To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below:

Size: px
Start display at page:

Download "To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below:"

Transcription

1 Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points in the plane; in this section we will learn to describe points using the polar coordinate system, which is often a more convenient system for representing points than is the Cartesian coordinate system. To build up the polar coordinate system, we will fix a point O, the origin, and an initial ray (which generally corresponds to the positive part of the x-axis). We describe a point P in the plane using (1) its directed distance r from the origin, and () the directed angle θ from the initial ray to the segment OP : To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6 ) is graphed below: 1

2 By directed distance, we mean that the sign on r makes a difference in the value of the point; if r > 0, then we go r units to the right of the origin before rotating through θ, whereas if r < 0, we start at r units to the left of the origin. For example, (, π 3 ) and (, π 3 ) are the (distinct) points graphed below: Similarly, when we call θ a directed angle, we mean that the sign on θ affects the value of the point; if θ > 0, then we rotate θ radians counterclockwise from the initial ray, and if θ < 0, we rotate θ radians clockwise from the initial ray. The distinct points (1, π 3 ) and (1, π 3 ) are graphed below:

3 Identifying Polar Coordinates Two coordinates that look different might actually describe the same point. For instance, it is clear that (, π/3) = (, 4π/3): If (r, θ) are the polar coordinates of the point P, then we can find more polar coordinates of P in one of two ways: 3

4 1. Rotate through a full circle, i.e. an extra π:. Go to r, then rotate through θ + π: Thus a point with polar coordinates (r, θ) also has polar coordinates for any integer n. (r, θ + nπ) and ( r, θ + (n + 1)π) 4

5 Example. Find all the polar coordinates of P = (4, π 4 ). Since rotating through π 4 is the same as rotating through 7π 4, P = (4, π 4 ) is equivalent to all points of the form (4, 7π 4 + nπ) or ( 4, 7π 4 + (n + 1)π). Converting Between Polar and Cartesian Coordinates If we wish to convert a point s polar coordinates to Cartesian coordinates, or vice-versa, we can use a basic trigonometry to help us out. Consider the graph below, where the point in question has Cartesian coordinates (x, y) and polar coordinates (r, θ): Using the triangle above, we see that, if we know the polar coordinates (r, θ) for the point, then we can find Cartesian coordinates (x, y) for it via the formulas x = r cos θ, y = r sin θ. Alternatively, if we already have Cartesian coordinates (x, y), then we can determine polar coordinates (r, θ) for the same point using the formulas x + y = r, tan θ = y x. Example. The equation r sin θ = 1 can be rewritten as y = 1, which describes a horizontal line in the plane. 5

6 Example. The equation r cos θ sin θ = 5 can be rewritten by noting that r cos θ sin θ = r cos θr sin θ = xy. So r cos θ sin θ = 5 is equivalent to xy = 5, or y = 5 x. Example. Rewrite the equation r = 3 sin θ in Cartesian coordinates. Using the conversion r = x + y, we can solve for r, r = x + y. 6

7 On the other hand, since y = r sin θ, we know that sin θ = y r = y x + y. Putting all of this together, we see that the equation r = 3 sin θ can be rewritten as x + y = 3y x + y, or x + y = 3y. We can rewrite so that x + y 3y = 0; completing the square for y, we have x + y 3y = 9 4, or (x 0) + (y 3 ) = 9 4. Recall that the equation of a circle centered at (h, k) with radius ρ is (x h) + (y k) = ρ ; so the equation above is that of a circle centered at (0, 3 ) of radius 3. Graphs of Basic Equations in Polar Coordinates For some very simple polar equations, it is quite easy to construct a graph. We look at two simple polar curves here, and will consider more complicated graphs below. The equation r = a, (where there are no restrictions on θ), describes a circle of radius a : 7

8 Alternatively, the equation θ = α, (where there are no restrictions on r) describes a line that makes an angle of θ with the initial ray: 8

9 Graphing Polar Equations Most of the polar equations we run into will not be as simple as the two above, so in the rest of this section, we will consider techniques for graphing these equations. Below are three possible techniques for drawing the graph of a polar equation: 1. Return the equation to Cartesian coordinates and graph the resulting equation.. Make a t-table of θ and r values and graph the equation from the t-table. 3. Graph the equation in the rθ plane, then use this as a chart to graph in the xy plane. If the equation can be easily turned into one in Cartesian coordinates whose graph is recognizable, then it may be best to use the first method to graph the equation. For instance, we earlier found that r = 3 sin θ is equivalent to x + (y 3 ) = 9 4 ; since this second equation is simply the graph of a circle of radius 3 centered at (0, 3 ), thus it is quite simple to draw the curve: However, this technique will not always be practical, so we should be comfortable with the other techniques. Let s use the second technique to graph r = 1 + sin θ. We first note that r = 1 + sin θ is not symmetric about the x-axis: for if (r, θ) is on the curve, then 1 + sin( θ) = 1 sin θ r, so (r, θ) is not necessarily on the curve. 9

10 However, the curve is symmetric about the y-axis, for if (r, θ) is on the curve, then 1 + sin(π θ) = 1 + sin π cos θ cos π sin θ = 1 + ( sin θ) = 1 + sin θ = r, so (r, π θ) is on the curve. This information means that we will only need to graph the portion of the curve on the right of the y-axis; we can get the rest by simply mirroring the curve across the y-axis. Let s set up a t-table: r θ π 6 π 4 π 3 π 3π π 3 7π 4 11π 6 To simplify matters a bit, we will use the approximations 1.4 and Then the table becomes r θ 1 0 π π π 3 π 0 3π.15 5π 3.3 7π π 6 We can now graph the curve based on the table: 10

11 The other possible graphing technique is to think of both r and θ as Cartesian coordinates (even though we know that θ is actually related to a coordinate s angle). We graph the curve in the rθ plane (as we would graph a Cartesian equation in the xy plane) then use this graph as a chart to return to the xy plane. Example. Draw a graph pf r = cos(θ). We start by drawing a graph of the function in the rθ plane: Now we can use the curve to plot the graph in the xy plane. For instance, we read from the graph that as θ increases from 0 to π 4, r decreases from 1 to 0: 11

12 Then as θ increases from π 4 to π, r decreases from 0 to 1: 1

13 As θ increases from π to 3π 4, r increases from 1 to 0: 13

14 Continuing in this way, we get the graph of the entire function: Rates of Change in Polar Coordinates When an equation for a curve is given in terms of r and θ, the equation may not describe a function of x; for instance, in the last section we saw that r = 3 sin θ describes a circle, which fails the vertical line test. However, we can still determine the rate at which one variable changes with respect to the other; in particular, if we make suitable restrictions on the values of θ, we can think of r as a 14

15 function of θ, r = f(θ); then we can calculate dr/ = f (θ) to determine the rate of change of r with respect to θ. However, if we wished to draw a tangent line to the curve, we would need to know the rate of change of y with respect to x (that is, dy/ dx) for the same curve, even though the curve s equation was originally written in polar coordinates. We can determine dy/ dx using the conversion formulas x = r cos θ and y = r sin θ; in addition, using the differentiation rule for parametric equations, we can write Let s calculate the derivatives dy and dx : dy dx = dy dx d y = d (r sin θ) = dr sin θ + r cos θ, using the product rule to find the derivative in the second line. Similarly,. So d x = d (r cos θ) dy dx = = dr cos θ r sin θ. dy dx = dr dr sin θ + r cos θ. cos θ r sin θ Example. Given r = 3 sin θ, find the slope of the line tangent to the curve at (r, θ) = (3, π ). We saw above that the equation r = 3 sin θ describes the circle centered at (0, 3 ) with radius 3 : 15

16 Based on the graph, we expect the slope of the tangent line to be 0. Let s check using the formulas above: with r = f(θ) = 3 sin θ, we have so dr = 3 cos θ; dr dy dx = sin θ + r cos θ cos θ r sin θ = = = dr 3 cos θ sin θ + 3 sin θ cos θ 3 cos θ cos θ 3 sin θ sin θ 3 cos θ sin θ + 3 cos θ sin θ 3 cos θ 3 sin θ cos θ sin θ cos θ sin θ. Then the value for dy dx at (r, θ) = (3, π ) is cos π sin π cos π sin π thus the formula confirms that the tangent line to the curve r = 3 cos θ at (3, π/) is horizontal. = 0; 16

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6 Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

PARAMETRIC EQUATIONS AND POLAR COORDINATES

PARAMETRIC EQUATIONS AND POLAR COORDINATES 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES PARAMETRIC EQUATIONS & POLAR COORDINATES A coordinate system represents a point in the plane by an ordered pair of numbers called coordinates. PARAMETRIC EQUATIONS

More information

Jim Lambers MAT 169 Fall Semester Lecture 33 Notes

Jim Lambers MAT 169 Fall Semester Lecture 33 Notes Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 33 Notes These notes correspond to Section 9.3 in the text. Polar Coordinates Throughout this course, we have denoted a point in the plane by an ordered

More information

Section 10.1 Polar Coordinates

Section 10.1 Polar Coordinates Section 10.1 Polar Coordinates Up until now, we have always graphed using the rectangular coordinate system (also called the Cartesian coordinate system). In this section we will learn about another system,

More information

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 27 / 45

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 27 / 45 : Given any point P = (x, y) on the plane r stands for the distance from the origin (0, 0). θ stands for the angle from positive x-axis to OP. Polar coordinate: (r, θ) Chapter 10: Parametric Equations

More information

Chapter 11. Parametric Equations And Polar Coordinates

Chapter 11. Parametric Equations And Polar Coordinates Instructor: Prof. Dr. Ayman H. Sakka Chapter 11 Parametric Equations And Polar Coordinates In this chapter we study new ways to define curves in the plane, give geometric definitions of parabolas, ellipses,

More information

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 28 / 46

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 28 / 46 Polar Coordinates Polar Coordinates: Given any point P = (x, y) on the plane r stands for the distance from the origin (0, 0). θ stands for the angle from positive x-axis to OP. Polar coordinate: (r, θ)

More information

10.1 Curves Defined by Parametric Equations

10.1 Curves Defined by Parametric Equations 10.1 Curves Defined by Parametric Equations Ex: Consider the unit circle from Trigonometry. What is the equation of that circle? There are 2 ways to describe it: x 2 + y 2 = 1 and x = cos θ y = sin θ When

More information

Topics in Analytic Geometry Part II

Topics in Analytic Geometry Part II Name Chapter 9 Topics in Analytic Geometry Part II Section 9.4 Parametric Equations Objective: In this lesson you learned how to evaluate sets of parametric equations for given values of the parameter

More information

Polar Coordinates. Calculus 2 Lia Vas. If P = (x, y) is a point in the xy-plane and O denotes the origin, let

Polar Coordinates. Calculus 2 Lia Vas. If P = (x, y) is a point in the xy-plane and O denotes the origin, let Calculus Lia Vas Polar Coordinates If P = (x, y) is a point in the xy-plane and O denotes the origin, let r denote the distance from the origin O to the point P = (x, y). Thus, x + y = r ; θ be the angle

More information

Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations

Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations 1 Definition of polar coordinates Let us first recall the definition of Cartesian coordinates: to each point in the plane we can

More information

Parametric and Polar Curves

Parametric and Polar Curves Chapter 2 Parametric and Polar Curves 2.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves Parametric Equations So far we ve described a curve by giving an equation that the coordinates

More information

Parametric and Polar Curves

Parametric and Polar Curves Chapter 2 Parametric and Polar Curves 2.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves Parametric Equations So far we ve described a curve by giving an equation that the coordinates

More information

5/27/12. Objectives. Plane Curves and Parametric Equations. Sketch the graph of a curve given by a set of parametric equations.

5/27/12. Objectives. Plane Curves and Parametric Equations. Sketch the graph of a curve given by a set of parametric equations. Objectives Sketch the graph of a curve given by a set of parametric equations. Eliminate the parameter in a set of parametric equations. Find a set of parametric equations to represent a curve. Understand

More information

Parametric and Polar Curves

Parametric and Polar Curves Chapter 2 Parametric and Polar Curves 2.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves Parametric Equations So far we ve described a curve by giving an equation that the coordinates

More information

Complex Numbers, Polar Equations, and Parametric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc.

Complex Numbers, Polar Equations, and Parametric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc. 8 Complex Numbers, Polar Equations, and Parametric Equations Copyright 2017, 2013, 2009 Pearson Education, Inc. 1 8.5 Polar Equations and Graphs Polar Coordinate System Graphs of Polar Equations Conversion

More information

Pre-Calc Unit 14: Polar Assignment Sheet April 27 th to May 7 th 2015

Pre-Calc Unit 14: Polar Assignment Sheet April 27 th to May 7 th 2015 Pre-Calc Unit 14: Polar Assignment Sheet April 27 th to May 7 th 2015 Date Objective/ Topic Assignment Did it Monday Polar Discovery Activity pp. 4-5 April 27 th Tuesday April 28 th Converting between

More information

6.7. POLAR COORDINATES

6.7. POLAR COORDINATES 6.7. POLAR COORDINATES What You Should Learn Plot points on the polar coordinate system. Convert points from rectangular to polar form and vice versa. Convert equations from rectangular to polar form and

More information

Fall 2016 Semester METR 3113 Atmospheric Dynamics I: Introduction to Atmospheric Kinematics and Dynamics

Fall 2016 Semester METR 3113 Atmospheric Dynamics I: Introduction to Atmospheric Kinematics and Dynamics Fall 2016 Semester METR 3113 Atmospheric Dynamics I: Introduction to Atmospheric Kinematics and Dynamics Lecture 5 August 31 2016 Topics: Polar coordinate system Conversion of polar coordinates to 2-D

More information

Polar Coordinates

Polar Coordinates Polar Coordinates 7-7-2 Polar coordinates are an alternative to rectangular coordinates for referring to points in the plane. A point in the plane has polar coordinates r,θ). r is roughly) the distance

More information

The diagram above shows a sketch of the curve C with parametric equations

The diagram above shows a sketch of the curve C with parametric equations 1. The diagram above shows a sketch of the curve C with parametric equations x = 5t 4, y = t(9 t ) The curve C cuts the x-axis at the points A and B. (a) Find the x-coordinate at the point A and the x-coordinate

More information

Polar Coordinates. OpenStax. 1 Dening Polar Coordinates

Polar Coordinates. OpenStax. 1 Dening Polar Coordinates OpenStax-CNX module: m53852 1 Polar Coordinates OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License 4.0 Abstract Locate points

More information

Section Polar Coordinates. or 4 π (restricting θ to the domain of the lemniscate). So, there are horizontal tangents at ( 4 3

Section Polar Coordinates. or 4 π (restricting θ to the domain of the lemniscate). So, there are horizontal tangents at ( 4 3 Section 10.3 Polar Coordinates 66. r = e θ x = r cos θ = e θ cos θ, y = r sin θ = e θ sin θ. = eθ sin θ+e θ cos θ = e θ (sin θ+cos θ), dx = eθ cos θ e θ sin θ = e θ (cos θ sin θ). Let 1 = 0 sin θ = cos

More information

by Kevin M. Chevalier

by Kevin M. Chevalier Precalculus Review Handout.4 Trigonometric Functions: Identities, Graphs, and Equations, Part I by Kevin M. Chevalier Angles, Degree and Radian Measures An angle is composed of: an initial ray (side) -

More information

MATH 1020 WORKSHEET 10.1 Parametric Equations

MATH 1020 WORKSHEET 10.1 Parametric Equations MATH WORKSHEET. Parametric Equations If f and g are continuous functions on an interval I, then the equations x ft) and y gt) are called parametric equations. The parametric equations along with the graph

More information

First of all, we need to know what it means for a parameterize curve to be differentiable. FACT:

First of all, we need to know what it means for a parameterize curve to be differentiable. FACT: CALCULUS WITH PARAMETERIZED CURVES In calculus I we learned how to differentiate and integrate functions. In the chapter covering the applications of the integral, we learned how to find the length of

More information

MATH115. Polar Coordinate System and Polar Graphs. Paolo Lorenzo Bautista. June 14, De La Salle University

MATH115. Polar Coordinate System and Polar Graphs. Paolo Lorenzo Bautista. June 14, De La Salle University MATH115 Polar Coordinate System and Paolo Lorenzo Bautista De La Salle University June 14, 2014 PLBautista (DLSU) MATH115 June 14, 2014 1 / 30 Polar Coordinates and PLBautista (DLSU) MATH115 June 14, 2014

More information

6.1 Polar Coordinates

6.1 Polar Coordinates 6.1 Polar Coordinates Introduction This chapter introduces and explores the polar coordinate system, which is based on a radius and theta. Students will learn how to plot points and basic graphs in this

More information

ENGI Parametric & Polar Curves Page 2-01

ENGI Parametric & Polar Curves Page 2-01 ENGI 3425 2. Parametric & Polar Curves Page 2-01 2. Parametric and Polar Curves Contents: 2.1 Parametric Vector Functions 2.2 Parametric Curve Sketching 2.3 Polar Coordinates r f 2.4 Polar Curve Sketching

More information

10 Polar Coordinates, Parametric Equations

10 Polar Coordinates, Parametric Equations Polar Coordinates, Parametric Equations ½¼º½ ÈÓÐ Ö ÓÓÖ Ò Ø Coordinate systems are tools that let us use algebraic methods to understand geometry While the rectangular (also called Cartesian) coordinates

More information

12 Polar Coordinates, Parametric Equations

12 Polar Coordinates, Parametric Equations 54 Chapter Polar Coordinates, Parametric Equations Polar Coordinates, Parametric Equations Just as we describe curves in the plane using equations involving x and y, so can we describe curves using equations

More information

MATHEMATICS FOR ENGINEERING TUTORIAL 5 COORDINATE SYSTEMS

MATHEMATICS FOR ENGINEERING TUTORIAL 5 COORDINATE SYSTEMS MATHEMATICS FOR ENGINEERING TUTORIAL 5 COORDINATE SYSTEMS This tutorial is essential pre-requisite material for anyone studying mechanical engineering. This tutorial uses the principle of learning by example.

More information

6.3 Converting Between Systems

6.3 Converting Between Systems www.ck1.org Chapter 6. The Polar System 6. Converting Between Systems Learning Objectives Convert rectangular coordinates to polar coordinates. Convert equations given in rectangular form to equations

More information

Chapter 10: Parametric And Polar Curves; Conic Sections

Chapter 10: Parametric And Polar Curves; Conic Sections 206 Chapter 10: Parametric And Polar Curves; Conic Sections Summary: This chapter begins by introducing the idea of representing curves using parameters. These parametric equations of the curves can then

More information

Math 136 Exam 1 Practice Problems

Math 136 Exam 1 Practice Problems Math Exam Practice Problems. Find the surface area of the surface of revolution generated by revolving the curve given by around the x-axis? To solve this we use the equation: In this case this translates

More information

9.5 Polar Coordinates. Copyright Cengage Learning. All rights reserved.

9.5 Polar Coordinates. Copyright Cengage Learning. All rights reserved. 9.5 Polar Coordinates Copyright Cengage Learning. All rights reserved. Introduction Representation of graphs of equations as collections of points (x, y), where x and y represent the directed distances

More information

Polar Coordinates. 2, π and ( )

Polar Coordinates. 2, π and ( ) Polar Coordinates Up to this point we ve dealt exclusively with the Cartesian (or Rectangular, or x-y) coordinate system. However, as we will see, this is not always the easiest coordinate system to work

More information

Each point P in the xy-plane corresponds to an ordered pair (x, y) of real numbers called the coordinates of P.

Each point P in the xy-plane corresponds to an ordered pair (x, y) of real numbers called the coordinates of P. Lecture 7, Part I: Section 1.1 Rectangular Coordinates Rectangular or Cartesian coordinate system Pythagorean theorem Distance formula Midpoint formula Lecture 7, Part II: Section 1.2 Graph of Equations

More information

Lecture 34: Curves defined by Parametric equations

Lecture 34: Curves defined by Parametric equations Curves defined by Parametric equations When the path of a particle moving in the plane is not the graph of a function, we cannot describe it using a formula that express y directly in terms of x, or x

More information

9.1 POLAR COORDINATES

9.1 POLAR COORDINATES 9. Polar Coordinates Contemporary Calculus 9. POLAR COORDINATES The rectangular coordinate system is immensely useful, but it is not the only way to assign an address to a point in the plane and sometimes

More information

Polar (BC Only) They are necessary to find the derivative of a polar curve in x- and y-coordinates. The derivative

Polar (BC Only) They are necessary to find the derivative of a polar curve in x- and y-coordinates. The derivative Polar (BC Only) Polar coordinates are another way of expressing points in a plane. Instead of being centered at an origin and moving horizontally or vertically, polar coordinates are centered at the pole

More information

Chapter 15 Notes, Stewart 7e

Chapter 15 Notes, Stewart 7e Contents 15.2 Iterated Integrals..................................... 2 15.3 Double Integrals over General Regions......................... 5 15.4 Double Integrals in Polar Coordinates..........................

More information

Section 14: Trigonometry Part 1

Section 14: Trigonometry Part 1 Section 14: Trigonometry Part 1 The following Mathematics Florida Standards will be covered in this section: MAFS.912.F-TF.1.1 MAFS.912.F-TF.1.2 MAFS.912.F-TF.1.3 Understand radian measure of an angle

More information

We can conclude that if f is differentiable in an interval containing a, then. f(x) L(x) = f(a) + f (a)(x a).

We can conclude that if f is differentiable in an interval containing a, then. f(x) L(x) = f(a) + f (a)(x a). = sin( x) = 8 Lecture :Linear Approximations and Differentials Consider a point on a smooth curve y = f(x), say P = (a, f(a)), If we draw a tangent line to the curve at the point P, we can see from the

More information

Direction Fields; Euler s Method

Direction Fields; Euler s Method Direction Fields; Euler s Method It frequently happens that we cannot solve first order systems dy (, ) dx = f xy or corresponding initial value problems in terms of formulas. Remarkably, however, this

More information

Exam 3 SCORE. MA 114 Exam 3 Spring Section and/or TA:

Exam 3 SCORE. MA 114 Exam 3 Spring Section and/or TA: MA 114 Exam 3 Spring 217 Exam 3 Name: Section and/or TA: Last Four Digits of Student ID: Do not remove this answer page you will return the whole exam. You will be allowed two hours to complete this test.

More information

Common Core Standards Addressed in this Resource

Common Core Standards Addressed in this Resource Common Core Standards Addressed in this Resource N-CN.4 - Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers), and explain why the rectangular

More information

Pre-Calculus Guided Notes: Chapter 10 Conics. A circle is

Pre-Calculus Guided Notes: Chapter 10 Conics. A circle is Name: Pre-Calculus Guided Notes: Chapter 10 Conics Section Circles A circle is _ Example 1 Write an equation for the circle with center (3, ) and radius 5. To do this, we ll need the x1 y y1 distance formula:

More information

Worksheet 3.2: Double Integrals in Polar Coordinates

Worksheet 3.2: Double Integrals in Polar Coordinates Boise State Math 75 (Ultman) Worksheet 3.: ouble Integrals in Polar Coordinates From the Toolbox (what you need from previous classes): Trig/Calc II: Convert equations in x and y into r and θ, using the

More information

Appendix D Trigonometry

Appendix D Trigonometry Math 151 c Lynch 1 of 8 Appendix D Trigonometry Definition. Angles can be measure in either degree or radians with one complete revolution 360 or 2 rad. Then Example 1. rad = 180 (a) Convert 3 4 into degrees.

More information

Coordinate Transformations in Advanced Calculus

Coordinate Transformations in Advanced Calculus Coordinate Transformations in Advanced Calculus by Sacha Nandlall T.A. for MATH 264, McGill University Email: sacha.nandlall@mail.mcgill.ca Website: http://www.resanova.com/teaching/calculus/ Fall 2006,

More information

d f(g(t), h(t)) = x dt + f ( y dt = 0. Notice that we can rewrite the relationship on the left hand side of the equality using the dot product: ( f

d f(g(t), h(t)) = x dt + f ( y dt = 0. Notice that we can rewrite the relationship on the left hand side of the equality using the dot product: ( f Gradients and the Directional Derivative In 14.3, we discussed the partial derivatives f f and, which tell us the rate of change of the x y height of the surface defined by f in the x direction and the

More information

Education Resources. This section is designed to provide examples which develop routine skills necessary for completion of this section.

Education Resources. This section is designed to provide examples which develop routine skills necessary for completion of this section. Education Resources Trigonometry Higher Mathematics Supplementary Resources Section A This section is designed to provide examples which develop routine skills necessary for completion of this section.

More information

Presented, and Compiled, By. Bryan Grant. Jessie Ross

Presented, and Compiled, By. Bryan Grant. Jessie Ross P a g e 1 Presented, and Compiled, By Bryan Grant Jessie Ross August 3 rd, 2016 P a g e 2 Day 1 Discovering Polar Graphs Days 1 & 2 Adapted from Nancy Stephenson - Clements High School, Sugar Land, Texas

More information

9.1 Parametric Curves

9.1 Parametric Curves Math 172 Chapter 9A notes Page 1 of 20 9.1 Parametric Curves So far we have discussed equations in the form. Sometimes and are given as functions of a parameter. Example. Projectile Motion Sketch and axes,

More information

turn counterclockwise from the positive x-axis. However, we could equally well get to this point by a 3 4 turn clockwise, giving (r, θ) = (1, 3π 2

turn counterclockwise from the positive x-axis. However, we could equally well get to this point by a 3 4 turn clockwise, giving (r, θ) = (1, 3π 2 Math 133 Polar Coordinates Stewart 10.3/I,II Points in polar coordinates. The first and greatest achievement of modern mathematics was Descartes description of geometric objects b numbers, using a sstem

More information

1 Trigonometry. Copyright Cengage Learning. All rights reserved.

1 Trigonometry. Copyright Cengage Learning. All rights reserved. 1 Trigonometry Copyright Cengage Learning. All rights reserved. 1.1 Radian and Degree Measure Copyright Cengage Learning. All rights reserved. Objectives Describe angles. Use radian measure. Use degree

More information

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions Calculus III Math Spring 7 In-term exam April th. Suggested solutions This exam contains sixteen problems numbered through 6. Problems 5 are multiple choice problems, which each count 5% of your total

More information

Chapter 10 Homework: Parametric Equations and Polar Coordinates

Chapter 10 Homework: Parametric Equations and Polar Coordinates Chapter 1 Homework: Parametric Equations and Polar Coordinates Name Homework 1.2 1. Consider the parametric equations x = t and y = 3 t. a. Construct a table of values for t =, 1, 2, 3, and 4 b. Plot the

More information

Using Polar Coordinates. Graphing and converting polar and rectangular coordinates

Using Polar Coordinates. Graphing and converting polar and rectangular coordinates Using Polar Coordinates Graphing and converting polar and rectangular coordinates Butterflies are among the most celebrated of all insects. It s hard not to notice their beautiful colors and graceful flight.

More information

MATHEMATICS 105 Plane Trigonometry

MATHEMATICS 105 Plane Trigonometry Chapter I THE TRIGONOMETRIC FUNCTIONS MATHEMATICS 105 Plane Trigonometry INTRODUCTION The word trigonometry literally means triangle measurement. It is concerned with the measurement of the parts, sides,

More information

MAT1B01: Curves defined by parametric equations

MAT1B01: Curves defined by parametric equations MAT1B01: Curves defined by parametric equations Dr Craig 24 October 2016 My details: acraig@uj.ac.za Consulting hours: Thursday 11h20 12h55 Friday 11h30 13h00 Office C-Ring 508 https://andrewcraigmaths.wordpress.com/

More information

8-1 Simple Trigonometric Equations. Objective: To solve simple Trigonometric Equations and apply them

8-1 Simple Trigonometric Equations. Objective: To solve simple Trigonometric Equations and apply them Warm Up Use your knowledge of UC to find at least one value for q. 1) sin θ = 1 2 2) cos θ = 3 2 3) tan θ = 1 State as many angles as you can that are referenced by each: 1) 30 2) π 3 3) 0.65 radians Useful

More information

Unit 7: Trigonometry Part 1

Unit 7: Trigonometry Part 1 100 Unit 7: Trigonometry Part 1 Right Triangle Trigonometry Hypotenuse a) Sine sin( α ) = d) Cosecant csc( α ) = α Adjacent Opposite b) Cosine cos( α ) = e) Secant sec( α ) = c) Tangent f) Cotangent tan(

More information

SNAP Centre Workshop. Introduction to Trigonometry

SNAP Centre Workshop. Introduction to Trigonometry SNAP Centre Workshop Introduction to Trigonometry 62 Right Triangle Review A right triangle is any triangle that contains a 90 degree angle. There are six pieces of information we can know about a given

More information

Section 4.1: Introduction to Trigonometry

Section 4.1: Introduction to Trigonometry Section 4.1: Introduction to Trigonometry Review of Triangles Recall that the sum of all angles in any triangle is 180. Let s look at what this means for a right triangle: A right angle is an angle which

More information

: = Curves Defined by Parametric Equations. Ex: Consider the unit circle from Trigonometry. What is the equation of that circle?

: = Curves Defined by Parametric Equations. Ex: Consider the unit circle from Trigonometry. What is the equation of that circle? 10.1 Curves Defined by Parametric Equations Ex: Consider the unit circle from Trigonometry. What is the equation of that circle? of 8* * # 2+-12=1 There are 2 ways to describe it: x 2 + y 2 = 1 x = cos!

More information

Getting a New Perspective

Getting a New Perspective Section 6.3 Polar Coordinates Getting a New Perspective We have worked etensively in the Cartesian coordinate system, plotting points, graphing equations, and using the properties of the Cartesian plane

More information

MATHEMATICS FOR ENGINEERING TRIGONOMETRY

MATHEMATICS FOR ENGINEERING TRIGONOMETRY MATHEMATICS FOR ENGINEERING TRIGONOMETRY TUTORIAL SOME MORE RULES OF TRIGONOMETRY This is the one of a series of basic tutorials in mathematics aimed at beginners or anyone wanting to refresh themselves

More information

Algebra II. Slide 1 / 162. Slide 2 / 162. Slide 3 / 162. Trigonometric Functions. Trig Functions

Algebra II. Slide 1 / 162. Slide 2 / 162. Slide 3 / 162. Trigonometric Functions. Trig Functions Slide 1 / 162 Algebra II Slide 2 / 162 Trigonometric Functions 2015-12-17 www.njctl.org Trig Functions click on the topic to go to that section Slide 3 / 162 Radians & Degrees & Co-terminal angles Arc

More information

Math 241, Exam 3 Information.

Math 241, Exam 3 Information. Math 241, xam 3 Information. 11/28/12, LC 310, 11:15-12:05. xam 3 will be based on: Sections 15.2-15.4, 15.6-15.8. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

More information

48. Logistic Growth (BC) Classwork

48. Logistic Growth (BC) Classwork 48. Logistic Growth (BC) Classwork Using the exponential growth model, the growth of a population is proportion to its current size. The differential equation for exponential growth is dp = kp leading

More information

Unit 2: Trigonometry. This lesson is not covered in your workbook. It is a review of trigonometry topics from previous courses.

Unit 2: Trigonometry. This lesson is not covered in your workbook. It is a review of trigonometry topics from previous courses. Unit 2: Trigonometry This lesson is not covered in your workbook. It is a review of trigonometry topics from previous courses. Pythagorean Theorem Recall that, for any right angled triangle, the square

More information

θ as rectangular coordinates)

θ as rectangular coordinates) Section 11.1 Polar coordinates 11.1 1 Learning outcomes After completing this section, you will inshaallah be able to 1. know what are polar coordinates. see the relation between rectangular and polar

More information

is a plane curve and the equations are parametric equations for the curve, with parameter t.

is a plane curve and the equations are parametric equations for the curve, with parameter t. MATH 2412 Sections 6.3, 6.4, and 6.5 Parametric Equations and Polar Coordinates. Plane Curves and Parametric Equations Suppose t is contained in some interval I of the real numbers, and = f( t), = gt (

More information

Unit Circle. Project Response Sheet

Unit Circle. Project Response Sheet NAME: PROJECT ACTIVITY: Trigonometry TOPIC Unit Circle GOALS MATERIALS Explore Degree and Radian Measure Explore x- and y- coordinates on the Unit Circle Investigate Odd and Even functions Investigate

More information

MAC2313 Final A. a. The vector r u r v lies in the tangent plane of S at a given point. b. S f(x, y, z) ds = R f(r(u, v)) r u r v du dv.

MAC2313 Final A. a. The vector r u r v lies in the tangent plane of S at a given point. b. S f(x, y, z) ds = R f(r(u, v)) r u r v du dv. MAC2313 Final A (5 pts) 1. Let f(x, y, z) be a function continuous in R 3 and let S be a surface parameterized by r(u, v) with the domain of the parameterization given by R; how many of the following are

More information

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved.

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved. 10 Conics, Parametric Equations, and Polar Coordinates Copyright Cengage Learning. All rights reserved. 10.5 Area and Arc Length in Polar Coordinates Copyright Cengage Learning. All rights reserved. Objectives

More information

Grad operator, triple and line integrals. Notice: this material must not be used as a substitute for attending the lectures

Grad operator, triple and line integrals. Notice: this material must not be used as a substitute for attending the lectures Grad operator, triple and line integrals Notice: this material must not be used as a substitute for attending the lectures 1 .1 The grad operator Let f(x 1, x,..., x n ) be a function of the n variables

More information

Trigonometry Review Day 1

Trigonometry Review Day 1 Name Trigonometry Review Day 1 Algebra II Rotations and Angle Terminology II Terminal y I Positive angles rotate in a counterclockwise direction. Reference Ray Negative angles rotate in a clockwise direction.

More information

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane?

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane? Math 4 Practice Problems for Midterm. A unit vector that is perpendicular to both V =, 3, and W = 4,, is (a) V W (b) V W (c) 5 6 V W (d) 3 6 V W (e) 7 6 V W. In three dimensions, the graph of the equation

More information

A lg e b ra II. Trig o n o m e tric F u n c tio

A lg e b ra II. Trig o n o m e tric F u n c tio 1 A lg e b ra II Trig o n o m e tric F u n c tio 2015-12-17 www.njctl.org 2 Trig Functions click on the topic to go to that section Radians & Degrees & Co-terminal angles Arc Length & Area of a Sector

More information

Ch. 7.4, 7.6, 7.7: Complex Numbers, Polar Coordinates, ParametricFall equations / 17

Ch. 7.4, 7.6, 7.7: Complex Numbers, Polar Coordinates, ParametricFall equations / 17 Ch. 7.4, 7.6, 7.7: Complex Numbers, Polar Coordinates, Parametric equations Johns Hopkins University Fall 2014 Ch. 7.4, 7.6, 7.7: Complex Numbers, Polar Coordinates, ParametricFall equations 2014 1 / 17

More information

: Find the values of the six trigonometric functions for θ. Special Right Triangles:

: Find the values of the six trigonometric functions for θ. Special Right Triangles: ALGEBRA 2 CHAPTER 13 NOTES Section 13-1 Right Triangle Trig Understand and use trigonometric relationships of acute angles in triangles. 12.F.TF.3 CC.9- Determine side lengths of right triangles by using

More information

Trigonometry, Pt 1: Angles and Their Measure. Mr. Velazquez Honors Precalculus

Trigonometry, Pt 1: Angles and Their Measure. Mr. Velazquez Honors Precalculus Trigonometry, Pt 1: Angles and Their Measure Mr. Velazquez Honors Precalculus Defining Angles An angle is formed by two rays or segments that intersect at a common endpoint. One side of the angle is called

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Homework - Solutions 3 2 Homework 2 - Solutions 3 3 Homework 3 - Solutions 9 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus

More information

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved.

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved. 10 Conics, Parametric Equations, and Polar Coordinates Copyright Cengage Learning. All rights reserved. 10.5 Area and Arc Length in Polar Coordinates Copyright Cengage Learning. All rights reserved. Objectives

More information

Charting new territory: Formulating the Dalivian coordinate system

Charting new territory: Formulating the Dalivian coordinate system Parabola Volume 53, Issue 2 (2017) Charting new territory: Formulating the Dalivian coordinate system Olivia Burton and Emma Davis 1 Numerous coordinate systems have been invented. The very first and most

More information

2.3 Circular Functions of Real Numbers

2.3 Circular Functions of Real Numbers www.ck12.org Chapter 2. Graphing Trigonometric Functions 2.3 Circular Functions of Real Numbers Learning Objectives Graph the six trigonometric ratios as functions on the Cartesian plane. Identify the

More information

Chapter 9 Topics in Analytic Geometry

Chapter 9 Topics in Analytic Geometry Chapter 9 Topics in Analytic Geometry What You ll Learn: 9.1 Introduction to Conics: Parabolas 9.2 Ellipses 9.3 Hyperbolas 9.5 Parametric Equations 9.6 Polar Coordinates 9.7 Graphs of Polar Equations 9.1

More information

Answers to practice questions for Midterm 1

Answers to practice questions for Midterm 1 Answers to practice questions for Midterm Paul Hacking /5/9 (a The RREF (reduced row echelon form of the augmented matrix is So the system of linear equations has exactly one solution given by x =, y =,

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Calculus III-Final review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the corresponding position vector. 1) Define the points P = (-,

More information

Math 265 Exam 3 Solutions

Math 265 Exam 3 Solutions C Roettger, Fall 16 Math 265 Exam 3 Solutions Problem 1 Let D be the region inside the circle r 5 sin θ but outside the cardioid r 2 + sin θ. Find the area of D. Note that r and θ denote polar coordinates.

More information

Background for Surface Integration

Background for Surface Integration Background for urface Integration 1 urface Integrals We have seen in previous work how to define and compute line integrals in R 2. You should remember the basic surface integrals that we will need to

More information

Downloaded from

Downloaded from Top Concepts Class XI: Maths Ch : Trigonometric Function Chapter Notes. An angle is a measure of rotation of a given ray about its initial point. The original ray is called the initial side and the final

More information

CALCULUS II. Parametric Equations and Polar Coordinates. Paul Dawkins

CALCULUS II. Parametric Equations and Polar Coordinates. Paul Dawkins CALCULUS II Parametric Equations and Polar Coordinates Paul Dawkins Table of Contents Preface... ii Parametric Equations and Polar Coordinates... 3 Introduction... 3 Parametric Equations and Curves...

More information

Algebra II Trigonometric Functions

Algebra II Trigonometric Functions Slide 1 / 162 Slide 2 / 162 Algebra II Trigonometric Functions 2015-12-17 www.njctl.org Slide 3 / 162 Trig Functions click on the topic to go to that section Radians & Degrees & Co-terminal angles Arc

More information

MAT01B1: Curves defined by parametric equations

MAT01B1: Curves defined by parametric equations MAT01B1: Curves defined by parametric equations Dr Craig 10 October 2018 My details: acraig@uj.ac.za Consulting hours: Monday 14h40 15h25 Thursday 11h20 12h55 Friday 11h20 12h55 Office C-Ring 508 https://andrewcraigmaths.wordpress.com/

More information

Chapter 5. An Introduction to Trigonometric Functions 1-1

Chapter 5. An Introduction to Trigonometric Functions 1-1 Chapter 5 An Introduction to Trigonometric Functions Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1-1 5.1 A half line or all points extended from a single

More information

Unit 13: Periodic Functions and Trig

Unit 13: Periodic Functions and Trig Date Period Unit 13: Periodic Functions and Trig Day Topic 0 Special Right Triangles and Periodic Function 1 Special Right Triangles Standard Position Coterminal Angles 2 Unit Circle Cosine & Sine (x,

More information