Image Warping, mesh, and triangulation CSE399b, Spring 07 Computer Vision

Size: px
Start display at page:

Download "Image Warping, mesh, and triangulation CSE399b, Spring 07 Computer Vision"

Transcription

1 Image Warping, mesh, and triangulation CSE399b, Spring 7 Computer Vision

2 Man of the slides from A. Efros.

3 Parametric (global) warping Eamples of parametric warps: translation rotation aspect affine perspective clindrical

4 Parametric (global) warping Transformation T is a coordinate-changing machine: p = T(p) Linear transformation: T as a matri: p = M*p T p = (,) p = (,) = M = d c b a

5 All 2D Linear Transformations are matri Linear transformations are combinations of Scale, Rotation, Shear, and Mirror = a c b d Think we are taking weighted average of - coordinate Transforme d -ais Transforme d -ais

6 Most general 2D Linear transform: Projective Transformation

7 Mapping From Plane to Plane

8 Projective transformation Facts: ) parallel lines intersect, 2) circle becomes ellipses, 3) straight line is still straight

9 2D image transformations These transformations are a nested set of groups Closed under composition and inverse is a member

10 Homogeneous Coordinates Homogeneous coordinates represent coordinates in 2 dimensions with a 3-vector homogeneou scoords ( A point:

11 Homogeneous -> Real Coordinates divide the third number out: (,, w) represents a point at location (/w, /w) (,, ) represents a point at infinit (in direction,) (,, ) is not allowed 2 (2,,) or (4,2,2) or (6,3,3) Convenient coordinate sstem to represent man useful transformations 2

12 Basic 2D Transformations Basic 2D transformations as 33 matrices ( = cos sin sin cos = t t = sh sh Translate Rotate Shear = s s Scale

13 Special case: Similarit Transformation Similarit

14 Special case: Affine Transformations Affine transformations are combinations of Linear transformations, and Translations = w f e d c b a w Note: all point of infinit is mapped to infinit Therefore all parallel lines remain parallel

15 Special Case: Affine Transformation

16 Full Projective Transformations Projective transformations Affine transformations, and Projective warps = w i h g f e d c b a w

17 Special case: Projective transformation

18 Matri Composition Transformations can be combined b matri multiplication ( ) * * +, = w s s t t w cos sin sin cos p = T(t,t ) R() S(s,s ) p

19

20 Image warping T(,) f(,) g(,) Given a coordinate transform (, ) = h(,) and a source image f(,), how do we compute a transformed image g(, ) = f(t(,))?

21 Forward warping T(,) f(,) g(,) Send each piel f(,) to its corresponding location (, ) = T(,) in the second image Q: what if piel lands between two piels?

22 Forward warping T(,) f(,) g(,) Send each piel f(,) to its corresponding location (, ) = T(,) in the second image Q: what if piel lands between two piels? A: distribute color among neighboring piels (, ) Known as splatting

23 Inverse warping T - (,) f(,) g(,) Get each piel g(, ) from its corresponding location (,) = T - (, ) in the first image Q: what if piel comes from between two piels?

24 Inverse warping T - (,) f(,) g(,) Get each piel g(, ) from its corresponding location (,) = T - (, ) in the first image Q: what if piel comes from between two piels? A: Interpolate color value from neighbors nearest neighbor, bilinear, Gaussian, bicubic

25 Bilinear interpolation Sampling at f(,):

26 Recovering Transformations? T(,) f(,) g(,) What if we know f and g and want to recover the transform T? willing to let user provide correspondences How man do we need?

27 Translation: correspondences? How man correspondences needed for translation? How man Degrees of Freedom? What is the transformation matri? T(,)? = p p p p M

28 Euclidian: correspondences?? T(,) How man correspondences needed for translation+rotation? How man DOF?

29 Affine: correspondences?? T(,) How man correspondences needed for affine? How man DOF?

30 Projective: correspondences?? T(,) How man correspondences needed for projective? How man DOF?

31 = How man independent para? Can we alwas set h33 =?

32 Eample: warping triangles Given two triangles: ABC and A B C in 2D (2 numbers) Need to find transform T to transfer all piels from one to the other. What kind of transformation is T? How can we compute the transformation matri: T(,)? A B C A C B Source Destination = f e d c b a

33 HINT: warping triangles (,) A B Source T (,) (,) Inverse change of basis change of basis C A T 2 B Destination Don t forget to move the origin too C

34 Image morphing: Lecture notes borrowed from A. Efros, T. Cootes

35 Morphing = Object Averaging The aim is to find an average between two objects Not an average of two images of objects but an image of the average object How can we make a smooth transition in time? Do a weighted average over time t How do we know what the average object looks like? We haven t a clue But we can often fake something reasonable Usuall required user/artist input

36 Averaging Points What s the average of P and Q? v = Q - P P Q Linear Interpolation (Affine Combination): New point ap + bq, defined onl when a+b = So ap+bq = ap+(-a)q P +.5v = P +.5(Q P) =.5P +.5 Q P and Q can be anthing: P +.5v = P +.5(Q P) = -.5P +.5 Q (etrapolation) points on a plane (2D) or in space (3D) Colors in RGB or HSV (3D) Whole images (m-b-n D) etc.

37 Idea : Cross-Dissolve Interpolate whole images: Image halfwa = (-t)*image + t*image 2 This is called cross-dissolve in film industr But what is the images are not aligned?

38 Idea 2: Align, then cross-disolve Align first, then cross-dissolve Alignment using global warp picture still valid

39 Dog Averaging What to do? Cross-dissolve doesn t work Global alignment doesn t work Cannot be done with a global transformation (e.g. affine) An ideas? Feature matching Nose to nose, tail to tail, etc. This is a local (non-parametric) warp

40 Idea 3: Local warp, then cross-dissolve Morphing procedure: for ever t,. Find the average shape (the mean dog ) local warping 2. Find the average color Cross-dissolve the warped images

41 Local (non-parametric) Image Warping Need to specif a more detailed warp function Global warps were functions of a few (2,4,8) parameters Non-parametric warps u(,) and v(,) can be defined independentl for ever single location, Once we know vector field u,v we can easil warp each piel (use backward warping with interpolation)

42 Image Warping non-parametric Move control points to specif a spline warp Spline produces a smooth vector field

43 Warp specification - dense How can we specif the warp? Specif corresponding spline control points interpolate to a complete warping function But we want to specif onl a few points, not a grid

44 Warp specification - sparse How can we specif the warp? Specif corresponding points interpolate to a complete warping function How do we do it? How do we go from feature points to piels?

45 Triangular Mesh. Input correspondences at ke feature points 2. Define a triangular mesh over the points Same mesh in both images Now we have triangle-to-triangle correspondences 3. Warp each triangle separatel from source to destination How do we warp a triangle? 3 points = affine warp Just like teture mapping

46 Triangulations A triangulation of set of points in the plane is a partition of the conve hull to triangles whose vertices are the points, and do not contain other points. There are an eponential number of triangulations of a point set.

Warping, Morphing and Mosaics

Warping, Morphing and Mosaics Computational Photograph and Video: Warping, Morphing and Mosaics Prof. Marc Pollefes Dr. Gabriel Brostow Toda s schedule Last week s recap Warping Morphing Mosaics Toda s schedule Last week s recap Warping

More information

Image Warping and Morphing. Alexey Tikhonov : Computational Photography Alexei Efros, CMU, Fall 2007

Image Warping and Morphing. Alexey Tikhonov : Computational Photography Alexei Efros, CMU, Fall 2007 Image Warping and Morphing Alexey Tikhonov 15-463: Computational Photography Alexei Efros, CMU, Fall 2007 Image Warping in Biology D'Arcy Thompson http://www-groups.dcs.st-and.ac.uk/~history/miscellaneous/darcy.html

More information

Image Warping CSE399b, Spring 07 Computer Vision

Image Warping CSE399b, Spring 07 Computer Vision Image Warping CSE399b, Spring 7 Computer Vision http://maps.a9.com http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html Autostiching on A9.com

More information

Interactive Computer Graphics. Warping and morphing. Warping and Morphing. Warping and Morphing. Lecture 14+15: Warping and Morphing. What is.

Interactive Computer Graphics. Warping and morphing. Warping and Morphing. Warping and Morphing. Lecture 14+15: Warping and Morphing. What is. Interactive Computer Graphics Warping and morphing Lecture 14+15: Warping and Morphing Lecture 14: Warping and Morphing: Slide 1 Lecture 14: Warping and Morphing: Slide 2 Warping and Morphing What is Warping

More information

Image Warping and Morphing. Alexey Tikhonov

Image Warping and Morphing. Alexey Tikhonov Image Warping and Morphing Alexey Tikhonov CS194: Image Manipulation & Computational Photography Alexei Efros, UC Berkeley, Fall 2016 Women in Art video http://youtube.com/watch?v=nudion-_hxs Image Warping

More information

Image Warping and Morphing. Alexey Tikhonov

Image Warping and Morphing. Alexey Tikhonov Image Warping and Morphing Alexey Tikhonov CS194: Image Manipulation & Computational Photography Alexei Efros, UC Berkeley, Fall 2017 Women in Art video http://youtube.com/watch?v=nudion-_hxs Image Warping

More information

The aim is to find an average between two objects Not an average of two images of objects but an image of the average object!

The aim is to find an average between two objects Not an average of two images of objects but an image of the average object! The aim is to find an average between two objects Not an average of two images of objects but an image of the average object! How can we make a smooth transition in time? Do a weighted average over time

More information

Last Lecture. Edge Detection. Filtering Pyramid

Last Lecture. Edge Detection. Filtering Pyramid Last Lecture Edge Detection Filtering Pramid Toda Motion Deblur Image Transformation Removing Camera Shake from a Single Photograph Rob Fergus, Barun Singh, Aaron Hertzmann, Sam T. Roweis and William T.

More information

Image Warping. Some slides from Steve Seitz

Image Warping.   Some slides from Steve Seitz Image Warping http://www.jeffre-martin.com Some slides from Steve Seitz 5-463: Computational Photograph Aleei Efros, CMU, Spring 2 Image Transformations image filtering: change range of image g() = T(f())

More information

Warping. 12 May 2015

Warping. 12 May 2015 Warping 12 May 2015 Warping, morphing, mosaic Slides from Durand and Freeman (MIT), Efros (CMU, Berkeley), Szeliski (MSR), Seitz (UW), Lowe (UBC) http://szeliski.org/book/ 2 Image Warping Image filtering:

More information

Image Morphing. CSC320: Introduction to Visual Computing Michael Guerzhoy. Many slides borrowed from Derek Hoeim, Alexei Efros

Image Morphing. CSC320: Introduction to Visual Computing Michael Guerzhoy. Many slides borrowed from Derek Hoeim, Alexei Efros Image Morphing Edvard Munch, The Scream Many slides borrowed from Derek Hoeim, Alexei Efros CSC320: Introduction to Visual Computing Michael Guerzhoy Morphing Examples Women in art http://youtube.com/watch?v=nudion-_hxs

More information

How is project #1 going?

How is project #1 going? How is project # going? Last Lecture Edge Detection Filtering Pramid Toda Motion Deblur Image Transformation Removing Camera Shake from a Single Photograph Rob Fergus, Barun Singh, Aaron Hertzmann, Sam

More information

Image Warping : Computational Photography Alexei Efros, CMU, Fall Some slides from Steve Seitz

Image Warping : Computational Photography Alexei Efros, CMU, Fall Some slides from Steve Seitz Image Warping http://www.jeffre-martin.com Some slides from Steve Seitz 5-463: Computational Photograph Aleei Efros, CMU, Fall 2 Image Transformations image filtering: change range of image g() T(f())

More information

Image Warping. Some slides from Steve Seitz

Image Warping.   Some slides from Steve Seitz Image Warping http://www.jeffre-martin.com Some slides from Steve Seitz 5-463: Computational Photograph Aleei Efros, CMU, Fall 26 Image Warping image filtering: change range of image g() T(f()) f T f image

More information

Image Warping. Computational Photography Derek Hoiem, University of Illinois 09/28/17. Photo by Sean Carroll

Image Warping. Computational Photography Derek Hoiem, University of Illinois 09/28/17. Photo by Sean Carroll Image Warping 9/28/7 Man slides from Alosha Efros + Steve Seitz Computational Photograph Derek Hoiem, Universit of Illinois Photo b Sean Carroll Reminder: Proj 2 due monda Much more difficult than project

More information

Image warping. image filtering: change range of image. image warping: change domain of image g(x) = f(h(x)) h(y)=0.5y+0.5. h([x,y])=[x,y/2] f h

Image warping. image filtering: change range of image. image warping: change domain of image g(x) = f(h(x)) h(y)=0.5y+0.5. h([x,y])=[x,y/2] f h Image warping Image warping image filtering: change range of image g() () = h(f()) h(f()) f h g h()=0.5+0.5 image warping: change domain of image g() = f(h()) f h g h([,])=[,/2] Parametric (global) warping

More information

CS4670: Computer Vision

CS4670: Computer Vision CS467: Computer Vision Noah Snavely Lecture 8: Geometric transformations Szeliski: Chapter 3.6 Reading Announcements Project 2 out today, due Oct. 4 (demo at end of class today) Image alignment Why don

More information

Image Warping. Many slides from Alyosha Efros + Steve Seitz. Photo by Sean Carroll

Image Warping. Many slides from Alyosha Efros + Steve Seitz. Photo by Sean Carroll Image Warping Man slides from Alosha Efros + Steve Seitz Photo b Sean Carroll Morphing Blend from one object to other with a series of local transformations Image Transformations image filtering: change

More information

Image Warping (Szeliski Sec 2.1.2)

Image Warping (Szeliski Sec 2.1.2) Image Warping (Szeliski Sec 2..2) http://www.jeffre-martin.com CS94: Image Manipulation & Computational Photograph Aleei Efros, UC Berkele, Fall 7 Some slides from Steve Seitz Image Transformations image

More information

Prof. Feng Liu. Winter /05/2019

Prof. Feng Liu. Winter /05/2019 Prof. Feng Liu Winter 2019 http://www.cs.pd.edu/~fliu/courses/cs410/ 02/05/2019 Last Time Image alignment 2 Toda Image warping The slides for this topic are used from Prof. Yung-Yu Chuang, which use materials

More information

Image warping/morphing

Image warping/morphing Image warping/morphing Digital Visual Effects, Spring 2007 Yung-Yu Chuang 2007/3/20 with slides b Richard Szeliski, Steve Seitz, Tom Funkhouser and Aleei Efros Image warping Image formation B A Sampling

More information

Lecture 7: Image Morphing. Idea #2: Align, then cross-disolve. Dog Averaging. Averaging vectors. Idea #1: Cross-Dissolving / Cross-fading

Lecture 7: Image Morphing. Idea #2: Align, then cross-disolve. Dog Averaging. Averaging vectors. Idea #1: Cross-Dissolving / Cross-fading Lecture 7: Image Morphing Averaging vectors v = p + α (q p) = (1 - α) p + α q where α = q - v p α v (1-α) q p and q can be anything: points on a plane (2D) or in space (3D) Colors in RGB or HSV (3D) Whole

More information

Image Morphing. Application: Movie Special Effects. Application: Registration /Alignment. Image Cross-Dissolve

Image Morphing. Application: Movie Special Effects. Application: Registration /Alignment. Image Cross-Dissolve Image Morphing Application: Movie Special Effects Morphing is turning one image into another (through a seamless transition) First movies with morphing Willow, 1988 Indiana Jones and the Last Crusade,

More information

CSE328 Fundamentals of Computer Graphics: Theory, Algorithms, and Applications

CSE328 Fundamentals of Computer Graphics: Theory, Algorithms, and Applications CSE328 Fundamentals of Computer Graphics: Theor, Algorithms, and Applications Hong in State Universit of New York at Ston Brook (Ston Brook Universit) Ston Brook, New York 794-44 Tel: (63)632-845; Fa:

More information

Determining the 2d transformation that brings one image into alignment (registers it) with another. And

Determining the 2d transformation that brings one image into alignment (registers it) with another. And Last two lectures: Representing an image as a weighted combination of other images. Toda: A different kind of coordinate sstem change. Solving the biggest problem in using eigenfaces? Toda Recognition

More information

CS 2770: Intro to Computer Vision. Multiple Views. Prof. Adriana Kovashka University of Pittsburgh March 14, 2017

CS 2770: Intro to Computer Vision. Multiple Views. Prof. Adriana Kovashka University of Pittsburgh March 14, 2017 CS 277: Intro to Computer Vision Multiple Views Prof. Adriana Kovashka Universit of Pittsburgh March 4, 27 Plan for toda Affine and projective image transformations Homographies and image mosaics Stereo

More information

CS 335 Graphics and Multimedia. Geometric Warping

CS 335 Graphics and Multimedia. Geometric Warping CS 335 Graphics and Multimedia Geometric Warping Geometric Image Operations Eample transformations Straightforward methods and their problems The affine transformation Transformation algorithms: Forward

More information

Modeling Transformations

Modeling Transformations Modeling Transformations Michael Kazhdan (601.457/657) HB Ch. 5 FvDFH Ch. 5 Overview Ra-Tracing so far Modeling transformations Ra Tracing Image RaTrace(Camera camera, Scene scene, int width, int heigh,

More information

Photo by Carl Warner

Photo by Carl Warner Photo b Carl Warner Photo b Carl Warner Photo b Carl Warner Fitting and Alignment Szeliski 6. Computer Vision CS 43, Brown James Has Acknowledgment: Man slides from Derek Hoiem and Grauman&Leibe 2008 AAAI

More information

Modeling Transformations

Modeling Transformations Modeling Transformations Michael Kazhdan (601.457/657) HB Ch. 5 FvDFH Ch. 5 Announcement Assignment 2 has been posted: Due: 10/24 ASAP: Download the code and make sure it compiles» On windows: just build

More information

Image Warping, Linear Algebra CIS581

Image Warping, Linear Algebra CIS581 Image Warping, Linear Algebra CIS581 From Plane to Plane Degree of freedom Translation: # correspondences? How many correspondences needed for translation? How many Degrees of Freedom? What is the transformation

More information

Image Transformations

Image Transformations Image Transformations Outline Gre-level transformations Histogram equalization Geometric transformations Affine transformations Interpolation Warping and morphing. Gre-level transformations Changes the

More information

CS4670: Computer Vision

CS4670: Computer Vision CS4670: Computer Vision Noah Snavely Lecture 9: Image alignment http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/ Szeliski: Chapter 6.1 Reading All 2D Linear Transformations

More information

Fitting a transformation: Feature-based alignment April 30 th, Yong Jae Lee UC Davis

Fitting a transformation: Feature-based alignment April 30 th, Yong Jae Lee UC Davis Fitting a transformation: Feature-based alignment April 3 th, 25 Yong Jae Lee UC Davis Announcements PS2 out toda; due 5/5 Frida at :59 pm Color quantization with k-means Circle detection with the Hough

More information

Image Metamorphosis By Affine Transformations

Image Metamorphosis By Affine Transformations Image Metamorphosis B Affine Transformations Tim Mers and Peter Spiegel December 16, 2005 Abstract Among the man was to manipulate an image is a technique known as morphing. Image morphing is a special

More information

Multi-stable Perception. Necker Cube

Multi-stable Perception. Necker Cube Multi-stable Perception Necker Cube Spinning dancer illusion, Nobuuki Kaahara Fitting and Alignment Computer Vision Szeliski 6.1 James Has Acknowledgment: Man slides from Derek Hoiem, Lana Lazebnik, and

More information

Modeling Transformations

Modeling Transformations Transformations Transformations Specif transformations for objects o Allos definitions of objects in on coordinate sstems o Allos use of object definition multiple times in a scene Adam Finkelstein Princeton

More information

Geometric Image Transformations and Related Topics

Geometric Image Transformations and Related Topics Geometric Image Transformations and Related Topics 9 th Lesson on Image Processing Martina Mudrová 2004 Topics What will be the topic of the following lesson? Geometric image transformations Interpolation

More information

Image warping/morphing

Image warping/morphing Image warping/morphing Digital Visual Effects Yung-Yu Chuang with slides by Richard Szeliski, Steve Seitz, Tom Funkhouser and Alexei Efros Image warping Image formation B A Sampling and quantization What

More information

Limitations of Thresholding

Limitations of Thresholding Limitations of Thresholding Wh can we segment images much better b ee than through thresholding processes? We might improve results b considering image contet: Surface Coherence Gradient.illusion.arp.jpg

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 10 130221 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Canny Edge Detector Hough Transform Feature-Based

More information

Modeling Transformations

Modeling Transformations Modeling Transformations Thomas Funkhouser Princeton Universit CS 426, Fall 2 Modeling Transformations Specif transformations for objects Allos definitions of objects in on coordinate sstems Allos use

More information

Domain. operations. Image Warping and Morphing. Domain transform. Transformation. BIL721: Computational Photography!

Domain. operations. Image Warping and Morphing. Domain transform. Transformation. BIL721: Computational Photography! Image Warping and Morphing Domain Photo by Jeffrey Martin BIL721: Computational Photography! Aykut Erdem! Spring 2015, Lecture 7! Hacettepe University! Computer Vision Lab (HUCVL)! operations Domain transform

More information

Modeling Transformations

Modeling Transformations שיעור 3 גרפיקה ממוחשבת תשס"ח ב ליאור שפירא Modeling Transformations Heavil based on: Thomas Funkhouser Princeton Universit CS 426, Fall 2 Modeling Transformations Specif transformations for objects Allows

More information

Scene Graphs & Modeling Transformations COS 426

Scene Graphs & Modeling Transformations COS 426 Scene Graphs & Modeling Transformations COS 426 3D Object Representations Points Range image Point cloud Surfaces Polgonal mesh Subdivision Parametric Implicit Solids Voels BSP tree CSG Sweep High-level

More information

Introduction to Computer Vision

Introduction to Computer Vision Introduction to Computer Vision Michael J. Black Oct 2009 Motion estimation Goals Motion estimation Affine flow Optimization Large motions Why affine? Monday dense, smooth motion and regularization. Robust

More information

3D Computer Vision II. Reminder Projective Geometry, Transformations. Nassir Navab. October 27, 2009

3D Computer Vision II. Reminder Projective Geometry, Transformations. Nassir Navab. October 27, 2009 3D Computer Vision II Reminder Projective Geometr, Transformations Nassir Navab based on a course given at UNC b Marc Pollefes & the book Multiple View Geometr b Hartle & Zisserman October 27, 29 2D Transformations

More information

Affine and Projective Transformations

Affine and Projective Transformations CS 674: Intro to Computer Vision Affine and Projective Transformations Prof. Adriana Kovaska Universit of Pittsburg October 3, 26 Alignment problem We previousl discussed ow to matc features across images,

More information

Image Warping and Mosacing

Image Warping and Mosacing Image Warping and Mosacing 15-463: Rendering and Image Processing Alexei Efros with a lot of slides stolen from Steve Seitz and Rick Szeliski Today Mosacs Image Warping Homographies Programming Assignment

More information

Announcements. Mosaics. How to do it? Image Mosaics

Announcements. Mosaics. How to do it? Image Mosaics Announcements Mosaics Project artifact voting Project 2 out today (help session at end of class) http://www.destination36.com/start.htm http://www.vrseattle.com/html/vrview.php?cat_id=&vrs_id=vrs38 Today

More information

3D Geometry and Camera Calibration

3D Geometry and Camera Calibration 3D Geometr and Camera Calibration 3D Coordinate Sstems Right-handed vs. left-handed 2D Coordinate Sstems ais up vs. ais down Origin at center vs. corner Will often write (u, v) for image coordinates v

More information

MAN-522: COMPUTER VISION SET-2 Projections and Camera Calibration

MAN-522: COMPUTER VISION SET-2 Projections and Camera Calibration MAN-522: COMPUTER VISION SET-2 Projections and Camera Calibration Image formation How are objects in the world captured in an image? Phsical parameters of image formation Geometric Tpe of projection Camera

More information

CS F-07 Objects in 2D 1

CS F-07 Objects in 2D 1 CS420-2010F-07 Objects in 2D 1 07-0: Representing Polgons We want to represent a simple polgon Triangle, rectangle, square, etc Assume for the moment our game onl uses these simple shapes No curves for

More information

N-Views (1) Homographies and Projection

N-Views (1) Homographies and Projection CS 4495 Computer Vision N-Views (1) Homographies and Projection Aaron Bobick School of Interactive Computing Administrivia PS 2: Get SDD and Normalized Correlation working for a given windows size say

More information

Editing and Transformation

Editing and Transformation Lecture 5 Editing and Transformation Modeling Model can be produced b the combination of entities that have been edited. D: circle, arc, line, ellipse 3D: primitive bodies, etrusion and revolved of a profile

More information

Image warping , , Computational Photography Fall 2017, Lecture 10

Image warping , , Computational Photography Fall 2017, Lecture 10 Image warping http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 10 Course announcements Second make-up lecture on Friday, October 6 th, noon-1:30

More information

Transformations. Examples of transformations: shear. scaling

Transformations. Examples of transformations: shear. scaling Transformations Eamples of transformations: translation rotation scaling shear Transformations More eamples: reflection with respect to the y-ais reflection with respect to the origin Transformations Linear

More information

CS559: Computer Graphics

CS559: Computer Graphics CS559: Computer Graphics Lecture 8: 3D Transforms Li Zhang Spring 28 Most Slides from Stephen Chenne Finish Color space Toda 3D Transforms and Coordinate sstem Reading: Shirle ch 6 RGB and HSV Green(,,)

More information

Warps, Filters, and Morph Interpolation

Warps, Filters, and Morph Interpolation Warps, Filters, and Morph Interpolation Material in this presentation is largely based on/derived from slides originally by Szeliski, Seitz and Efros Brent M. Dingle, Ph.D. 2015 Game Design and Development

More information

Today s class. Geometric objects and transformations. Informationsteknologi. Wednesday, November 7, 2007 Computer Graphics - Class 5 1

Today s class. Geometric objects and transformations. Informationsteknologi. Wednesday, November 7, 2007 Computer Graphics - Class 5 1 Toda s class Geometric objects and transformations Wednesda, November 7, 27 Computer Graphics - Class 5 Vector operations Review of vector operations needed for working in computer graphics adding two

More information

Modeling Transformations Revisited

Modeling Transformations Revisited Modeling Transformations Revisited Basic 3D Transformations Translation Scale Shear Rotation 3D Transformations Same idea as 2D transformations o Homogeneous coordinates: (,,z,w) o 44 transformation matrices

More information

Computer Graphics. Si Lu. Fall er_graphics.htm 10/11/2017

Computer Graphics. Si Lu. Fall er_graphics.htm 10/11/2017 Computer Graphics Si Lu Fall 27 http://www.cs.pd.edu/~lusi/cs447/cs447_547_comput er_graphics.htm //27 Last time Filtering Resampling 2 Toda Compositing NPR 3D Graphics Toolkits Transformations 3 Demo

More information

3-Dimensional Viewing

3-Dimensional Viewing CHAPTER 6 3-Dimensional Vieing Vieing and projection Objects in orld coordinates are projected on to the vie plane, hich is defined perpendicular to the vieing direction along the v -ais. The to main tpes

More information

CSE528 Computer Graphics: Theory, Algorithms, and Applications

CSE528 Computer Graphics: Theory, Algorithms, and Applications CSE528 Computer Graphics: Theor, Algorithms, and Applications Hong Qin State Universit of New York at Ston Brook (Ston Brook Universit) Ston Brook, New York 794--44 Tel: (63)632-845; Fa: (63)632-8334 qin@cs.sunsb.edu

More information

What and Why Transformations?

What and Why Transformations? 2D transformations What and Wh Transformations? What? : The geometrical changes of an object from a current state to modified state. Changing an object s position (translation), orientation (rotation)

More information

Specification and Computation of Warping and Morphing Transformations. Bruno Costa da Silva Microsoft Corp.

Specification and Computation of Warping and Morphing Transformations. Bruno Costa da Silva Microsoft Corp. Specification and Computation of Warping and Morphing Transformations Bruno Costa da Silva Microsoft Corp. Morphing Transformations Representation of Transformations Specification of Transformations Specification

More information

Uses of Transformations. 2D transformations Homogeneous coordinates. Transformations. Transformations. Transformations. Transformations and matrices

Uses of Transformations. 2D transformations Homogeneous coordinates. Transformations. Transformations. Transformations. Transformations and matrices Uses of Transformations 2D transformations Homogeneous coordinates odeling: position and resie parts of a comple model; Viewing: define and position the virtual camera Animation: define how objects move/change

More information

Computer Graphics. Geometric Transformations

Computer Graphics. Geometric Transformations Contents coordinate sstems scalar values, points, vectors, matrices right-handed and left-handed coordinate sstems mathematical foundations transformations mathematical descriptions of geometric changes,

More information

Computer Graphics. Geometric Transformations

Computer Graphics. Geometric Transformations Computer Graphics Geometric Transformations Contents coordinate sstems scalar values, points, vectors, matrices right-handed and left-handed coordinate sstems mathematical foundations transformations mathematical

More information

Perspective Projection Transformation

Perspective Projection Transformation Perspective Projection Transformation Where does a point of a scene appear in an image?? p p Transformation in 3 steps:. scene coordinates => camera coordinates. projection of camera coordinates into image

More information

Two Dimensional Viewing

Two Dimensional Viewing Two Dimensional Viewing Dr. S.M. Malaek Assistant: M. Younesi Two Dimensional Viewing Basic Interactive Programming Basic Interactive Programming User controls contents, structure, and appearance of objects

More information

Computer Graphics. P04 Transformations. Aleksandra Pizurica Ghent University

Computer Graphics. P04 Transformations. Aleksandra Pizurica Ghent University Computer Graphics P4 Transformations Aleksandra Pizurica Ghent Universit Telecommunications and Information Processing Image Processing and Interpretation Group Transformations in computer graphics Goal:

More information

Mosaics. Today s Readings

Mosaics. Today s Readings Mosaics VR Seattle: http://www.vrseattle.com/ Full screen panoramas (cubic): http://www.panoramas.dk/ Mars: http://www.panoramas.dk/fullscreen3/f2_mars97.html Today s Readings Szeliski and Shum paper (sections

More information

Last Time. Correct Transparent Shadow. Does Ray Tracing Simulate Physics? Does Ray Tracing Simulate Physics? Refraction and the Lifeguard Problem

Last Time. Correct Transparent Shadow. Does Ray Tracing Simulate Physics? Does Ray Tracing Simulate Physics? Refraction and the Lifeguard Problem Graphics Pipeline: Projective Last Time Shadows cast ra to light stop after first intersection Reflection & Refraction compute direction of recursive ra Recursive Ra Tracing maimum number of bounces OR

More information

Prof. Kristen Grauman

Prof. Kristen Grauman Fitting Prof. Kristen Grauman UT Austin Fitting Want to associate a model with observed features [Fig from Marszalek & Schmid, 2007] For eample, the model could be a line, a circle, or an arbitrary shape.

More information

Announcements. Equation of Perspective Projection. Image Formation and Cameras

Announcements. Equation of Perspective Projection. Image Formation and Cameras Announcements Image ormation and Cameras Introduction to Computer Vision CSE 52 Lecture 4 Read Trucco & Verri: pp. 22-4 Irfanview: http://www.irfanview.com/ is a good Windows utilit for manipulating images.

More information

Linear Algebra and Image Processing: Additional Theory regarding Computer Graphics and Image Processing not covered by David C.

Linear Algebra and Image Processing: Additional Theory regarding Computer Graphics and Image Processing not covered by David C. Linear Algebra and Image Processing: Additional Theor regarding Computer Graphics and Image Processing not covered b David C. La Dr. D.P. Huijsmans LIACS, Leiden Universit Februar 202 Differences in conventions

More information

Systems of Linear Equations

Systems of Linear Equations Sstems of Linear Equations Gaussian Elimination Tpes of Solutions A linear equation is an equation that can be written in the form: a a a n n b The coefficients a i and the constant b can be real or comple

More information

EECS 556 Image Processing W 09

EECS 556 Image Processing W 09 EECS 556 Image Processing W 09 Motion estimation Global vs. Local Motion Block Motion Estimation Optical Flow Estimation (normal equation) Man slides of this lecture are courtes of prof Milanfar (UCSC)

More information

Computer Vision Lecture 20

Computer Vision Lecture 20 Computer Vision Lecture 2 Motion and Optical Flow Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de 28.1.216 Man slides adapted from K. Grauman, S. Seitz, R. Szeliski,

More information

CSCI-4530/6530 Advanced Computer Graphics

CSCI-4530/6530 Advanced Computer Graphics Luo Jr. CSCI-45/65 Advanced Computer Graphics http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/s9/ Barb Cutler cutler@cs.rpi.edu MRC 9A Piar Animation Studios, 986 Topics for the Semester Mesh Simplification

More information

Texture Mapping. Texture (images) lecture 16. Texture mapping Aliasing (and anti-aliasing) Adding texture improves realism.

Texture Mapping. Texture (images) lecture 16. Texture mapping Aliasing (and anti-aliasing) Adding texture improves realism. lecture 16 Texture mapping Aliasing (and anti-aliasing) Texture (images) Texture Mapping Q: Why do we need texture mapping? A: Because objects look fake and boring without it. Adding texture improves realism.

More information

Motivation. What we ve seen so far. Demo (Projection Tutorial) Outline. Projections. Foundations of Computer Graphics

Motivation. What we ve seen so far. Demo (Projection Tutorial) Outline. Projections. Foundations of Computer Graphics Foundations of Computer Graphics Online Lecture 5: Viewing Orthographic Projection Ravi Ramamoorthi Motivation We have seen transforms (between coord sstems) But all that is in 3D We still need to make

More information

Transformations II. Week 2, Wed Jan 17

Transformations II. Week 2, Wed Jan 17 Universit of British Columbia CPSC 34 Computer Graphics Jan-Apr 27 Tamara Munzner Transformations II Week 2, Wed Jan 7 http://www.ugrad.cs.ubc.ca/~cs34/vjan27 Readings for Jan 5-22 FCG Chap 6 Transformation

More information

Image Stitching. Slides from Rick Szeliski, Steve Seitz, Derek Hoiem, Ira Kemelmacher, Ali Farhadi

Image Stitching. Slides from Rick Szeliski, Steve Seitz, Derek Hoiem, Ira Kemelmacher, Ali Farhadi Image Stitching Slides from Rick Szeliski, Steve Seitz, Derek Hoiem, Ira Kemelmacher, Ali Farhadi Combine two or more overlapping images to make one larger image Add example Slide credit: Vaibhav Vaish

More information

4. Two Dimensional Transformations

4. Two Dimensional Transformations 4. Two Dimensional Transformations CS362 Introduction to Computer Graphics Helena Wong, 2 In man applications, changes in orientations, sizes, and shapes are accomplished with geometric transformations

More information

Math background. 2D Geometric Transformations. Implicit representations. Explicit representations. Read: CS 4620 Lecture 6

Math background. 2D Geometric Transformations. Implicit representations. Explicit representations. Read: CS 4620 Lecture 6 Math background 2D Geometric Transformations CS 4620 Lecture 6 Read: Chapter 2: Miscellaneous Math Chapter 5: Linear Algebra Notation for sets, functions, mappings Linear transformations Matrices Matrix-vector

More information

General Purpose Computation (CAD/CAM/CAE) on the GPU (a.k.a. Topics in Manufacturing)

General Purpose Computation (CAD/CAM/CAE) on the GPU (a.k.a. Topics in Manufacturing) ME 29-R: General Purpose Computation (CAD/CAM/CAE) on the GPU (a.k.a. Topics in Manufacturing) Sara McMains Spring 29 lecture 2 Toda s GPU eample: moldabilit feedback Two-part mold [The Complete Sculptor

More information

Image warping and stitching

Image warping and stitching Image warping and stitching May 4 th, 2017 Yong Jae Lee UC Davis Last time Interactive segmentation Feature-based alignment 2D transformations Affine fit RANSAC 2 Alignment problem In alignment, we will

More information

Broad field that includes low-level operations as well as complex high-level algorithms

Broad field that includes low-level operations as well as complex high-level algorithms Image processing About Broad field that includes low-level operations as well as complex high-level algorithms Low-level image processing Computer vision Computational photography Several procedures and

More information

Homogeneous Coordinates

Homogeneous Coordinates COMS W4172 3D Math 2 Steven Feiner Department of Computer Science Columbia Universit New York, NY 127 www.cs.columbia.edu/graphics/courses/csw4172 Februar 1, 218 1 Homogeneous Coordinates w X W Y X W Y

More information

Geometric Model of Camera

Geometric Model of Camera Geometric Model of Camera Dr. Gerhard Roth COMP 42A Winter 25 Version 2 Similar Triangles 2 Geometric Model of Camera Perspective projection P(X,Y,Z) p(,) f X Z f Y Z 3 Parallel lines aren t 4 Figure b

More information

CSCI-4530/6530 Advanced Computer Graphics

CSCI-4530/6530 Advanced Computer Graphics Luo Jr. CSCI-453/653 Advanced Computer Graphics http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/s7/ Barb Cutler cutler@cs.rpi.edu MRC 33A Piar Animation Studios, 986 Topics for the Semester Meshes

More information

Image Warping and Morphing

Image Warping and Morphing Image Warping and Morphing OUTLINE: Image Warping Morphing Beier and Neely s Morphing Method Image Warping Point processing and filtering don t move pixels around. Image warping = rearranging the pixels

More information

Announcements. Image Matching! Source & Destination Images. Image Transformation 2/ 3/ 16. Compare a big image to a small image

Announcements. Image Matching! Source & Destination Images. Image Transformation 2/ 3/ 16. Compare a big image to a small image 2/3/ Announcements PA is due in week Image atching! Leave time to learn OpenCV Think of & implement something creative CS 50 Lecture #5 February 3 rd, 20 2/ 3/ 2 Compare a big image to a small image So

More information

Image Warping. Srikumar Ramalingam School of Computing University of Utah. [Slides borrowed from Ross Whitaker] 1

Image Warping. Srikumar Ramalingam School of Computing University of Utah. [Slides borrowed from Ross Whitaker] 1 Image Warping Srikumar Ramalingam School of Computing University of Utah [Slides borrowed from Ross Whitaker] 1 Geom Trans: Distortion From Optics Barrel Distortion Pincushion Distortion Straight lines

More information

Glossary alternate interior angles absolute value function Example alternate exterior angles Example angle of rotation Example

Glossary alternate interior angles absolute value function Example alternate exterior angles Example angle of rotation Example Glossar A absolute value function An absolute value function is a function that can be written in the form, where is an number or epression. alternate eterior angles alternate interior angles Alternate

More information

Image warping and stitching

Image warping and stitching Image warping and stitching May 5 th, 2015 Yong Jae Lee UC Davis PS2 due next Friday Announcements 2 Last time Interactive segmentation Feature-based alignment 2D transformations Affine fit RANSAC 3 Alignment

More information

lecture 16 Texture mapping Aliasing (and anti-aliasing)

lecture 16 Texture mapping Aliasing (and anti-aliasing) lecture 16 Texture mapping Aliasing (and anti-aliasing) Texture (images) Texture Mapping Q: Why do we need texture mapping? A: Because objects look fake and boring without it. Adding texture improves realism.

More information

2D/3D Geometric Transformations and Scene Graphs

2D/3D Geometric Transformations and Scene Graphs 2D/3D Geometric Transformations and Scene Graphs Week 4 Acknowledgement: The course slides are adapted from the slides prepared by Steve Marschner of Cornell University 1 A little quick math background

More information