, Issue, ISSN 7- APPLICATION OF MODELING TOOLS IN MANUFACTURING TO IMPROVE QUALITY AND PRODUCTIVITY WITH CASE STUDY Mahesh B. PARAPPAGOUDAR,*, Pandu R. VUNDAVILLI

More information

EXPERIMENTAL INVESTIGATION OF MACHINING PARAMETERS IN ELECTRICAL DISCHARGE MACHINING USING EN36 MATERIAL

EXPERIMENTAL INVESTIGATION OF MACHINING PARAMETERS IN ELECTRICAL DISCHARGE MACHINING USING EN36 MATERIAL EXPERIMENTAL INVESTIGATION OF MACHINING PARAMETERS IN ELECTRICAL DISCHARGE MACHINING USING EN36 MATERIAL M. Panneer Selvam 1, Ravikumar. R 2, Ranjith Kumar.P 3 and Deepak. U 3 1 Research Scholar, Karpagam

More information

Proceedings of the 2016 International Conference on Industrial Engineering and Operations Management Detroit, Michigan, USA, September 23-25, 2016

Proceedings of the 2016 International Conference on Industrial Engineering and Operations Management Detroit, Michigan, USA, September 23-25, 2016 Neural Network Viscosity Models for Multi-Component Liquid Mixtures Adel Elneihoum, Hesham Alhumade, Ibrahim Alhajri, Walid El Garwi, Ali Elkamel Department of Chemical Engineering, University of Waterloo

More information

Experimental Analysis and Optimization of Cutting Parameters for the Surface Roughness in the Facing Operation of PMMA Material

Experimental Analysis and Optimization of Cutting Parameters for the Surface Roughness in the Facing Operation of PMMA Material IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X PP. 52-60 www.iosrjournals.org Experimental Analysis and Optimization of Cutting Parameters for the Surface

More information

OPTIMIZATION FOR SURFACE ROUGHNESS, MRR, POWER CONSUMPTION IN TURNING OF EN24 ALLOY STEEL USING GENETIC ALGORITHM

OPTIMIZATION FOR SURFACE ROUGHNESS, MRR, POWER CONSUMPTION IN TURNING OF EN24 ALLOY STEEL USING GENETIC ALGORITHM Int. J. Mech. Eng. & Rob. Res. 2014 M Adinarayana et al., 2014 Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 3, No. 1, January 2014 2014 IJMERR. All Rights Reserved OPTIMIZATION FOR SURFACE ROUGHNESS,

More information

INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET)

INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 ISSN 0976 6340 (Print) ISSN 0976 6359 (Online) Volume

More information

An Algorithm For Training Multilayer Perceptron (MLP) For Image Reconstruction Using Neural Network Without Overfitting.

An Algorithm For Training Multilayer Perceptron (MLP) For Image Reconstruction Using Neural Network Without Overfitting. An Algorithm For Training Multilayer Perceptron (MLP) For Image Reconstruction Using Neural Network Without Overfitting. Mohammad Mahmudul Alam Mia, Shovasis Kumar Biswas, Monalisa Chowdhury Urmi, Abubakar

More information

Neural Network Approach for Automatic Landuse Classification of Satellite Images: One-Against-Rest and Multi-Class Classifiers

Neural Network Approach for Automatic Landuse Classification of Satellite Images: One-Against-Rest and Multi-Class Classifiers Neural Network Approach for Automatic Landuse Classification of Satellite Images: One-Against-Rest and Multi-Class Classifiers Anil Kumar Goswami DTRL, DRDO Delhi, India Heena Joshi Banasthali Vidhyapith

More information

Optimization of process parameters in CNC milling for machining P20 steel using NSGA-II

Optimization of process parameters in CNC milling for machining P20 steel using NSGA-II IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 14, Issue 3 Ver. V. (May - June 2017), PP 57-63 www.iosrjournals.org Optimization of process parameters

More information

International Journal of Multidisciplinary Research and Modern Education (IJMRME) ISSN (Online): (

International Journal of Multidisciplinary Research and Modern Education (IJMRME) ISSN (Online): ( OPTIMIZATION OF TURNING PROCESS THROUGH TAGUCHI AND SIMULATED ANNEALING ALGORITHM S. Ganapathy Assistant Professor, Department of Mechanical Engineering, Jayaram College of Engineering and Technology,

More information

IJCEM International Journal of Computational Engineering & Management, Vol. 16, Issue 3, May ISSN (Online):

IJCEM International Journal of Computational Engineering & Management, Vol. 16, Issue 3, May ISSN (Online): International Journal of Computational Engineering & Management, Vol. 16, Issue 3, May 2013 4 www..org Application of Artificial Neural Network and Response Surface Methodology for Achieving Desired in

More information

Prediction of optimality and effect of machining parameters on Surface Roughness based on Taguchi Design of Experiments

Prediction of optimality and effect of machining parameters on Surface Roughness based on Taguchi Design of Experiments Prediction of optimality and effect of machining parameters on Surface Roughness based on Taguchi Design of Experiments 1 K. Arun Vikram, 2 K. Sankara Narayana, 3 G. Prem Kumar, 4 C. Skandha 1,3 Department

More information

A Neuro-Genetic Approach for Multi-Objective Optimization of Process Variables in Drilling

A Neuro-Genetic Approach for Multi-Objective Optimization of Process Variables in Drilling gopalax -International Journal of Technology And Engineering System(IJTES): Jan March 2011- Vol2.No1. A Neuro-Genetic Approach for Multi-Objective Optimization of Process Variables in Drilling Jyotiprakash

More information

A Generic Framework to Optimize the Total Cost of Machining By Numerical Approach

A Generic Framework to Optimize the Total Cost of Machining By Numerical Approach IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 11, Issue 4 Ver. V (Jul- Aug. 2014), PP 17-22 A Generic Framework to Optimize the Total Cost of

More information

Response Surface Methodology Based Optimization of Dry Turning Process

Response Surface Methodology Based Optimization of Dry Turning Process Response Surface Methodology Based Optimization of Dry Turning Process Shubhada S. Patil- Warke Assistant Professor, Department of Production Engineering, D Y Patil College of Engineering and Technology,

More information

Optimization of Process Parameter for Surface Roughness in Drilling of Spheroidal Graphite (SG 500/7) Material

Optimization of Process Parameter for Surface Roughness in Drilling of Spheroidal Graphite (SG 500/7) Material Optimization of Process Parameter for Surface Roughness in ing of Spheroidal Graphite (SG 500/7) Prashant Chavan 1, Sagar Jadhav 2 Department of Mechanical Engineering, Adarsh Institute of Technology and

More information

Volume 3, Issue 3 (2015) ISSN International Journal of Advance Research and Innovation

Volume 3, Issue 3 (2015) ISSN International Journal of Advance Research and Innovation Experimental Study of Surface Roughness in CNC Turning Using Taguchi and ANOVA Ranganath M.S. *, Vipin, Kuldeep, Rayyan, Manab, Gaurav Department of Mechanical Engineering, Delhi Technological University,

More information

APPLICATION OF GREY BASED TAGUCHI METHOD IN MULTI-RESPONSE OPTIMIZATION OF TURNING PROCESS

APPLICATION OF GREY BASED TAGUCHI METHOD IN MULTI-RESPONSE OPTIMIZATION OF TURNING PROCESS Advances in Production Engineering & Management 5 (2010) 3, 171-180 ISSN 1854-6250 Scientific paper APPLICATION OF GREY BASED TAGUCHI METHOD IN MULTI-RESPONSE OPTIMIZATION OF TURNING PROCESS Ahilan, C

More information

Multi Objective Optimization and Comparission of Process Parameters in Turning Operation

Multi Objective Optimization and Comparission of Process Parameters in Turning Operation Multi Objective Optimization and Comparission of Process Parameters in Turning Operation Jino Joy Thomas Department of Mechanical Engineering Musaliar College of Engineering And Technology Pathanamthitta,

More information

DATA MINING APPLICATION USING DECISION TREE AND ANN FOR PREDICTING SURFACE ROUGHNESS OF END MILLING MANUFACTURING PROCESS

DATA MINING APPLICATION USING DECISION TREE AND ANN FOR PREDICTING SURFACE ROUGHNESS OF END MILLING MANUFACTURING PROCESS International Journal of Computer Science Engineering and Information Technology Research (IJCSEITR) Vol.1, Issue 2 Dec 2011 61-68 TJPRC Pvt. Ltd., DATA MINING APPLICATION USING DECISION TREE AND ANN FOR

More information

Volume 4, Issue 1 (2016) ISSN International Journal of Advance Research and Innovation

Volume 4, Issue 1 (2016) ISSN International Journal of Advance Research and Innovation Volume 4, Issue 1 (216) 314-32 ISSN 2347-328 Surface Texture Analysis in Milling of Mild Steel Using HSS Face and Milling Cutter Rajesh Kumar, Vipin Department of Production and Industrial Engineering,

More information

NEURAL MODEL FOR ABRASIVE WATER JET CUTTING MACHINE

NEURAL MODEL FOR ABRASIVE WATER JET CUTTING MACHINE Nonconventional Technologies Review Romania, June, 2013 2013 Romanian Association of Nonconventional Technologies NEURAL MODEL FOR ABRASIVE WATER JET CUTTING MACHINE Ciupan Cornel 1, Ciupan Emilia 2 and

More information