Polyhedral Compilation Foundations

Size: px
Start display at page:

Download "Polyhedral Compilation Foundations"

Transcription

1 Polyhedral Complaton Foundatons Lous-Noël Pouchet Dept. of Computer Scence and Engneerng, the Oho State Unversty Feb 8, , Class #

2 Introducton: Polyhedral Complaton Foundatons - # Overvew of Today s Lecture Outlne: Transformaton n the polyhedral representaton Affne schedulng Scannng hyperplane Legal transformaton One-dmensonal affne schedules Convex set of legal schedules Objectve functons Mathematcal concepts: Affne functons Affne form of Farkas Lemma OSU 2

3 Affne Schedulng: Polyhedral Complaton Foundatons - # Affne Schedulng Defnton (Affne schedule) Gven a statement S, a p-dmensonal affne schedule Θ R s an affne form on the outer loop terators x S and the global parameters n. It s wrtten: Θ S ( x S ) = T S x S n, T S K p dm( x S)+dm( n)+ A schedule assgns a tmestamp to each executed nstance of a statement If T s a vector, then Θ s a one-dmensonal schedule If T s a matrx, then Θ s a multdmensonal schedule OSU

4 Affne Schedulng: Polyhedral Complaton Foundatons - # Schedulng Statement Instances Interchange Transformaton The transformaton matrx s the dentty wth a permutaton of two rows. j j 0 0 j = = [ 0 0 ] j j j (a) orgnal polyhedron (b) transformaton functon (c) target polyhedron A x + a 0 y = T x (AT ) y + a 0 do =, 2 do j =, do j =, do =, 2 OSU 4

5 Affne Schedulng: Polyhedral Complaton Foundatons - # Schedulng Statement Instances Reversal Transformaton The transformaton matrx s the dentty wth one dagonal element replaced by. j j = j 0 0 j = [ 0 0 ] j j (a) orgnal polyhedron (b) transformaton functon (c) target polyhedron A x + a 0 y = T x (AT ) y + a 0 do =, 2 do j =, do = -, -2, - do j =, OSU 5

6 Affne Schedulng: Polyhedral Complaton Foundatons - # Schedulng Statement Instances Coumpound Transformaton The transformaton matrx s the composton of an nterchange and reversal j j = j 0 0 j = [ 0 0 ] j j (a) orgnal polyhedron (b) transformaton functon (c) target polyhedron A x + a 0 y = T x (AT ) y + a 0 do =, 2 do j =, do j = -, -, - do =, 2 OSU 6

7 Affne Schedulng: Polyhedral Complaton Foundatons - # Schedulng Statement Instances Coumpound Transformaton The transformaton matrx s the composton of an nterchange and reversal j j = j 0 0 j = [ 0 0 ] j j (a) orgnal polyhedron (b) transformaton functon (c) target polyhedron A x + a 0 y = T x (AT ) y + a 0 do =, 2 do j =, do j = -, -, - do =, 2 OSU 7

8 Affne Schedulng: Polyhedral Complaton Foundatons - # Program Transformatons Orgnal Schedule for ( = 0; < n; ++) for (j = 0; j < n; ++j){ S: C[][j] = 0; for (k = 0; k < n; ++k) S2: C[][j] += A[][k]* B[k][j]; } Θ S. x S = j n j Θ S2. x S2 = k n for ( = 0; < n; ++) for (j = 0; j < n; ++j){ C[][j] = 0; for (k = 0; k < n; ++k) C[][j] += A[][k]* B[k][j]; } Represent Statc Control Parts (control flow and dependences must be statcally computable) Use code generator (e.g. CLooG) to generate C code from polyhedral representaton (provded teraton domans + schedules) OSU 8

9 Affne Schedulng: Polyhedral Complaton Foundatons - # Program Transformatons Orgnal Schedule for ( = 0; < n; ++) for (j = 0; j < n; ++j){ S: C[][j] = 0; for (k = 0; k < n; ++k) S2: C[][j] += A[][k]* B[k][j]; } Θ S. x S = j n j Θ S2. x S2 = k n for ( = 0; < n; ++) for (j = 0; j < n; ++j){ C[][j] = 0; for (k = 0; k < n; ++k) C[][j] += A[][k]* B[k][j]; } Represent Statc Control Parts (control flow and dependences must be statcally computable) Use code generator (e.g. CLooG) to generate C code from polyhedral representaton (provded teraton domans + schedules) OSU 9

10 Affne Schedulng: Polyhedral Complaton Foundatons - # Program Transformatons Orgnal Schedule for ( = 0; < n; ++) for (j = 0; j < n; ++j){ S: C[][j] = 0; for (k = 0; k < n; ++k) S2: C[][j] += A[][k]* B[k][j]; } Θ S. x S = j n j Θ S2. x S2 = k n for ( = 0; < n; ++) for (j = 0; j < n; ++j){ C[][j] = 0; for (k = 0; k < n; ++k) C[][j] += A[][k]* B[k][j]; } Represent Statc Control Parts (control flow and dependences must be statcally computable) Use code generator (e.g. CLooG) to generate C code from polyhedral representaton (provded teraton domans + schedules) OSU 0

11 Affne Schedulng: Polyhedral Complaton Foundatons - # Program Transformatons Dstrbute loops for ( = 0; < n; ++) for (j = 0; j < n; ++j){ S: C[][j] = 0; for (k = 0; k < n; ++k) S2: C[][j] += A[][k]* B[k][j]; } Θ S. x S = j n j Θ S2. x S2 = k n for ( = 0; < n; ++) for (j = 0; j < n; ++j) C[][j] = 0; for ( = n; < 2*n; ++) for (j = 0; j < n; ++j) for (k = 0; k < n; ++k) C[-n][j] += A[-n][k]* B[k][j]; All nstances of S are executed before the frst S2 nstance OSU

12 Affne Schedulng: Polyhedral Complaton Foundatons - # Program Transformatons Dstrbute loops + Interchange loops for S2 for ( = 0; < n; ++) for (j = 0; j < n; ++j){ S: C[][j] = 0; for (k = 0; k < n; ++k) S2: C[][j] += A[][k]* B[k][j]; } Θ S. x S = j n j Θ S2. x S2 = k n for ( = 0; < n; ++) for (j = 0; j < n; ++j) C[][j] = 0; for (k = n; k < 2*n; ++k) for (j = 0; j < n; ++j) for ( = 0; < n; ++) C[][j] += A[][k-n]* B[k-n][j]; The outer-most loop for S2 becomes k OSU 2

13 Affne Schedulng: Polyhedral Complaton Foundatons - # Program Transformatons Illegal schedule for ( = 0; < n; ++) for (j = 0; j < n; ++j){ S: C[][j] = 0; for (k = 0; k < n; ++k) S2: C[][j] += A[][k]* B[k][j]; } Θ S. x S = 0 0. j n j Θ S2. x S2 = k n for (k = 0; k < n; ++k) for (j = 0; j < n; ++j) for ( = 0; < n; ++) C[][j] += A[][k]* B[k][j]; for ( = n; < 2*n; ++) for (j = 0; j < n; ++j) C[-n][j] = 0; All nstances of S are executed after the last S2 nstance OSU

14 Affne Schedulng: Polyhedral Complaton Foundatons - # Program Transformatons A legal schedule for ( = 0; < n; ++) for (j = 0; j < n; ++j){ S: C[][j] = 0; for (k = 0; k < n; ++k) S2: C[][j] += A[][k]* B[k][j]; } Θ S. x S = 0 0. j n 0 0 j Θ S2. x S2 = k n for ( = n; < 2*n; ++) for (j = 0; j < n; ++j) C[][j] = 0; for (k= n+; k<= 2*n; ++k) for (j = 0; j < n; ++j) for ( = 0; < n; ++) C[][j] += A[][k-n-]* B[k-n-][j]; Delay the S2 nstances Constrants must be expressed between Θ S and Θ S2 OSU 4

15 Affne Schedulng: Polyhedral Complaton Foundatons - # Program Transformatons Implct fne-gran parallelsm for ( = 0; < n; ++) for (j = 0; j < n; ++j){ S: C[][j] = 0; for (k = 0; k < n; ++k) S2: C[][j] += A[][k]* B[k][j]; } Θ S. x S = ( ). j n j Θ S2. x S2 = ( ). k n for ( = 0; < n; ++) pfor (j = 0; j < n; ++j) C[][j] = 0; for (k = n; k < 2*n; ++k) pfor (j = 0; j < n; ++j) pfor ( = 0; < n; ++) C[][j] += A[][k-n]* B[k-n][j]; Number of rows of Θ number of outer-most sequental loops OSU 5

16 Affne Schedulng: Polyhedral Complaton Foundatons - # Program Transformatons Representng a schedule for ( = 0; < n; ++) for (j = 0; j < n; ++j){ S: C[][j] = 0; for (k = 0; k < n; ++k) S2: C[][j] += A[][k]* B[k][j]; } Θ S. x S = 0 0. j n 0 0 j Θ S2. x S2 = k n for ( = n; < 2*n; ++) for (j = 0; j < n; ++j) C[][j] = 0; for (k= n+; k<= 2*n; ++k) for (j = 0; j < n; ++j) for ( = 0; < n; ++) C[][j] += A[][k-n-]* B[k-n-][j]; Θ. x = ( j j k n n ) T OSU 6

17 Affne Schedulng: Polyhedral Complaton Foundatons - # Program Transformatons Representng a schedule for ( = 0; < n; ++) for (j = 0; j < n; ++j){ S: C[][j] = 0; for (k = 0; k < n; ++k) S2: C[][j] += A[][k]* B[k][j]; } Θ S. x S = 0 0. j n 0 0 j Θ S2. x S2 = k n for ( = n; < 2*n; ++) for (j = 0; j < n; ++j) C[][j] = 0; for (k= n+; k<= 2*n; ++k) for (j = 0; j < n; ++j) for ( = 0; < n; ++) C[][j] += A[][k-n-]* B[k-n-][j]; Θ. x = ( j j k n n ) T ı p c OSU 7

18 Affne Schedulng: Polyhedral Complaton Foundatons - # Program Transformatons Representng a schedule for ( = 0; < n; ++) for (j = 0; j < n; ++j){ S: C[][j] = 0; for (k = 0; k < n; ++k) S2: C[][j] += A[][k]* B[k][j]; } Θ S. x S = 0 0. j n 0 0 j Θ S2. x S2 = k n for ( = n; < 2*n; ++) for (j = 0; j < n; ++j) C[][j] = 0; for (k= n+; k<= 2*n; ++k) for (j = 0; j < n; ++j) for ( = 0; < n; ++) C[][j] += A[][k-n-]* B[k-n-][j]; ı p c Transformaton reversal skewng nterchange fuson dstrbuton peelng shftng Descrpton Changes the drecton n whch a loop traverses ts teraton range Makes the bounds of a gven loop depend on an outer loop counter Exchanges two loops n a perfectly nested loop, a.k.a. permutaton Fuses two loops, a.k.a. jammng Splts a sngle loop nest nto many, a.k.a. fsson or splttng Extracts one teraton of a gven loop Allows to reorder loops OSU 8

19 Affne Schedulng: Polyhedral Complaton Foundatons - # Pctured Example Example of 2 extended dependence graphs OSU 9

20 Legal Schedule: Polyhedral Complaton Foundatons - # Legal Program Transformaton A few propertes: A transformaton s llegal f a dependence crosses the hyperplane backwards A dependence gong forward between 2 hyperplanes ndcates sequentalty No dependence between any pont of the hyperplane ndcates parallelsm Defnton (Precedence condton) Gven Θ R a schedule for the nstances of R, Θ S a schedule for the nstances of S. Θ R and Θ S are legal schedules f x R, x S D R,S : Θ R ( x R ) Θ S ( x S ) OSU 20

21 Schedulng: Polyhedral Complaton Foundatons - # Schedulng n the Polyhedral Model Constrants: The schedule must be legal, for all dependences Dependence constrants have to be turned nto constrants on the soluton set Schedulng: Among all possbltes, one has to be pcked Optmal soluton requres to consder all legal possble schedules OSU 2

22 One-dmensonal Schedules: Polyhedral Complaton Foundatons - # One-Dmensonal Affne Schedules For the rest of the lecture, we focus on -d schedules Example for ( = ; < N; ++) A[] = A[ - ] + A[] + A[ + ]; Smple program: loop, polyhedral statement 2 dependences: RAW: A[] A[ - ] WAR: A[ + ] A[] OSU 22

23 One-dmensonal Schedules: Polyhedral Complaton Foundatons - # Checkng the Legalty of a Schedule Exercse: gven the dependence polyhedra, check f a schedule s legal eq eq 0 0 D : S S D 2 : 0 0 n 0. S S n Θ = 2 Θ = OSU 2

24 One-dmensonal Schedules: Polyhedral Complaton Foundatons - # Checkng the Legalty of a Schedule Exercse: gven the dependence polyhedra, check f a schedule s legal eq eq 0 0 D : S S D 2 : 0 0 n 0. S S n Θ = 2 Θ = Soluton: Check for the exstence of pars of nstances n dependence n the dependence polyhedron when the tmestamp are equals OSU 24

25 One-dmensonal Schedules: Polyhedral Complaton Foundatons - # A (Nave) Schedulng Approach Pck a schedule for the program statements Check f t respects all dependences Ths s called flterng Lmtatons: How to use ths n combnaton of an objectve functon? The densty of legal -d affne schedules s low: matmult localty fr h264 crout -Bounds,, 0,,, c-bounds,, 0, 0,4, #Sched #Legal OSU 25

26 One-dmensonal Schedules: Polyhedral Complaton Foundatons - # Objectves for a Good Schedulng Algorthm Buld a legal schedule! Embed some propertes n ths legal schedule latency: mnmze the tme between the frst and last teraton parallelsm (for placement) permutablty (for tlng)... A 2-step approach: Fnd the soluton set of all legal affne schedules Fnd an ILP formulaton for the objectve functon OSU 26

27 One-dmensonal Schedules: Polyhedral Complaton Foundatons - # The Precedence Constrant (Agan!) Precedence constrant adapted to -d schedules: Defnton (Causalty condton for schedules) Gven D R,S, Θ R and Θ S are legal ff for each par of nstances n dependence: Θ R ( x R ) < Θ S ( x S ) Equvalently: R,S = Θ S ( x S ) Θ R ( x R ) 0 All functons R,S whch are non-negatve over the dependence polyhedron represent legal schedules For the nstances whch are not n dependence, we don t care Frst step: how to get all non-negatve functons over a polyhedron? OSU 27

28 The Farkas Lemma: Polyhedral Complaton Foundatons - # Affne Form of the Farkas Lemma Lemma (Affne form of Farkas lemma) Let D be a nonempty polyhedron defned by A x + b 0. Then any affne functon f ( x) s non-negatve everywhere n D ff t s a postve affne combnaton: f ( x) = λ 0 + λ T (A x + b), wth λ 0 0 and λ 0 λ 0 and λ T are called the Farkas multplers. Intuton: a postve combnaton of some postve ponts s another postve pont OSU 28

29 The Farkas Lemma: Polyhedral Complaton Foundatons - # The Farkas Lemma: Example Functon: f (x) = ax + b Doman of x: { x } x 0, x + 0 Farkas lemma: f (x) 0 f (x) = λ 0 + λ (x ) + λ 2 ( x + ) The system to solve: λ λ 2 = a λ 0 λ + λ 2 = b λ 0 0 λ 0 λ 2 0 OSU 29

30 The Farkas Lemma: Polyhedral Complaton Foundatons - # Pctured Example f(x) b= a a>0 => b>= a 0 b= a 2 a<0 => b>= a x (Courtesy of Cedrc Bastoul s thess!) OSU 0

31 One-dmensonal Schedules: Polyhedral Complaton Foundatons - # Example: Semantcs Preservaton (-D) Affne Schedules Legal Dstnct Schedules OSU

32 One-dmensonal Schedules: Polyhedral Complaton Foundatons - # Example: Semantcs Preservaton (-D) Affne Schedules Legal Dstnct Schedules - Causalty condton Property (Causalty condton for schedules) Gven RδS, Θ R and Θ S are legal ff for each par of nstances n dependence: Θ R ( x R ) < Θ S ( x S ) Equvalently: R,S = Θ S ( x S ) Θ R ( x R ) 0 OSU 2

33 One-dmensonal Schedules: Polyhedral Complaton Foundatons - # Example: Semantcs Preservaton (-D) Affne Schedules Legal Dstnct Schedules - Causalty condton - Farkas Lemma Lemma (Affne form of Farkas lemma) Let D be a nonempty polyhedron defned by A x + b 0. Then any affne functon f ( x) s non-negatve everywhere n D ff t s a postve affne combnaton: f ( x) = λ 0 + λ T (A x + b), wth λ 0 0 and λ 0. λ 0 and λ T are called the Farkas multplers. OSU

34 One-dmensonal Schedules: Polyhedral Complaton Foundatons - # Example: Semantcs Preservaton (-D) Affne Schedules Vald Farkas Multplers Legal Dstnct Schedules - Causalty condton - Farkas Lemma OSU 4

35 One-dmensonal Schedules: Polyhedral Complaton Foundatons - # Example: Semantcs Preservaton (-D) Affne Schedules Vald Farkas Multplers Many to one Legal Dstnct Schedules - Causalty condton - Farkas Lemma OSU 5

36 One-dmensonal Schedules: Polyhedral Complaton Foundatons - # Example: Semantcs Preservaton (-D) Affne Schedules Vald Farkas Multplers Legal Dstnct Schedules - Causalty condton - Farkas Lemma - Identfcaton ( ) Θ S ( x S ) Θ R ( x R ) = λ 0 + λ T xr D R,S + d R,S 0 x S D RδS R : λ D, λ D,2 + λ D, λ D,4 S : λ D, + λ D,2 + λ D,5 λ D,6 j S : λ D,7 λ D,8 n : λ D,4 + λ D,6 + λ D,8 : λ D,0 OSU 6

37 One-dmensonal Schedules: Polyhedral Complaton Foundatons - # Example: Semantcs Preservaton (-D) Affne Schedules Vald Farkas Multplers Legal Dstnct Schedules - Causalty condton - Farkas Lemma - Identfcaton ( ) Θ S ( x S ) Θ R ( x R ) = λ 0 + λ T xr D R,S + d R,S 0 x S D RδS R : t R = λ D, λ D,2 + λ D, λ D,4 S : t S = λ D, + λ D,2 + λ D,5 λ D,6 j S : t 2S = λ D,7 λ D,8 n : t S t 2R = λ D,4 + λ D,6 + λ D,8 : t 4S t R = λ D,0 OSU 7

38 One-dmensonal Schedules: Polyhedral Complaton Foundatons - # Example: Semantcs Preservaton (-D) Affne Schedules Vald Farkas Multplers Legal Dstnct Schedules - Causalty condton - Farkas Lemma - Identfcaton - Projecton Solve the constrant system Use (purpose-optmzed) Fourer-Motzkn projecton algorthm Reduce redundancy Detect mplct equaltes OSU 8

39 One-dmensonal Schedules: Polyhedral Complaton Foundatons - # Example: Semantcs Preservaton (-D) Affne Schedules Vald Farkas Multplers Vald Transformaton Coeffcents Legal Dstnct Schedules - Causalty condton - Farkas Lemma - Identfcaton - Projecton OSU 9

40 One-dmensonal Schedules: Polyhedral Complaton Foundatons - # Example: Semantcs Preservaton (-D) Affne Schedules Vald Farkas Multplers Vald Transformaton Coeffcents Bjecton Legal Dstnct Schedules - Causalty condton - Farkas Lemma - Identfcaton - Projecton One pont n the space one set of legal schedules w.r.t. the dependences These condtons for semantcs preservaton are not new! [Feautrer,92] OSU 40

41 One-dmensonal Schedules: Polyhedral Complaton Foundatons - # Schedulng Algorthm for Multple Dependences Algorthm Compute the schedule constrants for each dependence Intersect all sets of constrants Output s a convex soluton set of all legal one-dmensonal schedules Computaton s fast, but requres elmnatng varables n a system of nequaltes: projecton Can be computed as soon as the dependence polyhedra are known OSU 4

42 One-dmensonal Schedules: Polyhedral Complaton Foundatons - # Selectng a Good Schedule Buld a cost functon to select a (good) schedule: Mnmze latency: bound the executon tme Bound the program executon / fnd bounded delay [Feautrer] Gven L = w 0 + u. w, compute mn(θ( x) L) s.t. Θ s legal Exhbt coarse-gran parallelsm Placement constrants [Lm/Lam] Θ R ( x R ) = Θ S ( x S ) for all nstances s.t. Θ s legal Many more possble... OSU 42

43 One-dmensonal Schedules: Polyhedral Complaton Foundatons - # Lmtatons of One-dmensonal Schedules Not all programs have a legal one-dmensonal schedule Example for (t = 0; t < L; ++t) for ( = ; < N - ; ++) for (j = ; j < N - ; ++j) A[][j] = A[-][j-] + A[+][j] + A[][j+]; Not all compostons of transformaton are possble Interchange n nner-loops Fuson / dstrbuton of nner-loops Next week: the general case of multdmensonal schedules OSU 4

Vectorization in the Polyhedral Model

Vectorization in the Polyhedral Model Vectorzaton n the Polyhedral Model Lous-Noël Pouchet pouchet@cse.oho-state.edu Dept. of Computer Scence and Engneerng, the Oho State Unversty October 200 888. Introducton: Overvew Vectorzaton: Detecton

More information

Today Using Fourier-Motzkin elimination for code generation Using Fourier-Motzkin elimination for determining schedule constraints

Today Using Fourier-Motzkin elimination for code generation Using Fourier-Motzkin elimination for determining schedule constraints Fourer Motzkn Elmnaton Logstcs HW10 due Frday Aprl 27 th Today Usng Fourer-Motzkn elmnaton for code generaton Usng Fourer-Motzkn elmnaton for determnng schedule constrants Unversty Fourer-Motzkn Elmnaton

More information

Loop Permutation. Loop Transformations for Parallelism & Locality. Legality of Loop Interchange. Loop Interchange (cont)

Loop Permutation. Loop Transformations for Parallelism & Locality. Legality of Loop Interchange. Loop Interchange (cont) Loop Transformatons for Parallelsm & Localty Prevously Data dependences and loops Loop transformatons Parallelzaton Loop nterchange Today Loop nterchange Loop transformatons and transformaton frameworks

More information

Loop Transformations for Parallelism & Locality. Review. Scalar Expansion. Scalar Expansion: Motivation

Loop Transformations for Parallelism & Locality. Review. Scalar Expansion. Scalar Expansion: Motivation Loop Transformatons for Parallelsm & Localty Last week Data dependences and loops Loop transformatons Parallelzaton Loop nterchange Today Scalar expanson for removng false dependences Loop nterchange Loop

More information

Iterative Optimization in the Polyhedral Model: Part I, One-Dimensional Time

Iterative Optimization in the Polyhedral Model: Part I, One-Dimensional Time Iterative Optimization in the Polyhedral Model: Part I, One-Dimensional Time Louis-Noël Pouchet, Cédric Bastoul, Albert Cohen and Nicolas Vasilache ALCHEMY, INRIA Futurs / University of Paris-Sud XI March

More information

Parallelism for Nested Loops with Non-uniform and Flow Dependences

Parallelism for Nested Loops with Non-uniform and Flow Dependences Parallelsm for Nested Loops wth Non-unform and Flow Dependences Sam-Jn Jeong Dept. of Informaton & Communcaton Engneerng, Cheonan Unversty, 5, Anseo-dong, Cheonan, Chungnam, 330-80, Korea. seong@cheonan.ac.kr

More information

Loop Transformations, Dependences, and Parallelization

Loop Transformations, Dependences, and Parallelization Loop Transformatons, Dependences, and Parallelzaton Announcements Mdterm s Frday from 3-4:15 n ths room Today Semester long project Data dependence recap Parallelsm and storage tradeoff Scalar expanson

More information

ADJUSTING A PROGRAM TRANSFORMATION FOR LEGALITY

ADJUSTING A PROGRAM TRANSFORMATION FOR LEGALITY Parallel Processng Letters c World Scentfc Publshng Company ADJUSTING A PROGRAM TRANSFORMATION FOR LEGALITY CÉDRIC BASTOUL Laboratore PRSM, Unversté de Versalles Sant Quentn 45 avenue des États-Uns, 785

More information

LLVM passes and Intro to Loop Transformation Frameworks

LLVM passes and Intro to Loop Transformation Frameworks LLVM passes and Intro to Loop Transformaton Frameworks Announcements Ths class s recorded and wll be n D2L panapto. No quz Monday after sprng break. Wll be dong md-semester class feedback. Today LLVM passes

More information

Smoothing Spline ANOVA for variable screening

Smoothing Spline ANOVA for variable screening Smoothng Splne ANOVA for varable screenng a useful tool for metamodels tranng and mult-objectve optmzaton L. Rcco, E. Rgon, A. Turco Outlne RSM Introducton Possble couplng Test case MOO MOO wth Game Theory

More information

GSLM Operations Research II Fall 13/14

GSLM Operations Research II Fall 13/14 GSLM 58 Operatons Research II Fall /4 6. Separable Programmng Consder a general NLP mn f(x) s.t. g j (x) b j j =. m. Defnton 6.. The NLP s a separable program f ts objectve functon and all constrants are

More information

Kent State University CS 4/ Design and Analysis of Algorithms. Dept. of Math & Computer Science LECT-16. Dynamic Programming

Kent State University CS 4/ Design and Analysis of Algorithms. Dept. of Math & Computer Science LECT-16. Dynamic Programming CS 4/560 Desgn and Analyss of Algorthms Kent State Unversty Dept. of Math & Computer Scence LECT-6 Dynamc Programmng 2 Dynamc Programmng Dynamc Programmng, lke the dvde-and-conquer method, solves problems

More information

Support Vector Machines. CS534 - Machine Learning

Support Vector Machines. CS534 - Machine Learning Support Vector Machnes CS534 - Machne Learnng Perceptron Revsted: Lnear Separators Bnar classfcaton can be veed as the task of separatng classes n feature space: b > 0 b 0 b < 0 f() sgn( b) Lnear Separators

More information

Programming in Fortran 90 : 2017/2018

Programming in Fortran 90 : 2017/2018 Programmng n Fortran 90 : 2017/2018 Programmng n Fortran 90 : 2017/2018 Exercse 1 : Evaluaton of functon dependng on nput Wrte a program who evaluate the functon f (x,y) for any two user specfed values

More information

Machine Learning. Support Vector Machines. (contains material adapted from talks by Constantin F. Aliferis & Ioannis Tsamardinos, and Martin Law)

Machine Learning. Support Vector Machines. (contains material adapted from talks by Constantin F. Aliferis & Ioannis Tsamardinos, and Martin Law) Machne Learnng Support Vector Machnes (contans materal adapted from talks by Constantn F. Alfers & Ioanns Tsamardnos, and Martn Law) Bryan Pardo, Machne Learnng: EECS 349 Fall 2014 Support Vector Machnes

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 5 Luca Trevisan September 7, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 5 Luca Trevisan September 7, 2017 U.C. Bereley CS294: Beyond Worst-Case Analyss Handout 5 Luca Trevsan September 7, 207 Scrbed by Haars Khan Last modfed 0/3/207 Lecture 5 In whch we study the SDP relaxaton of Max Cut n random graphs. Quc

More information

Polyhedral Compilation Foundations

Polyhedral Compilation Foundations Polyhedral Compilation Foundations Louis-Noël Pouchet pouchet@cse.ohio-state.edu Dept. of Computer Science and Engineering, the Ohio State University Feb 15, 2010 888.11, Class #4 Introduction: Polyhedral

More information

Parallel Numerics. 1 Preconditioning & Iterative Solvers (From 2016)

Parallel Numerics. 1 Preconditioning & Iterative Solvers (From 2016) Technsche Unverstät München WSe 6/7 Insttut für Informatk Prof. Dr. Thomas Huckle Dpl.-Math. Benjamn Uekermann Parallel Numercs Exercse : Prevous Exam Questons Precondtonng & Iteratve Solvers (From 6)

More information

Support Vector Machines

Support Vector Machines Support Vector Machnes Decson surface s a hyperplane (lne n 2D) n feature space (smlar to the Perceptron) Arguably, the most mportant recent dscovery n machne learnng In a nutshell: map the data to a predetermned

More information

Compiler Design. Spring Register Allocation. Sample Exercises and Solutions. Prof. Pedro C. Diniz

Compiler Design. Spring Register Allocation. Sample Exercises and Solutions. Prof. Pedro C. Diniz Compler Desgn Sprng 2014 Regster Allocaton Sample Exercses and Solutons Prof. Pedro C. Dnz USC / Informaton Scences Insttute 4676 Admralty Way, Sute 1001 Marna del Rey, Calforna 90292 pedro@s.edu Regster

More information

Face Recognition University at Buffalo CSE666 Lecture Slides Resources:

Face Recognition University at Buffalo CSE666 Lecture Slides Resources: Face Recognton Unversty at Buffalo CSE666 Lecture Sldes Resources: http://www.face-rec.org/algorthms/ Overvew of face recognton algorthms Correlaton - Pxel based correspondence between two face mages Structural

More information

A SYSTOLIC APPROACH TO LOOP PARTITIONING AND MAPPING INTO FIXED SIZE DISTRIBUTED MEMORY ARCHITECTURES

A SYSTOLIC APPROACH TO LOOP PARTITIONING AND MAPPING INTO FIXED SIZE DISTRIBUTED MEMORY ARCHITECTURES A SYSOLIC APPROACH O LOOP PARIIONING AND MAPPING INO FIXED SIZE DISRIBUED MEMORY ARCHIECURES Ioanns Drosts, Nektaros Kozrs, George Papakonstantnou and Panayots sanakas Natonal echncal Unversty of Athens

More information

Classification / Regression Support Vector Machines

Classification / Regression Support Vector Machines Classfcaton / Regresson Support Vector Machnes Jeff Howbert Introducton to Machne Learnng Wnter 04 Topcs SVM classfers for lnearly separable classes SVM classfers for non-lnearly separable classes SVM

More information

Support Vector Machines

Support Vector Machines /9/207 MIST.6060 Busness Intellgence and Data Mnng What are Support Vector Machnes? Support Vector Machnes Support Vector Machnes (SVMs) are supervsed learnng technques that analyze data and recognze patterns.

More information

Efficient Code Generation for Automatic Parallelization and Optimization

Efficient Code Generation for Automatic Parallelization and Optimization Effcent Code Generaton for utomatc Parallelzaton and Optmzaton Cédrc Bastoul Laboratore PRSM, Unversté de Versalles Sant Quentn 5 avenue des États-Uns, 7805 Versalles Cedex, France Emal: cedrcbastoul@prsmuvsqfr

More information

Solving two-person zero-sum game by Matlab

Solving two-person zero-sum game by Matlab Appled Mechancs and Materals Onlne: 2011-02-02 ISSN: 1662-7482, Vols. 50-51, pp 262-265 do:10.4028/www.scentfc.net/amm.50-51.262 2011 Trans Tech Publcatons, Swtzerland Solvng two-person zero-sum game by

More information

AMath 483/583 Lecture 21 May 13, Notes: Notes: Jacobi iteration. Notes: Jacobi with OpenMP coarse grain

AMath 483/583 Lecture 21 May 13, Notes: Notes: Jacobi iteration. Notes: Jacobi with OpenMP coarse grain AMath 483/583 Lecture 21 May 13, 2011 Today: OpenMP and MPI versons of Jacob teraton Gauss-Sedel and SOR teratve methods Next week: More MPI Debuggng and totalvew GPU computng Read: Class notes and references

More information

Hermite Splines in Lie Groups as Products of Geodesics

Hermite Splines in Lie Groups as Products of Geodesics Hermte Splnes n Le Groups as Products of Geodescs Ethan Eade Updated May 28, 2017 1 Introducton 1.1 Goal Ths document defnes a curve n the Le group G parametrzed by tme and by structural parameters n the

More information

Feature Reduction and Selection

Feature Reduction and Selection Feature Reducton and Selecton Dr. Shuang LIANG School of Software Engneerng TongJ Unversty Fall, 2012 Today s Topcs Introducton Problems of Dmensonalty Feature Reducton Statstc methods Prncpal Components

More information

SENSITIVITY ANALYSIS IN LINEAR PROGRAMMING USING A CALCULATOR

SENSITIVITY ANALYSIS IN LINEAR PROGRAMMING USING A CALCULATOR SENSITIVITY ANALYSIS IN LINEAR PROGRAMMING USING A CALCULATOR Judth Aronow Rchard Jarvnen Independent Consultant Dept of Math/Stat 559 Frost Wnona State Unversty Beaumont, TX 7776 Wnona, MN 55987 aronowju@hal.lamar.edu

More information

Subspace clustering. Clustering. Fundamental to all clustering techniques is the choice of distance measure between data points;

Subspace clustering. Clustering. Fundamental to all clustering techniques is the choice of distance measure between data points; Subspace clusterng Clusterng Fundamental to all clusterng technques s the choce of dstance measure between data ponts; D q ( ) ( ) 2 x x = x x, j k = 1 k jk Squared Eucldean dstance Assumpton: All features

More information

6.854 Advanced Algorithms Petar Maymounkov Problem Set 11 (November 23, 2005) With: Benjamin Rossman, Oren Weimann, and Pouya Kheradpour

6.854 Advanced Algorithms Petar Maymounkov Problem Set 11 (November 23, 2005) With: Benjamin Rossman, Oren Weimann, and Pouya Kheradpour 6.854 Advanced Algorthms Petar Maymounkov Problem Set 11 (November 23, 2005) Wth: Benjamn Rossman, Oren Wemann, and Pouya Kheradpour Problem 1. We reduce vertex cover to MAX-SAT wth weghts, such that the

More information

Lecture 15: Memory Hierarchy Optimizations. I. Caches: A Quick Review II. Iteration Space & Loop Transformations III.

Lecture 15: Memory Hierarchy Optimizations. I. Caches: A Quick Review II. Iteration Space & Loop Transformations III. Lecture 15: Memory Herarchy Optmzatons I. Caches: A Quck Revew II. Iteraton Space & Loop Transformatons III. Types of Reuse ALSU 7.4.2-7.4.3, 11.2-11.5.1 15-745: Memory Herarchy Optmzatons Phllp B. Gbbons

More information

Cost-efficient deployment of distributed software services

Cost-efficient deployment of distributed software services 1/30 Cost-effcent deployment of dstrbuted software servces csorba@tem.ntnu.no 2/30 Short ntroducton & contents Cost-effcent deployment of dstrbuted software servces Cost functons Bo-nspred decentralzed

More information

Estimation of Parallel Complexity with Rewriting Techniques

Estimation of Parallel Complexity with Rewriting Techniques Estmaton of Parallel Complexty wth Rewrtng Technques Chrstophe Alas, Carsten Fuhs, Laure Gonnord INRIA & LIP (UMR CNRS/ENS Lyon/UCB Lyon1/INRIA), Lyon, France, chrstophe.alas@ens-lyon.fr Brkbeck, Unversty

More information

Polyhedral Compilation Foundations

Polyhedral Compilation Foundations Polyhedral Compilation Foundations Louis-Noël Pouchet pouchet@cse.ohio-state.edu Dept. of Computer Science and Engineering, the Ohio State University Feb 22, 2010 888.11, Class #5 Introduction: Polyhedral

More information

Lecture 5: Multilayer Perceptrons

Lecture 5: Multilayer Perceptrons Lecture 5: Multlayer Perceptrons Roger Grosse 1 Introducton So far, we ve only talked about lnear models: lnear regresson and lnear bnary classfers. We noted that there are functons that can t be represented

More information

Problem Set 3 Solutions

Problem Set 3 Solutions Introducton to Algorthms October 4, 2002 Massachusetts Insttute of Technology 6046J/18410J Professors Erk Demane and Shaf Goldwasser Handout 14 Problem Set 3 Solutons (Exercses were not to be turned n,

More information

Communication-Minimal Partitioning and Data Alignment for Af"ne Nested Loops

Communication-Minimal Partitioning and Data Alignment for Afne Nested Loops Communcaton-Mnmal Parttonng and Data Algnment for Af"ne Nested Loops HYUK-JAE LEE 1 AND JOSÉ A. B. FORTES 2 1 Department of Computer Scence, Lousana Tech Unversty, Ruston, LA 71272, USA 2 School of Electrcal

More information

Sum of Linear and Fractional Multiobjective Programming Problem under Fuzzy Rules Constraints

Sum of Linear and Fractional Multiobjective Programming Problem under Fuzzy Rules Constraints Australan Journal of Basc and Appled Scences, 2(4): 1204-1208, 2008 ISSN 1991-8178 Sum of Lnear and Fractonal Multobjectve Programmng Problem under Fuzzy Rules Constrants 1 2 Sanjay Jan and Kalash Lachhwan

More information

Announcements. Supervised Learning

Announcements. Supervised Learning Announcements See Chapter 5 of Duda, Hart, and Stork. Tutoral by Burge lnked to on web page. Supervsed Learnng Classfcaton wth labeled eamples. Images vectors n hgh-d space. Supervsed Learnng Labeled eamples

More information

CMPS 10 Introduction to Computer Science Lecture Notes

CMPS 10 Introduction to Computer Science Lecture Notes CPS 0 Introducton to Computer Scence Lecture Notes Chapter : Algorthm Desgn How should we present algorthms? Natural languages lke Englsh, Spansh, or French whch are rch n nterpretaton and meanng are not

More information

Motivations. TCAS Software Verification using Constraint Programming. Agenda. Traffic alert and Collision Avoidance System

Motivations. TCAS Software Verification using Constraint Programming. Agenda. Traffic alert and Collision Avoidance System TCS Software Verfcaton usng Constrant Programmng rnaud Gotleb INRI Rennes retagne tlantque CT for TM/TC workshop Dec. th, 008 Motvatons The CVERN project (NR, 008-00, part: ILOG, INRI, CE, U. of Nce):

More information

Wavefront Reconstructor

Wavefront Reconstructor A Dstrbuted Smplex B-Splne Based Wavefront Reconstructor Coen de Vsser and Mchel Verhaegen 14-12-201212 2012 Delft Unversty of Technology Contents Introducton Wavefront reconstructon usng Smplex B-Splnes

More information

Graph-based Clustering

Graph-based Clustering Graphbased Clusterng Transform the data nto a graph representaton ertces are the data ponts to be clustered Edges are eghted based on smlarty beteen data ponts Graph parttonng Þ Each connected component

More information

Modeling and Solving Nontraditional Optimization Problems Session 2a: Conic Constraints

Modeling and Solving Nontraditional Optimization Problems Session 2a: Conic Constraints Modelng and Solvng Nontradtonal Optmzaton Problems Sesson 2a: Conc Constrants Robert Fourer Industral Engneerng & Management Scences Northwestern Unversty AMPL Optmzaton LLC 4er@northwestern.edu 4er@ampl.com

More information

12/2/2009. Announcements. Parametric / Non-parametric. Case-Based Reasoning. Nearest-Neighbor on Images. Nearest-Neighbor Classification

12/2/2009. Announcements. Parametric / Non-parametric. Case-Based Reasoning. Nearest-Neighbor on Images. Nearest-Neighbor Classification Introducton to Artfcal Intellgence V22.0472-001 Fall 2009 Lecture 24: Nearest-Neghbors & Support Vector Machnes Rob Fergus Dept of Computer Scence, Courant Insttute, NYU Sldes from Danel Yeung, John DeNero

More information

Algorithmic Transformation Techniques for Efficient Exploration of Alternative Application Instances

Algorithmic Transformation Techniques for Efficient Exploration of Alternative Application Instances In: Proc. 0th Int. Symposum on Hardware/Software Codesgn (CODES 02), Estes Park, Colorado, USA, May 6 8, 2002 Algorthmc Transformaton Technques for Effcent Exploraton of Alternatve Applcaton Instances

More information

A mathematical programming approach to the analysis, design and scheduling of offshore oilfields

A mathematical programming approach to the analysis, design and scheduling of offshore oilfields 17 th European Symposum on Computer Aded Process Engneerng ESCAPE17 V. Plesu and P.S. Agach (Edtors) 2007 Elsever B.V. All rghts reserved. 1 A mathematcal programmng approach to the analyss, desgn and

More information

11. APPROXIMATION ALGORITHMS

11. APPROXIMATION ALGORITHMS Copng wth NP-completeness 11. APPROXIMATION ALGORITHMS load balancng center selecton prcng method: vertex cover LP roundng: vertex cover generalzed load balancng knapsack problem Q. Suppose I need to solve

More information

CHAPTER 3 SEQUENTIAL MINIMAL OPTIMIZATION TRAINED SUPPORT VECTOR CLASSIFIER FOR CANCER PREDICTION

CHAPTER 3 SEQUENTIAL MINIMAL OPTIMIZATION TRAINED SUPPORT VECTOR CLASSIFIER FOR CANCER PREDICTION 48 CHAPTER 3 SEQUENTIAL MINIMAL OPTIMIZATION TRAINED SUPPORT VECTOR CLASSIFIER FOR CANCER PREDICTION 3.1 INTRODUCTION The raw mcroarray data s bascally an mage wth dfferent colors ndcatng hybrdzaton (Xue

More information

An Application of the Dulmage-Mendelsohn Decomposition to Sparse Null Space Bases of Full Row Rank Matrices

An Application of the Dulmage-Mendelsohn Decomposition to Sparse Null Space Bases of Full Row Rank Matrices Internatonal Mathematcal Forum, Vol 7, 2012, no 52, 2549-2554 An Applcaton of the Dulmage-Mendelsohn Decomposton to Sparse Null Space Bases of Full Row Rank Matrces Mostafa Khorramzadeh Department of Mathematcal

More information

Complex Numbers. Now we also saw that if a and b were both positive then ab = a b. For a second let s forget that restriction and do the following.

Complex Numbers. Now we also saw that if a and b were both positive then ab = a b. For a second let s forget that restriction and do the following. Complex Numbers The last topc n ths secton s not really related to most of what we ve done n ths chapter, although t s somewhat related to the radcals secton as we wll see. We also won t need the materal

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 15

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 15 CS434a/541a: Pattern Recognton Prof. Olga Veksler Lecture 15 Today New Topc: Unsupervsed Learnng Supervsed vs. unsupervsed learnng Unsupervsed learnng Net Tme: parametrc unsupervsed learnng Today: nonparametrc

More information

FEATURE EXTRACTION. Dr. K.Vijayarekha. Associate Dean School of Electrical and Electronics Engineering SASTRA University, Thanjavur

FEATURE EXTRACTION. Dr. K.Vijayarekha. Associate Dean School of Electrical and Electronics Engineering SASTRA University, Thanjavur FEATURE EXTRACTION Dr. K.Vjayarekha Assocate Dean School of Electrcal and Electroncs Engneerng SASTRA Unversty, Thanjavur613 41 Jont Intatve of IITs and IISc Funded by MHRD Page 1 of 8 Table of Contents

More information

Computer Animation and Visualisation. Lecture 4. Rigging / Skinning

Computer Animation and Visualisation. Lecture 4. Rigging / Skinning Computer Anmaton and Vsualsaton Lecture 4. Rggng / Sknnng Taku Komura Overvew Sknnng / Rggng Background knowledge Lnear Blendng How to decde weghts? Example-based Method Anatomcal models Sknnng Assume

More information

Concurrent models of computation for embedded software

Concurrent models of computation for embedded software Concurrent models of computaton for embedded software and hardware! Researcher overvew what t looks lke semantcs what t means and how t relates desgnng an actor language actor propertes and how to represent

More information

3D vector computer graphics

3D vector computer graphics 3D vector computer graphcs Paolo Varagnolo: freelance engneer Padova Aprl 2016 Prvate Practce ----------------------------------- 1. Introducton Vector 3D model representaton n computer graphcs requres

More information

Outline. Discriminative classifiers for image recognition. Where in the World? A nearest neighbor recognition example 4/14/2011. CS 376 Lecture 22 1

Outline. Discriminative classifiers for image recognition. Where in the World? A nearest neighbor recognition example 4/14/2011. CS 376 Lecture 22 1 4/14/011 Outlne Dscrmnatve classfers for mage recognton Wednesday, Aprl 13 Krsten Grauman UT-Austn Last tme: wndow-based generc obect detecton basc ppelne face detecton wth boostng as case study Today:

More information

Lecture 5: Probability Distributions. Random Variables

Lecture 5: Probability Distributions. Random Variables Lecture 5: Probablty Dstrbutons Random Varables Probablty Dstrbutons Dscrete Random Varables Contnuous Random Varables and ther Dstrbutons Dscrete Jont Dstrbutons Contnuous Jont Dstrbutons Independent

More information

Solitary and Traveling Wave Solutions to a Model. of Long Range Diffusion Involving Flux with. Stability Analysis

Solitary and Traveling Wave Solutions to a Model. of Long Range Diffusion Involving Flux with. Stability Analysis Internatonal Mathematcal Forum, Vol. 6,, no. 7, 8 Soltary and Travelng Wave Solutons to a Model of Long Range ffuson Involvng Flux wth Stablty Analyss Manar A. Al-Qudah Math epartment, Rabgh Faculty of

More information

Outline. Midterm Review. Declaring Variables. Main Variable Data Types. Symbolic Constants. Arithmetic Operators. Midterm Review March 24, 2014

Outline. Midterm Review. Declaring Variables. Main Variable Data Types. Symbolic Constants. Arithmetic Operators. Midterm Review March 24, 2014 Mdterm Revew March 4, 4 Mdterm Revew Larry Caretto Mechancal Engneerng 9 Numercal Analyss of Engneerng Systems March 4, 4 Outlne VBA and MATLAB codng Varable types Control structures (Loopng and Choce)

More information

A Facet Generation Procedure. for solving 0/1 integer programs

A Facet Generation Procedure. for solving 0/1 integer programs A Facet Generaton Procedure for solvng 0/ nteger programs by Gyana R. Parja IBM Corporaton, Poughkeepse, NY 260 Radu Gaddov Emery Worldwde Arlnes, Vandala, Oho 45377 and Wlbert E. Wlhelm Teas A&M Unversty,

More information

Private Information Retrieval (PIR)

Private Information Retrieval (PIR) 2 Levente Buttyán Problem formulaton Alce wants to obtan nformaton from a database, but she does not want the database to learn whch nformaton she wanted e.g., Alce s an nvestor queryng a stock-market

More information

Machine Learning: Algorithms and Applications

Machine Learning: Algorithms and Applications 14/05/1 Machne Learnng: Algorthms and Applcatons Florano Zn Free Unversty of Bozen-Bolzano Faculty of Computer Scence Academc Year 011-01 Lecture 10: 14 May 01 Unsupervsed Learnng cont Sldes courtesy of

More information

An Optimal Algorithm for Prufer Codes *

An Optimal Algorithm for Prufer Codes * J. Software Engneerng & Applcatons, 2009, 2: 111-115 do:10.4236/jsea.2009.22016 Publshed Onlne July 2009 (www.scrp.org/journal/jsea) An Optmal Algorthm for Prufer Codes * Xaodong Wang 1, 2, Le Wang 3,

More information

The relation between diamond tiling and hexagonal tiling

The relation between diamond tiling and hexagonal tiling The relaton between damond tlng and hexagonal tlng Tobas Grosser INRIA and École Normale Supéreure, Pars tobas.grosser@nra.fr Sven Verdoolaege INRIA, École Normale Supéreure and KU Leuven sven.verdoolaege@nra.fr

More information

LECTURE NOTES Duality Theory, Sensitivity Analysis, and Parametric Programming

LECTURE NOTES Duality Theory, Sensitivity Analysis, and Parametric Programming CEE 60 Davd Rosenberg p. LECTURE NOTES Dualty Theory, Senstvty Analyss, and Parametrc Programmng Learnng Objectves. Revew the prmal LP model formulaton 2. Formulate the Dual Problem of an LP problem (TUES)

More information

5 The Primal-Dual Method

5 The Primal-Dual Method 5 The Prmal-Dual Method Orgnally desgned as a method for solvng lnear programs, where t reduces weghted optmzaton problems to smpler combnatoral ones, the prmal-dual method (PDM) has receved much attenton

More information

Simplification of 3D Meshes

Simplification of 3D Meshes Smplfcaton of 3D Meshes Addy Ngan /4/00 Outlne Motvaton Taxonomy of smplfcaton methods Hoppe et al, Mesh optmzaton Hoppe, Progressve meshes Smplfcaton of 3D Meshes 1 Motvaton Hgh detaled meshes becomng

More information

Classifier Selection Based on Data Complexity Measures *

Classifier Selection Based on Data Complexity Measures * Classfer Selecton Based on Data Complexty Measures * Edth Hernández-Reyes, J.A. Carrasco-Ochoa, and J.Fco. Martínez-Trndad Natonal Insttute for Astrophyscs, Optcs and Electroncs, Lus Enrque Erro No.1 Sta.

More information

Concurrent Apriori Data Mining Algorithms

Concurrent Apriori Data Mining Algorithms Concurrent Apror Data Mnng Algorthms Vassl Halatchev Department of Electrcal Engneerng and Computer Scence York Unversty, Toronto October 8, 2015 Outlne Why t s mportant Introducton to Assocaton Rule Mnng

More information

The Greedy Method. Outline and Reading. Change Money Problem. Greedy Algorithms. Applications of the Greedy Strategy. The Greedy Method Technique

The Greedy Method. Outline and Reading. Change Money Problem. Greedy Algorithms. Applications of the Greedy Strategy. The Greedy Method Technique //00 :0 AM Outlne and Readng The Greedy Method The Greedy Method Technque (secton.) Fractonal Knapsack Problem (secton..) Task Schedulng (secton..) Mnmum Spannng Trees (secton.) Change Money Problem Greedy

More information

UNIT 2 : INEQUALITIES AND CONVEX SETS

UNIT 2 : INEQUALITIES AND CONVEX SETS UNT 2 : NEQUALTES AND CONVEX SETS ' Structure 2. ntroducton Objectves, nequaltes and ther Graphs Convex Sets and ther Geometry Noton of Convex Sets Extreme Ponts of Convex Set Hyper Planes and Half Spaces

More information

Today s Outline. Sorting: The Big Picture. Why Sort? Selection Sort: Idea. Insertion Sort: Idea. Sorting Chapter 7 in Weiss.

Today s Outline. Sorting: The Big Picture. Why Sort? Selection Sort: Idea. Insertion Sort: Idea. Sorting Chapter 7 in Weiss. Today s Outlne Sortng Chapter 7 n Wess CSE 26 Data Structures Ruth Anderson Announcements Wrtten Homework #6 due Frday 2/26 at the begnnng of lecture Proect Code due Mon March 1 by 11pm Today s Topcs:

More information

Assignment # 2. Farrukh Jabeen Algorithms 510 Assignment #2 Due Date: June 15, 2009.

Assignment # 2. Farrukh Jabeen Algorithms 510 Assignment #2 Due Date: June 15, 2009. Farrukh Jabeen Algorthms 51 Assgnment #2 Due Date: June 15, 29. Assgnment # 2 Chapter 3 Dscrete Fourer Transforms Implement the FFT for the DFT. Descrbed n sectons 3.1 and 3.2. Delverables: 1. Concse descrpton

More information

Structure from Motion

Structure from Motion Structure from Moton Structure from Moton For now, statc scene and movng camera Equvalentl, rgdl movng scene and statc camera Lmtng case of stereo wth man cameras Lmtng case of multvew camera calbraton

More information

Recognizing Faces. Outline

Recognizing Faces. Outline Recognzng Faces Drk Colbry Outlne Introducton and Motvaton Defnng a feature vector Prncpal Component Analyss Lnear Dscrmnate Analyss !"" #$""% http://www.nfotech.oulu.f/annual/2004 + &'()*) '+)* 2 ! &

More information

Content Based Image Retrieval Using 2-D Discrete Wavelet with Texture Feature with Different Classifiers

Content Based Image Retrieval Using 2-D Discrete Wavelet with Texture Feature with Different Classifiers IOSR Journal of Electroncs and Communcaton Engneerng (IOSR-JECE) e-issn: 78-834,p- ISSN: 78-8735.Volume 9, Issue, Ver. IV (Mar - Apr. 04), PP 0-07 Content Based Image Retreval Usng -D Dscrete Wavelet wth

More information

Agenda & Reading. Simple If. Decision-Making Statements. COMPSCI 280 S1C Applications Programming. Programming Fundamentals

Agenda & Reading. Simple If. Decision-Making Statements. COMPSCI 280 S1C Applications Programming. Programming Fundamentals Agenda & Readng COMPSCI 8 SC Applcatons Programmng Programmng Fundamentals Control Flow Agenda: Decsonmakng statements: Smple If, Ifelse, nested felse, Select Case s Whle, DoWhle/Untl, For, For Each, Nested

More information

Optimal Workload-based Weighted Wavelet Synopses

Optimal Workload-based Weighted Wavelet Synopses Optmal Workload-based Weghted Wavelet Synopses Yoss Matas School of Computer Scence Tel Avv Unversty Tel Avv 69978, Israel matas@tau.ac.l Danel Urel School of Computer Scence Tel Avv Unversty Tel Avv 69978,

More information

Modeling, Manipulating, and Visualizing Continuous Volumetric Data: A Novel Spline-based Approach

Modeling, Manipulating, and Visualizing Continuous Volumetric Data: A Novel Spline-based Approach Modelng, Manpulatng, and Vsualzng Contnuous Volumetrc Data: A Novel Splne-based Approach Jng Hua Center for Vsual Computng, Department of Computer Scence SUNY at Stony Brook Talk Outlne Introducton and

More information

Preconditioning Parallel Sparse Iterative Solvers for Circuit Simulation

Preconditioning Parallel Sparse Iterative Solvers for Circuit Simulation Precondtonng Parallel Sparse Iteratve Solvers for Crcut Smulaton A. Basermann, U. Jaekel, and K. Hachya 1 Introducton One mportant mathematcal problem n smulaton of large electrcal crcuts s the soluton

More information

Lecture 4: Principal components

Lecture 4: Principal components /3/6 Lecture 4: Prncpal components 3..6 Multvarate lnear regresson MLR s optmal for the estmaton data...but poor for handlng collnear data Covarance matrx s not nvertble (large condton number) Robustness

More information

Module Management Tool in Software Development Organizations

Module Management Tool in Software Development Organizations Journal of Computer Scence (5): 8-, 7 ISSN 59-66 7 Scence Publcatons Management Tool n Software Development Organzatons Ahmad A. Al-Rababah and Mohammad A. Al-Rababah Faculty of IT, Al-Ahlyyah Amman Unversty,

More information

Parallel matrix-vector multiplication

Parallel matrix-vector multiplication Appendx A Parallel matrx-vector multplcaton The reduced transton matrx of the three-dmensonal cage model for gel electrophoress, descrbed n secton 3.2, becomes excessvely large for polymer lengths more

More information

Outline. Third Programming Project Two-Dimensional Arrays. Files You Can Download. Exercise 8 Linear Regression. General Regression

Outline. Third Programming Project Two-Dimensional Arrays. Files You Can Download. Exercise 8 Linear Regression. General Regression Project 3 Two-densonal arras Ma 9, 6 Thrd Prograng Project Two-Densonal Arras Larr Caretto Coputer Scence 6 Coputng n Engneerng and Scence Ma 9, 6 Outlne Quz three on Thursda for full lab perod See saple

More information

CS 534: Computer Vision Model Fitting

CS 534: Computer Vision Model Fitting CS 534: Computer Vson Model Fttng Sprng 004 Ahmed Elgammal Dept of Computer Scence CS 534 Model Fttng - 1 Outlnes Model fttng s mportant Least-squares fttng Maxmum lkelhood estmaton MAP estmaton Robust

More information

Dijkstra s Single Source Algorithm. All-Pairs Shortest Paths. Dynamic Programming Solution. Performance. Decision Sequence.

Dijkstra s Single Source Algorithm. All-Pairs Shortest Paths. Dynamic Programming Solution. Performance. Decision Sequence. All-Pars Shortest Paths Gven an n-vertex drected weghted graph, fnd a shortest path from vertex to vertex for each of the n vertex pars (,). Dstra s Sngle Source Algorthm Use Dstra s algorthm n tmes, once

More information

Proper Choice of Data Used for the Estimation of Datum Transformation Parameters

Proper Choice of Data Used for the Estimation of Datum Transformation Parameters Proper Choce of Data Used for the Estmaton of Datum Transformaton Parameters Hakan S. KUTOGLU, Turkey Key words: Coordnate systems; transformaton; estmaton, relablty. SUMMARY Advances n technologes and

More information

A Geometric Approach for Multi-Degree Spline

A Geometric Approach for Multi-Degree Spline L X, Huang ZJ, Lu Z. A geometrc approach for mult-degree splne. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 27(4): 84 850 July 202. DOI 0.007/s390-02-268-2 A Geometrc Approach for Mult-Degree Splne Xn L

More information

Investigations of Topology and Shape of Multi-material Optimum Design of Structures

Investigations of Topology and Shape of Multi-material Optimum Design of Structures Advanced Scence and Tecnology Letters Vol.141 (GST 2016), pp.241-245 ttp://dx.do.org/10.14257/astl.2016.141.52 Investgatons of Topology and Sape of Mult-materal Optmum Desgn of Structures Quoc Hoan Doan

More information

Fitting & Matching. Lecture 4 Prof. Bregler. Slides from: S. Lazebnik, S. Seitz, M. Pollefeys, A. Effros.

Fitting & Matching. Lecture 4 Prof. Bregler. Slides from: S. Lazebnik, S. Seitz, M. Pollefeys, A. Effros. Fttng & Matchng Lecture 4 Prof. Bregler Sldes from: S. Lazebnk, S. Setz, M. Pollefeys, A. Effros. How do we buld panorama? We need to match (algn) mages Matchng wth Features Detect feature ponts n both

More information

Ecient Computation of the Most Probable Motion from Fuzzy. Moshe Ben-Ezra Shmuel Peleg Michael Werman. The Hebrew University of Jerusalem

Ecient Computation of the Most Probable Motion from Fuzzy. Moshe Ben-Ezra Shmuel Peleg Michael Werman. The Hebrew University of Jerusalem Ecent Computaton of the Most Probable Moton from Fuzzy Correspondences Moshe Ben-Ezra Shmuel Peleg Mchael Werman Insttute of Computer Scence The Hebrew Unversty of Jerusalem 91904 Jerusalem, Israel Emal:

More information

An Accurate Evaluation of Integrals in Convex and Non convex Polygonal Domain by Twelve Node Quadrilateral Finite Element Method

An Accurate Evaluation of Integrals in Convex and Non convex Polygonal Domain by Twelve Node Quadrilateral Finite Element Method Internatonal Journal of Computatonal and Appled Mathematcs. ISSN 89-4966 Volume, Number (07), pp. 33-4 Research Inda Publcatons http://www.rpublcaton.com An Accurate Evaluaton of Integrals n Convex and

More information

The Codesign Challenge

The Codesign Challenge ECE 4530 Codesgn Challenge Fall 2007 Hardware/Software Codesgn The Codesgn Challenge Objectves In the codesgn challenge, your task s to accelerate a gven software reference mplementaton as fast as possble.

More information

K-means and Hierarchical Clustering

K-means and Hierarchical Clustering Note to other teachers and users of these sldes. Andrew would be delghted f you found ths source materal useful n gvng your own lectures. Feel free to use these sldes verbatm, or to modfy them to ft your

More information

Sorting Review. Sorting. Comparison Sorting. CSE 680 Prof. Roger Crawfis. Assumptions

Sorting Review. Sorting. Comparison Sorting. CSE 680 Prof. Roger Crawfis. Assumptions Sortng Revew Introducton to Algorthms Qucksort CSE 680 Prof. Roger Crawfs Inserton Sort T(n) = Θ(n 2 ) In-place Merge Sort T(n) = Θ(n lg(n)) Not n-place Selecton Sort (from homework) T(n) = Θ(n 2 ) In-place

More information

Sequential search. Building Java Programs Chapter 13. Sequential search. Sequential search

Sequential search. Building Java Programs Chapter 13. Sequential search. Sequential search Sequental search Buldng Java Programs Chapter 13 Searchng and Sortng sequental search: Locates a target value n an array/lst by examnng each element from start to fnsh. How many elements wll t need to

More information

Data Modelling and. Multimedia. Databases M. Multimedia. Information Retrieval Part II. Outline

Data Modelling and. Multimedia. Databases M. Multimedia. Information Retrieval Part II. Outline ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA Data Modellng and Multmeda Databases M Internatonal Second cycle degree programme (LM) n Dgtal Humantes and Dgtal Knowledge (DHDK) Unversty of Bologna Multmeda

More information