Adaptive Regression in SAS/IML

Size: px
Start display at page:

Download "Adaptive Regression in SAS/IML"

Transcription

1 Adaptve Regresson n SAS/IML Davd Katz, Davd Katz Consultng, Ashland, Oregon ABSTRACT Adaptve Regresson algorthms allow the data to select the form of a model n addton to estmatng the parameters. Fredman s procedure explots computatonal shortcuts n Adaptve Regresson, obtanng the power of Neural Networks wth a fracton of the resources. Proc IML allows us to explore these tools n a flexble envronment, wth exctng results. Ths paper descrbes an ongong proect that mplements ths approach. We revew the algorthm, dscuss the programmng technques, and gve some examples of useful applcatons. ADAPTIVE METHODS AND SPLINES Standard Multple Lnear Regresson searches for a model of the form y = w x. Snce the x can be transformed usng any a pror transformaton, ths ncludes such varants as polynomal regresson, whch are often nformally referred to as nonlnear models; however the model s lnear n the transformed varables, so the standard least squares methods stll apply. A problem arses when there are many varables n the analyss. Searchng through many possble transformatons becomes mpractcal, as the number of parameters we need to estmate grows rapdly and outstrps the number of parameters whch our data can estmate. Ths has motvated the development of a class of models called Adaptve Dctonary Methods. These are of the form = y w g ( x ) () where the g are nonlnear functons estmated from the data vector x = ( x... x2 x3 xn). For example, each g could be defned as the movng average of x. Once the g have been defned, the w are then estmated by least squares. The g are often called features, reflectng the ntutve noton that they represent notable features of the data that can be recognzed and then combned as n (). An example of a useful feature s an nteracton term. Adaptve methods are useful when the man goal of the analyss s predcton rather than hypothess testng. They avod usng the strong assumptons needed for Logstc regresson or Multple Regresson, such as lnearty. We choose a model whch mnmzes the predcton error when the model s appled to a new data sample. Ths s done wth a holdout sample, or va crossvaldaton, or generalzed cross-valdaton (see below). The man ssues n Adaptve Dctonary Methods are ) Selectng the form of the g. We need a sutable set of functons,.e. functons that are flexble enough to ft the data, but can be estmated n a feasble manner. Generally these bass functons are parameterzed, and we need a procedure for estmatng the parameters. 2) The number of features g needs to be approprate to the data we are fttng. Ths s smlar to the famlar process of Stepwse varable selecton. We add or delete bass functons (terms) and create new canddate models, and evaluate these models for the best balance of ft and stablty. However, the theoretcal bass s dfferent, snce here we are not makng any assumpton about the form of the underlyng process that produced the data. In hs 990 paper, Fredman proposed an Adaptve Dctonary method he called Multvarate Adaptve Regresson Splnes. Splnes are pecewse polynomal functons wth some added constrants to assure contnuty. The most commonly used splnes are one-dmensonal pecewse cubc polynomals whch are constraned to be contnuous and have contnuous frst and second dervatves at the ponts where the peces meet. These ponts are called knots. Splnes are useful because they are flexble; lke polynomals of arbtrary degree, they can unformly approxmate any functon (over a compact set) wth smlar contnuty requrements. Unlke polynomals, splnes are of lmted degree, but add flexblty by usng more knots and thus more peces. The have the desrable characterstc that a sum of, for example, cubc splnes are also cubc splnes. Splnes can be generalzed to dmensons > n a number of ways. Fredman used tensor product splnes, whch take the product of unvarate splnes s n dstnct dmensons. That s, g = s where the s are unvarate splnes from dstnct dmensons. Combnng ths wth () we have y = w s ( x) (2) as the form of the models. Fredman s procedure constructs these models wth a procedure that s computatonally effcent. Frst observe that pecewse lnear splnes can easly be smoothed to cubc. Ths reduces the problem to fndng models of form (2) wth s now representng pecewse lnear splnes. In fact, for many applcatons, the lnear splne representaton s accurate enough, and s easer to compute. Next, observe that lnear splnes have a convenent bass. Consder the functons of the form ( x a) and ( x a), where x = x when x 0 0 otherwse and x = x when x 0 0 otherwse. Pecewse lnear functons can be represented by lnear combnatons of functons havng ths form. If these prmtve bass

2 functons are denoted b, then t follows that (2) can be rewrtten as = w y b ) ( x. (3) Each b can be characterzed by ts dmenson (the nput varable x used n ts defnton), by ts sgn orentaton, and by ts knot poston. To determne whch bass functons to use, we start by selectng the best model that uses ust a sngle par of b. One of the par wll be orented postvely, and one negatvely, and they wll share the same knot. We fnd ths par by steppng through each varable, and each data pont n our tranng sample provdes a potental knot poston proected onto that varable. Usng least squares, we ft each possble model n ths set, and select the one wth the best ft, usually based on fndng the lowest MSE. We then add addtonal bass functon terms to the model, one par at a tme. In addton to searchng the unvarate bass functons, we also test chld bass functons. These are bult by usng a bass functon already n the model as one factor, and one of the b (not already a factor n the parent ) as another factor, thus testng many tensor product bass functons b for possble ncluson n the model. For example, suppose we have selected an ntal par of prmtve bass functons for ncluson n the model: b = ( x b 2 = ( x a ) a ) 2 2 so that the ntal model s estmated as w b w2b2. The ntal step of the search has determned that ths s the best model of ths form of all choces of raw varables and knots n the search. In a whch ths example, we have chosen raw varable 2 and knot s a value of x2 that appears n the data. When we search for another bass functon, we evaluate models of the form (3) wth terms. The addtonal par of terms could be another prmtve lke the frst two, but we also test products such as ( x 2 a) ( x a2). Ths s called a chld of the frst bass functon. We are buldng up a tree of bass functons wth the ntercept term at the root of the tree. The greedy algorthm reduces the enormous search space of all possble tensor products to those whch have one factor already n the model, whch shows that s of nterest for predcton. In ths respect, the algorthm s smlar to the CART and CHAID procedures, but t can produce better results when the data contan addtve characterstcs. We are clearly performng a large number of multple regressons to search all these possbltes. Fredman makes ths feasble by developng formulae to avod recomputng the sum of squares and cross products from scratch each tme. As we move from one canddate knot to the next, we can update the SSCP matrx effcently by only computng the change n ths matrx. It s even possble to smplfy the matrx nverson step by usng results from the prevous knot. Ths type of forward search s often called a greedy algorthm, n that t takes the best choce at each step. Sometmes ths can lead us astray, as when an early choce leads us n a suboptmal drecton. One method often used wth greedy algorthms s to repeat the forward search beyond what seems necessary, and to follow t wth a backwards approach where the model s smplfed. We select the term whch adds the least to the model and delete t. We can then select the best model found n the backwards search by usng the Generalzed Cross-Valdaton estmate of model ft. Ths technque adusts the MSE to reflect the complexty of each model. Ths provdes a brake on overfttng and estmates the MSE whch would be expected va cross-valdaton. The model wth the lowest Generalzed Cross-Valdaton s selected as the best. Thus Generalzed Cross-Valdaton holds a poston analogous to the C p statstc n multple regresson. Both of these are gudes to the number of terms to nclude n the model. IMPLEMENTATION SAS/IML provdes an excellent tool for explorng these deas. Proc IML mplements a matrx language dstnct from the data step and macro languages of SAS, but well ntegrated wth the rest of the SAS system. Tools are ncluded for mportng and exportng SAS datasets nto the SAS/IML workspace. Wthn ths workspace, they are manpulated usng a command language closely related to matrx notaton. Snce SAS/IML can manpulate matrces easly, the basc algorthm translates readly to ths language. IML provdes operators for matrx multplcaton and also for elementwse multplcaton. There are bult-n functons lke Solve for lnear systems, and even Trsolve for trangular systems, whch turns out to be partcularly relevant for Fredman's procedure. Another useful feature s the ablty to specfy submatrces easly. Ths proved to be useful for the ncremental formulae. In IML, let and be arrays of ndces; then A[,] denotes the approprate submatrx of A. Because SAS/IML s nterpreted, t s easy to make changes and see the effect on the results. However, for the same reason, there are some challenges wth the speed of the calculaton. I addressed the speed ssue by usng a technque known as subsamplng. When there are very large datasets, t s probably not essental to test every sngle pont as a potental knot. Skppng ponts wll stll provde an excellent approxmaton n most cases. The number of ponts to skp becomes a parameter of the SAS/IML program. Another challenge was the lack of arrays of matrces n SAS/IML. I needed to track lsts of knots for each varable. The lsts were of varyng length, so t would have been wasteful of memory to allocate a sngle 2-dmensonal matrx. The soluton was to use the SAS/IML execute command. Ths enables you to execute an expresson that you construct on the fly. In ths case, I created a character array of matrx names called cutlstnames. These names would be used n an expresson lke: Ths assgned the name at ndex x the value n cutlstptr3 whch n ths case was an array of arbtrary length. Thus cutlstnames acted as a vrtual array of arrays of potentally dfferent lengths.

3 The man loop for the Adaptve Regresson n SAS/IML looks somethng lke ths:!"#! $ % & "'()) %"!* "(,!! -!". /*"*" #' #"" "!" # 0! '.#"".!...$!2 22 2#22,.$3 "" # 22 /"# 2./#22. #2# ".# / #5 #!# #" "" # # 6' " The frst term s the ntercept. The chldren of the ntercept term are of degree. Chldren of other bass functons are of the next hgher degree. The maxmum degree searched s a parameter of the program run, as s the maxmum number of bass functons. When ths maxmum s reached, the program proceeds to backwards selecton. Fredman suggests that the fnal model should have no more than half the bass functons n the maxmal model. If not, the procedure lkely needs to be rerun wth a hgher value for maxterms. The ntegraton of the SAS Macro faclty was another advantage of usng SAS/IML. The %prnt macro s a smple tool for debuggng. The verbose varable s a postonal parameter whch can be set to enable varous levels of prnt messages. It defaults to verbose=, whch means the message only prnts f the global verbose flag s or greater. Macros lke %searchthruknots and %addbestbass smply make the code more readable, whle avodng the overhead of an nterpreted functon call to a SAS/IML module. Here s the code for the %prnt macro. ' "#& Another handy macro for SAS/IML debuggng s gven below. It was helpful where large matrces mght be nvolved, so that the bult-n prnt functon would produce more nformaton than needed.,..,,., REPRESENTING THE TREE As descrbed above, the search for the best model nvolves buldng a tree of bass functons. Each bass functon s a tensor product of the prmtve splnes. We represtented each of these products as a par of row vectors. One vector showed the knot locatons, and the other showed the type of prmtve, postve or negatve. So for an analyss wth nput varables we would have bass functons such as: cut cut none none Ths s the bass functon ( x.3) ( x2 8). Another example shows how the negatvely orented prmtves are represented: cut cut none none Represents ( x 5) ( x2 7.5). By combnng these rows, we obtaned two matrces that represented the entre growng model. Ths representaton made t possble to perform the search usng SAS/IML commands. ENHANCING THE ALGORITHM There are some cases where a pror knowledge of the problem doman makes t possble to modfy the algorthm to ft the analyss. In one case, I suspected that one varable mght be nteractng wth any of the others, but t seemed very unlkely that these other varables would nteract wth each other. It was a smple matter to add a flter to the search for new bass functons. Ths nsured a model of the form I requred, whle savng a great deal of calculaton. In many cases we have knowledge of the sgn a gven parameter should have. Because our code controls the detals of the search, we can ncorporate sgn checks as requred.

4 These modfcatons smply restrct the search space, and requre no other modfcatons to the algorthm or the theory. EXPERIENCES USING THE ALGORITHM DIRECT MODELING ZIP MODEL The ablty of Adaptve Regresson to ft nonlnear functons and nteractons helped partcularly n a recent proect for a catalog company. They were lookng for zp codes whch responded better than expected to ther rented lsts. An obvous approach would be to look at the response rate by zp codes from ther exstng malngs and rank the zp codes by the actual results. Assumng a suffcent sample sze, ths would provde an excellent rankng. However, many of the zp codes had nsuffcent hstory, so the estmated response rate would not be stable. In these cases, we would naturally fall back on other thngs we know about these zp codes,.e. zp demographcs or proxmty to a retal store. The best results would be obtaned by usng a combnaton of these approaches, weghtng the actual observed response more for zp codes wth more hstory. An Adaptve Regresson model of degree 2 found the expected nteractons wth the count of hstorcal data, and provded a better rankng of zp codes on the valdaton sample whch had been held out for ths purpose. IMPROVING ON LOGISTIC REGRESSION In a plot proect for a large maler, we compared the results of Logstc Regresson wth those from Adaptve Regresson. The data ncluded a regresson score developed usng nternal purchase hstory and a fle of external behavor from a large data aggregator. Our goal was to develop a combned score. Prelmnary exploratons suggested that there was nteracton between the nternal score and the external data; namely, the external data told us more, and so rased the total score more, when the nternal score was low. A straghtforward logstc run showed model nadequacy the logts were far from lnear. An adaptve regresson wth maxdeg=2 performed much better. The adaptve regresson alogrthm automatcally found the nteractons we expected. The gans chart below compares the results. We held out a valdaton sample of data whch was not used n the analyss; the results for ths valdaton sample are reported n order to avod an evaluaton based on overftted models. The gans chart s a dsplay of the cumulatve responses versus the cumulatve catalogs maled, malng the best frst accordng to each model. It s closely related to the ROC curve. A hgher curve ndcates a model wth more dscrmnaton. Gans Chart - Valdaton Sample Cumulatve Orders Adaptve Regresson Logstc Cumulatve Crculaton

5 BIBLIOGRAPHY Cherkassky and Muler, Learnng from Data, Wley 998 Fredman, Jerome, Multvarate Adaptve Regresson Splnes, SLAC PUB-960, 990 CONTACT INFORMATION Your comments and questons are valued and encouraged. Contact the author at: Davd Katz Davd Katz Consultng 257 Sskyou Blvd. #06 Ashland, Oregon (5) 82-7 Emal: Web: SAS and all other SAS Insttute Inc. product or servce names are regstered trademarks or trademarks of SAS Insttute Inc. n the USA and other countres. ndcates USA regstraton. Other brand and product names are trademarks of ther respectve companes.

Lecture 5: Multilayer Perceptrons

Lecture 5: Multilayer Perceptrons Lecture 5: Multlayer Perceptrons Roger Grosse 1 Introducton So far, we ve only talked about lnear models: lnear regresson and lnear bnary classfers. We noted that there are functons that can t be represented

More information

Feature Reduction and Selection

Feature Reduction and Selection Feature Reducton and Selecton Dr. Shuang LIANG School of Software Engneerng TongJ Unversty Fall, 2012 Today s Topcs Introducton Problems of Dmensonalty Feature Reducton Statstc methods Prncpal Components

More information

S1 Note. Basis functions.

S1 Note. Basis functions. S1 Note. Bass functons. Contents Types of bass functons...1 The Fourer bass...2 B-splne bass...3 Power and type I error rates wth dfferent numbers of bass functons...4 Table S1. Smulaton results of type

More information

Support Vector Machines

Support Vector Machines /9/207 MIST.6060 Busness Intellgence and Data Mnng What are Support Vector Machnes? Support Vector Machnes Support Vector Machnes (SVMs) are supervsed learnng technques that analyze data and recognze patterns.

More information

NAG Fortran Library Chapter Introduction. G10 Smoothing in Statistics

NAG Fortran Library Chapter Introduction. G10 Smoothing in Statistics Introducton G10 NAG Fortran Lbrary Chapter Introducton G10 Smoothng n Statstcs Contents 1 Scope of the Chapter... 2 2 Background to the Problems... 2 2.1 Smoothng Methods... 2 2.2 Smoothng Splnes and Regresson

More information

Problem Set 3 Solutions

Problem Set 3 Solutions Introducton to Algorthms October 4, 2002 Massachusetts Insttute of Technology 6046J/18410J Professors Erk Demane and Shaf Goldwasser Handout 14 Problem Set 3 Solutons (Exercses were not to be turned n,

More information

GSLM Operations Research II Fall 13/14

GSLM Operations Research II Fall 13/14 GSLM 58 Operatons Research II Fall /4 6. Separable Programmng Consder a general NLP mn f(x) s.t. g j (x) b j j =. m. Defnton 6.. The NLP s a separable program f ts objectve functon and all constrants are

More information

Programming in Fortran 90 : 2017/2018

Programming in Fortran 90 : 2017/2018 Programmng n Fortran 90 : 2017/2018 Programmng n Fortran 90 : 2017/2018 Exercse 1 : Evaluaton of functon dependng on nput Wrte a program who evaluate the functon f (x,y) for any two user specfed values

More information

CMPS 10 Introduction to Computer Science Lecture Notes

CMPS 10 Introduction to Computer Science Lecture Notes CPS 0 Introducton to Computer Scence Lecture Notes Chapter : Algorthm Desgn How should we present algorthms? Natural languages lke Englsh, Spansh, or French whch are rch n nterpretaton and meanng are not

More information

Complex Numbers. Now we also saw that if a and b were both positive then ab = a b. For a second let s forget that restriction and do the following.

Complex Numbers. Now we also saw that if a and b were both positive then ab = a b. For a second let s forget that restriction and do the following. Complex Numbers The last topc n ths secton s not really related to most of what we ve done n ths chapter, although t s somewhat related to the radcals secton as we wll see. We also won t need the materal

More information

Hermite Splines in Lie Groups as Products of Geodesics

Hermite Splines in Lie Groups as Products of Geodesics Hermte Splnes n Le Groups as Products of Geodescs Ethan Eade Updated May 28, 2017 1 Introducton 1.1 Goal Ths document defnes a curve n the Le group G parametrzed by tme and by structural parameters n the

More information

Mathematics 256 a course in differential equations for engineering students

Mathematics 256 a course in differential equations for engineering students Mathematcs 56 a course n dfferental equatons for engneerng students Chapter 5. More effcent methods of numercal soluton Euler s method s qute neffcent. Because the error s essentally proportonal to the

More information

Classification / Regression Support Vector Machines

Classification / Regression Support Vector Machines Classfcaton / Regresson Support Vector Machnes Jeff Howbert Introducton to Machne Learnng Wnter 04 Topcs SVM classfers for lnearly separable classes SVM classfers for non-lnearly separable classes SVM

More information

TN348: Openlab Module - Colocalization

TN348: Openlab Module - Colocalization TN348: Openlab Module - Colocalzaton Topc The Colocalzaton module provdes the faclty to vsualze and quantfy colocalzaton between pars of mages. The Colocalzaton wndow contans a prevew of the two mages

More information

Smoothing Spline ANOVA for variable screening

Smoothing Spline ANOVA for variable screening Smoothng Splne ANOVA for varable screenng a useful tool for metamodels tranng and mult-objectve optmzaton L. Rcco, E. Rgon, A. Turco Outlne RSM Introducton Possble couplng Test case MOO MOO wth Game Theory

More information

CS 534: Computer Vision Model Fitting

CS 534: Computer Vision Model Fitting CS 534: Computer Vson Model Fttng Sprng 004 Ahmed Elgammal Dept of Computer Scence CS 534 Model Fttng - 1 Outlnes Model fttng s mportant Least-squares fttng Maxmum lkelhood estmaton MAP estmaton Robust

More information

A Newton-Type Method for Constrained Least-Squares Data-Fitting with Easy-to-Control Rational Curves

A Newton-Type Method for Constrained Least-Squares Data-Fitting with Easy-to-Control Rational Curves A Newton-Type Method for Constraned Least-Squares Data-Fttng wth Easy-to-Control Ratonal Curves G. Cascola a, L. Roman b, a Department of Mathematcs, Unversty of Bologna, P.zza d Porta San Donato 5, 4017

More information

User Authentication Based On Behavioral Mouse Dynamics Biometrics

User Authentication Based On Behavioral Mouse Dynamics Biometrics User Authentcaton Based On Behavoral Mouse Dynamcs Bometrcs Chee-Hyung Yoon Danel Donghyun Km Department of Computer Scence Department of Computer Scence Stanford Unversty Stanford Unversty Stanford, CA

More information

An Entropy-Based Approach to Integrated Information Needs Assessment

An Entropy-Based Approach to Integrated Information Needs Assessment Dstrbuton Statement A: Approved for publc release; dstrbuton s unlmted. An Entropy-Based Approach to ntegrated nformaton Needs Assessment June 8, 2004 Wllam J. Farrell Lockheed Martn Advanced Technology

More information

Assignment # 2. Farrukh Jabeen Algorithms 510 Assignment #2 Due Date: June 15, 2009.

Assignment # 2. Farrukh Jabeen Algorithms 510 Assignment #2 Due Date: June 15, 2009. Farrukh Jabeen Algorthms 51 Assgnment #2 Due Date: June 15, 29. Assgnment # 2 Chapter 3 Dscrete Fourer Transforms Implement the FFT for the DFT. Descrbed n sectons 3.1 and 3.2. Delverables: 1. Concse descrpton

More information

The Codesign Challenge

The Codesign Challenge ECE 4530 Codesgn Challenge Fall 2007 Hardware/Software Codesgn The Codesgn Challenge Objectves In the codesgn challenge, your task s to accelerate a gven software reference mplementaton as fast as possble.

More information

Performance Evaluation of Information Retrieval Systems

Performance Evaluation of Information Retrieval Systems Why System Evaluaton? Performance Evaluaton of Informaton Retreval Systems Many sldes n ths secton are adapted from Prof. Joydeep Ghosh (UT ECE) who n turn adapted them from Prof. Dk Lee (Unv. of Scence

More information

Lecture 4: Principal components

Lecture 4: Principal components /3/6 Lecture 4: Prncpal components 3..6 Multvarate lnear regresson MLR s optmal for the estmaton data...but poor for handlng collnear data Covarance matrx s not nvertble (large condton number) Robustness

More information

The Greedy Method. Outline and Reading. Change Money Problem. Greedy Algorithms. Applications of the Greedy Strategy. The Greedy Method Technique

The Greedy Method. Outline and Reading. Change Money Problem. Greedy Algorithms. Applications of the Greedy Strategy. The Greedy Method Technique //00 :0 AM Outlne and Readng The Greedy Method The Greedy Method Technque (secton.) Fractonal Knapsack Problem (secton..) Task Schedulng (secton..) Mnmum Spannng Trees (secton.) Change Money Problem Greedy

More information

Solutions to Programming Assignment Five Interpolation and Numerical Differentiation

Solutions to Programming Assignment Five Interpolation and Numerical Differentiation College of Engneerng and Coputer Scence Mechancal Engneerng Departent Mechancal Engneerng 309 Nuercal Analyss of Engneerng Systes Sprng 04 Nuber: 537 Instructor: Larry Caretto Solutons to Prograng Assgnent

More information

Subspace clustering. Clustering. Fundamental to all clustering techniques is the choice of distance measure between data points;

Subspace clustering. Clustering. Fundamental to all clustering techniques is the choice of distance measure between data points; Subspace clusterng Clusterng Fundamental to all clusterng technques s the choce of dstance measure between data ponts; D q ( ) ( ) 2 x x = x x, j k = 1 k jk Squared Eucldean dstance Assumpton: All features

More information

Intro. Iterators. 1. Access

Intro. Iterators. 1. Access Intro Ths mornng I d lke to talk a lttle bt about s and s. We wll start out wth smlartes and dfferences, then we wll see how to draw them n envronment dagrams, and we wll fnsh wth some examples. Happy

More information

SENSITIVITY ANALYSIS IN LINEAR PROGRAMMING USING A CALCULATOR

SENSITIVITY ANALYSIS IN LINEAR PROGRAMMING USING A CALCULATOR SENSITIVITY ANALYSIS IN LINEAR PROGRAMMING USING A CALCULATOR Judth Aronow Rchard Jarvnen Independent Consultant Dept of Math/Stat 559 Frost Wnona State Unversty Beaumont, TX 7776 Wnona, MN 55987 aronowju@hal.lamar.edu

More information

y and the total sum of

y and the total sum of Lnear regresson Testng for non-lnearty In analytcal chemstry, lnear regresson s commonly used n the constructon of calbraton functons requred for analytcal technques such as gas chromatography, atomc absorpton

More information

Chapter 6 Programmng the fnte element method Inow turn to the man subject of ths book: The mplementaton of the fnte element algorthm n computer programs. In order to make my dscusson as straghtforward

More information

Module Management Tool in Software Development Organizations

Module Management Tool in Software Development Organizations Journal of Computer Scence (5): 8-, 7 ISSN 59-66 7 Scence Publcatons Management Tool n Software Development Organzatons Ahmad A. Al-Rababah and Mohammad A. Al-Rababah Faculty of IT, Al-Ahlyyah Amman Unversty,

More information

SLAM Summer School 2006 Practical 2: SLAM using Monocular Vision

SLAM Summer School 2006 Practical 2: SLAM using Monocular Vision SLAM Summer School 2006 Practcal 2: SLAM usng Monocular Vson Javer Cvera, Unversty of Zaragoza Andrew J. Davson, Imperal College London J.M.M Montel, Unversty of Zaragoza. josemar@unzar.es, jcvera@unzar.es,

More information

Brave New World Pseudocode Reference

Brave New World Pseudocode Reference Brave New World Pseudocode Reference Pseudocode s a way to descrbe how to accomplsh tasks usng basc steps lke those a computer mght perform. In ths week s lab, you'll see how a form of pseudocode can be

More information

A Unified Framework for Semantics and Feature Based Relevance Feedback in Image Retrieval Systems

A Unified Framework for Semantics and Feature Based Relevance Feedback in Image Retrieval Systems A Unfed Framework for Semantcs and Feature Based Relevance Feedback n Image Retreval Systems Ye Lu *, Chunhu Hu 2, Xngquan Zhu 3*, HongJang Zhang 2, Qang Yang * School of Computng Scence Smon Fraser Unversty

More information

Classifier Selection Based on Data Complexity Measures *

Classifier Selection Based on Data Complexity Measures * Classfer Selecton Based on Data Complexty Measures * Edth Hernández-Reyes, J.A. Carrasco-Ochoa, and J.Fco. Martínez-Trndad Natonal Insttute for Astrophyscs, Optcs and Electroncs, Lus Enrque Erro No.1 Sta.

More information

Exercises (Part 4) Introduction to R UCLA/CCPR. John Fox, February 2005

Exercises (Part 4) Introduction to R UCLA/CCPR. John Fox, February 2005 Exercses (Part 4) Introducton to R UCLA/CCPR John Fox, February 2005 1. A challengng problem: Iterated weghted least squares (IWLS) s a standard method of fttng generalzed lnear models to data. As descrbed

More information

Overview. Basic Setup [9] Motivation and Tasks. Modularization 2008/2/20 IMPROVED COVERAGE CONTROL USING ONLY LOCAL INFORMATION

Overview. Basic Setup [9] Motivation and Tasks. Modularization 2008/2/20 IMPROVED COVERAGE CONTROL USING ONLY LOCAL INFORMATION Overvew 2 IMPROVED COVERAGE CONTROL USING ONLY LOCAL INFORMATION Introducton Mult- Smulator MASIM Theoretcal Work and Smulaton Results Concluson Jay Wagenpfel, Adran Trachte Motvaton and Tasks Basc Setup

More information

CE 221 Data Structures and Algorithms

CE 221 Data Structures and Algorithms CE 1 ata Structures and Algorthms Chapter 4: Trees BST Text: Read Wess, 4.3 Izmr Unversty of Economcs 1 The Search Tree AT Bnary Search Trees An mportant applcaton of bnary trees s n searchng. Let us assume

More information

Active Contours/Snakes

Active Contours/Snakes Actve Contours/Snakes Erkut Erdem Acknowledgement: The sldes are adapted from the sldes prepared by K. Grauman of Unversty of Texas at Austn Fttng: Edges vs. boundares Edges useful sgnal to ndcate occludng

More information

A Binarization Algorithm specialized on Document Images and Photos

A Binarization Algorithm specialized on Document Images and Photos A Bnarzaton Algorthm specalzed on Document mages and Photos Ergna Kavalleratou Dept. of nformaton and Communcaton Systems Engneerng Unversty of the Aegean kavalleratou@aegean.gr Abstract n ths paper, a

More information

2x x l. Module 3: Element Properties Lecture 4: Lagrange and Serendipity Elements

2x x l. Module 3: Element Properties Lecture 4: Lagrange and Serendipity Elements Module 3: Element Propertes Lecture : Lagrange and Serendpty Elements 5 In last lecture note, the nterpolaton functons are derved on the bass of assumed polynomal from Pascal s trangle for the fled varable.

More information

LECTURE : MANIFOLD LEARNING

LECTURE : MANIFOLD LEARNING LECTURE : MANIFOLD LEARNING Rta Osadchy Some sldes are due to L.Saul, V. C. Raykar, N. Verma Topcs PCA MDS IsoMap LLE EgenMaps Done! Dmensonalty Reducton Data representaton Inputs are real-valued vectors

More information

An Optimal Algorithm for Prufer Codes *

An Optimal Algorithm for Prufer Codes * J. Software Engneerng & Applcatons, 2009, 2: 111-115 do:10.4236/jsea.2009.22016 Publshed Onlne July 2009 (www.scrp.org/journal/jsea) An Optmal Algorthm for Prufer Codes * Xaodong Wang 1, 2, Le Wang 3,

More information

Parallelism for Nested Loops with Non-uniform and Flow Dependences

Parallelism for Nested Loops with Non-uniform and Flow Dependences Parallelsm for Nested Loops wth Non-unform and Flow Dependences Sam-Jn Jeong Dept. of Informaton & Communcaton Engneerng, Cheonan Unversty, 5, Anseo-dong, Cheonan, Chungnam, 330-80, Korea. seong@cheonan.ac.kr

More information

Review of approximation techniques

Review of approximation techniques CHAPTER 2 Revew of appromaton technques 2. Introducton Optmzaton problems n engneerng desgn are characterzed by the followng assocated features: the objectve functon and constrants are mplct functons evaluated

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 15

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 15 CS434a/541a: Pattern Recognton Prof. Olga Veksler Lecture 15 Today New Topc: Unsupervsed Learnng Supervsed vs. unsupervsed learnng Unsupervsed learnng Net Tme: parametrc unsupervsed learnng Today: nonparametrc

More information

Course Introduction. Algorithm 8/31/2017. COSC 320 Advanced Data Structures and Algorithms. COSC 320 Advanced Data Structures and Algorithms

Course Introduction. Algorithm 8/31/2017. COSC 320 Advanced Data Structures and Algorithms. COSC 320 Advanced Data Structures and Algorithms Course Introducton Course Topcs Exams, abs, Proects A quc loo at a few algorthms 1 Advanced Data Structures and Algorthms Descrpton: We are gong to dscuss algorthm complexty analyss, algorthm desgn technques

More information

CHARUTAR VIDYA MANDAL S SEMCOM Vallabh Vidyanagar

CHARUTAR VIDYA MANDAL S SEMCOM Vallabh Vidyanagar CHARUTAR VIDYA MANDAL S SEMCOM Vallabh Vdyanagar Faculty Name: Am D. Trved Class: SYBCA Subject: US03CBCA03 (Advanced Data & Fle Structure) *UNIT 1 (ARRAYS AND TREES) **INTRODUCTION TO ARRAYS If we want

More information

Outline. Discriminative classifiers for image recognition. Where in the World? A nearest neighbor recognition example 4/14/2011. CS 376 Lecture 22 1

Outline. Discriminative classifiers for image recognition. Where in the World? A nearest neighbor recognition example 4/14/2011. CS 376 Lecture 22 1 4/14/011 Outlne Dscrmnatve classfers for mage recognton Wednesday, Aprl 13 Krsten Grauman UT-Austn Last tme: wndow-based generc obect detecton basc ppelne face detecton wth boostng as case study Today:

More information

Edge Detection in Noisy Images Using the Support Vector Machines

Edge Detection in Noisy Images Using the Support Vector Machines Edge Detecton n Nosy Images Usng the Support Vector Machnes Hlaro Gómez-Moreno, Saturnno Maldonado-Bascón, Francsco López-Ferreras Sgnal Theory and Communcatons Department. Unversty of Alcalá Crta. Madrd-Barcelona

More information

Support Vector Machines

Support Vector Machines Support Vector Machnes Decson surface s a hyperplane (lne n 2D) n feature space (smlar to the Perceptron) Arguably, the most mportant recent dscovery n machne learnng In a nutshell: map the data to a predetermned

More information

Compiler Design. Spring Register Allocation. Sample Exercises and Solutions. Prof. Pedro C. Diniz

Compiler Design. Spring Register Allocation. Sample Exercises and Solutions. Prof. Pedro C. Diniz Compler Desgn Sprng 2014 Regster Allocaton Sample Exercses and Solutons Prof. Pedro C. Dnz USC / Informaton Scences Insttute 4676 Admralty Way, Sute 1001 Marna del Rey, Calforna 90292 pedro@s.edu Regster

More information

Range images. Range image registration. Examples of sampling patterns. Range images and range surfaces

Range images. Range image registration. Examples of sampling patterns. Range images and range surfaces Range mages For many structured lght scanners, the range data forms a hghly regular pattern known as a range mage. he samplng pattern s determned by the specfc scanner. Range mage regstraton 1 Examples

More information

CSCI 104 Sorting Algorithms. Mark Redekopp David Kempe

CSCI 104 Sorting Algorithms. Mark Redekopp David Kempe CSCI 104 Sortng Algorthms Mark Redekopp Davd Kempe Algorthm Effcency SORTING 2 Sortng If we have an unordered lst, sequental search becomes our only choce If we wll perform a lot of searches t may be benefcal

More information

An Application of the Dulmage-Mendelsohn Decomposition to Sparse Null Space Bases of Full Row Rank Matrices

An Application of the Dulmage-Mendelsohn Decomposition to Sparse Null Space Bases of Full Row Rank Matrices Internatonal Mathematcal Forum, Vol 7, 2012, no 52, 2549-2554 An Applcaton of the Dulmage-Mendelsohn Decomposton to Sparse Null Space Bases of Full Row Rank Matrces Mostafa Khorramzadeh Department of Mathematcal

More information

6.854 Advanced Algorithms Petar Maymounkov Problem Set 11 (November 23, 2005) With: Benjamin Rossman, Oren Weimann, and Pouya Kheradpour

6.854 Advanced Algorithms Petar Maymounkov Problem Set 11 (November 23, 2005) With: Benjamin Rossman, Oren Weimann, and Pouya Kheradpour 6.854 Advanced Algorthms Petar Maymounkov Problem Set 11 (November 23, 2005) Wth: Benjamn Rossman, Oren Wemann, and Pouya Kheradpour Problem 1. We reduce vertex cover to MAX-SAT wth weghts, such that the

More information

Radial Basis Functions

Radial Basis Functions Radal Bass Functons Mesh Reconstructon Input: pont cloud Output: water-tght manfold mesh Explct Connectvty estmaton Implct Sgned dstance functon estmaton Image from: Reconstructon and Representaton of

More information

Analysis of Continuous Beams in General

Analysis of Continuous Beams in General Analyss of Contnuous Beams n General Contnuous beams consdered here are prsmatc, rgdly connected to each beam segment and supported at varous ponts along the beam. onts are selected at ponts of support,

More information

Notes on Organizing Java Code: Packages, Visibility, and Scope

Notes on Organizing Java Code: Packages, Visibility, and Scope Notes on Organzng Java Code: Packages, Vsblty, and Scope CS 112 Wayne Snyder Java programmng n large measure s a process of defnng enttes (.e., packages, classes, methods, or felds) by name and then usng

More information

APPLICATION OF MULTIVARIATE LOSS FUNCTION FOR ASSESSMENT OF THE QUALITY OF TECHNOLOGICAL PROCESS MANAGEMENT

APPLICATION OF MULTIVARIATE LOSS FUNCTION FOR ASSESSMENT OF THE QUALITY OF TECHNOLOGICAL PROCESS MANAGEMENT 3. - 5. 5., Brno, Czech Republc, EU APPLICATION OF MULTIVARIATE LOSS FUNCTION FOR ASSESSMENT OF THE QUALITY OF TECHNOLOGICAL PROCESS MANAGEMENT Abstract Josef TOŠENOVSKÝ ) Lenka MONSPORTOVÁ ) Flp TOŠENOVSKÝ

More information

Computer Animation and Visualisation. Lecture 4. Rigging / Skinning

Computer Animation and Visualisation. Lecture 4. Rigging / Skinning Computer Anmaton and Vsualsaton Lecture 4. Rggng / Sknnng Taku Komura Overvew Sknnng / Rggng Background knowledge Lnear Blendng How to decde weghts? Example-based Method Anatomcal models Sknnng Assume

More information

Optimizing Document Scoring for Query Retrieval

Optimizing Document Scoring for Query Retrieval Optmzng Document Scorng for Query Retreval Brent Ellwen baellwe@cs.stanford.edu Abstract The goal of ths project was to automate the process of tunng a document query engne. Specfcally, I used machne learnng

More information

Virtual Memory. Background. No. 10. Virtual Memory: concept. Logical Memory Space (review) Demand Paging(1) Virtual Memory

Virtual Memory. Background. No. 10. Virtual Memory: concept. Logical Memory Space (review) Demand Paging(1) Virtual Memory Background EECS. Operatng System Fundamentals No. Vrtual Memory Prof. Hu Jang Department of Electrcal Engneerng and Computer Scence, York Unversty Memory-management methods normally requres the entre process

More information

A Coding Practice for Preparing Adaptive Multistage Testing Yung-chen Hsu, GED Testing Service, LLC, Washington, DC

A Coding Practice for Preparing Adaptive Multistage Testing Yung-chen Hsu, GED Testing Service, LLC, Washington, DC SESUG 011 Paper PO-3 A Codng Practce for Preparng Adaptve Multstage Testng Yung-chen Hsu, GED Testng Servce, LLC, Washngton, DC ABSTRACT The purpose of ths paper s to present a smulaton study of a codng

More information

Computer models of motion: Iterative calculations

Computer models of motion: Iterative calculations Computer models o moton: Iteratve calculatons OBJECTIVES In ths actvty you wll learn how to: Create 3D box objects Update the poston o an object teratvely (repeatedly) to anmate ts moton Update the momentum

More information

Sequential search. Building Java Programs Chapter 13. Sequential search. Sequential search

Sequential search. Building Java Programs Chapter 13. Sequential search. Sequential search Sequental search Buldng Java Programs Chapter 13 Searchng and Sortng sequental search: Locates a target value n an array/lst by examnng each element from start to fnsh. How many elements wll t need to

More information

FEATURE EXTRACTION. Dr. K.Vijayarekha. Associate Dean School of Electrical and Electronics Engineering SASTRA University, Thanjavur

FEATURE EXTRACTION. Dr. K.Vijayarekha. Associate Dean School of Electrical and Electronics Engineering SASTRA University, Thanjavur FEATURE EXTRACTION Dr. K.Vjayarekha Assocate Dean School of Electrcal and Electroncs Engneerng SASTRA Unversty, Thanjavur613 41 Jont Intatve of IITs and IISc Funded by MHRD Page 1 of 8 Table of Contents

More information

Synthesizer 1.0. User s Guide. A Varying Coefficient Meta. nalytic Tool. Z. Krizan Employing Microsoft Excel 2007

Synthesizer 1.0. User s Guide. A Varying Coefficient Meta. nalytic Tool. Z. Krizan Employing Microsoft Excel 2007 Syntheszer 1.0 A Varyng Coeffcent Meta Meta-Analytc nalytc Tool Employng Mcrosoft Excel 007.38.17.5 User s Gude Z. Krzan 009 Table of Contents 1. Introducton and Acknowledgments 3. Operatonal Functons

More information

Parallel matrix-vector multiplication

Parallel matrix-vector multiplication Appendx A Parallel matrx-vector multplcaton The reduced transton matrx of the three-dmensonal cage model for gel electrophoress, descrbed n secton 3.2, becomes excessvely large for polymer lengths more

More information

Outline. Self-Organizing Maps (SOM) US Hebbian Learning, Cntd. The learning rule is Hebbian like:

Outline. Self-Organizing Maps (SOM) US Hebbian Learning, Cntd. The learning rule is Hebbian like: Self-Organzng Maps (SOM) Turgay İBRİKÇİ, PhD. Outlne Introducton Structures of SOM SOM Archtecture Neghborhoods SOM Algorthm Examples Summary 1 2 Unsupervsed Hebban Learnng US Hebban Learnng, Cntd 3 A

More information

NUMERICAL SOLVING OPTIMAL CONTROL PROBLEMS BY THE METHOD OF VARIATIONS

NUMERICAL SOLVING OPTIMAL CONTROL PROBLEMS BY THE METHOD OF VARIATIONS ARPN Journal of Engneerng and Appled Scences 006-017 Asan Research Publshng Network (ARPN). All rghts reserved. NUMERICAL SOLVING OPTIMAL CONTROL PROBLEMS BY THE METHOD OF VARIATIONS Igor Grgoryev, Svetlana

More information

R s s f. m y s. SPH3UW Unit 7.3 Spherical Concave Mirrors Page 1 of 12. Notes

R s s f. m y s. SPH3UW Unit 7.3 Spherical Concave Mirrors Page 1 of 12. Notes SPH3UW Unt 7.3 Sphercal Concave Mrrors Page 1 of 1 Notes Physcs Tool box Concave Mrror If the reflectng surface takes place on the nner surface of the sphercal shape so that the centre of the mrror bulges

More information

12/2/2009. Announcements. Parametric / Non-parametric. Case-Based Reasoning. Nearest-Neighbor on Images. Nearest-Neighbor Classification

12/2/2009. Announcements. Parametric / Non-parametric. Case-Based Reasoning. Nearest-Neighbor on Images. Nearest-Neighbor Classification Introducton to Artfcal Intellgence V22.0472-001 Fall 2009 Lecture 24: Nearest-Neghbors & Support Vector Machnes Rob Fergus Dept of Computer Scence, Courant Insttute, NYU Sldes from Danel Yeung, John DeNero

More information

A Geometric Approach for Multi-Degree Spline

A Geometric Approach for Multi-Degree Spline L X, Huang ZJ, Lu Z. A geometrc approach for mult-degree splne. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 27(4): 84 850 July 202. DOI 0.007/s390-02-268-2 A Geometrc Approach for Mult-Degree Splne Xn L

More information

Accounting for the Use of Different Length Scale Factors in x, y and z Directions

Accounting for the Use of Different Length Scale Factors in x, y and z Directions 1 Accountng for the Use of Dfferent Length Scale Factors n x, y and z Drectons Taha Soch (taha.soch@kcl.ac.uk) Imagng Scences & Bomedcal Engneerng, Kng s College London, The Rayne Insttute, St Thomas Hosptal,

More information

Steps for Computing the Dissimilarity, Entropy, Herfindahl-Hirschman and. Accessibility (Gravity with Competition) Indices

Steps for Computing the Dissimilarity, Entropy, Herfindahl-Hirschman and. Accessibility (Gravity with Competition) Indices Steps for Computng the Dssmlarty, Entropy, Herfndahl-Hrschman and Accessblty (Gravty wth Competton) Indces I. Dssmlarty Index Measurement: The followng formula can be used to measure the evenness between

More information

5 The Primal-Dual Method

5 The Primal-Dual Method 5 The Prmal-Dual Method Orgnally desgned as a method for solvng lnear programs, where t reduces weghted optmzaton problems to smpler combnatoral ones, the prmal-dual method (PDM) has receved much attenton

More information

Query Clustering Using a Hybrid Query Similarity Measure

Query Clustering Using a Hybrid Query Similarity Measure Query clusterng usng a hybrd query smlarty measure Fu. L., Goh, D.H., & Foo, S. (2004). WSEAS Transacton on Computers, 3(3), 700-705. Query Clusterng Usng a Hybrd Query Smlarty Measure Ln Fu, Don Hoe-Lan

More information

ELEC 377 Operating Systems. Week 6 Class 3

ELEC 377 Operating Systems. Week 6 Class 3 ELEC 377 Operatng Systems Week 6 Class 3 Last Class Memory Management Memory Pagng Pagng Structure ELEC 377 Operatng Systems Today Pagng Szes Vrtual Memory Concept Demand Pagng ELEC 377 Operatng Systems

More information

Type-2 Fuzzy Non-uniform Rational B-spline Model with Type-2 Fuzzy Data

Type-2 Fuzzy Non-uniform Rational B-spline Model with Type-2 Fuzzy Data Malaysan Journal of Mathematcal Scences 11(S) Aprl : 35 46 (2017) Specal Issue: The 2nd Internatonal Conference and Workshop on Mathematcal Analyss (ICWOMA 2016) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES

More information

Sum of Linear and Fractional Multiobjective Programming Problem under Fuzzy Rules Constraints

Sum of Linear and Fractional Multiobjective Programming Problem under Fuzzy Rules Constraints Australan Journal of Basc and Appled Scences, 2(4): 1204-1208, 2008 ISSN 1991-8178 Sum of Lnear and Fractonal Multobjectve Programmng Problem under Fuzzy Rules Constrants 1 2 Sanjay Jan and Kalash Lachhwan

More information

Helsinki University Of Technology, Systems Analysis Laboratory Mat Independent research projects in applied mathematics (3 cr)

Helsinki University Of Technology, Systems Analysis Laboratory Mat Independent research projects in applied mathematics (3 cr) Helsnk Unversty Of Technology, Systems Analyss Laboratory Mat-2.08 Independent research projects n appled mathematcs (3 cr) "! #$&% Antt Laukkanen 506 R ajlaukka@cc.hut.f 2 Introducton...3 2 Multattrbute

More information

Machine Learning. Topic 6: Clustering

Machine Learning. Topic 6: Clustering Machne Learnng Topc 6: lusterng lusterng Groupng data nto (hopefully useful) sets. Thngs on the left Thngs on the rght Applcatons of lusterng Hypothess Generaton lusters mght suggest natural groups. Hypothess

More information

Parameter estimation for incomplete bivariate longitudinal data in clinical trials

Parameter estimation for incomplete bivariate longitudinal data in clinical trials Parameter estmaton for ncomplete bvarate longtudnal data n clncal trals Naum M. Khutoryansky Novo Nordsk Pharmaceutcals, Inc., Prnceton, NJ ABSTRACT Bvarate models are useful when analyzng longtudnal data

More information

Topology Design using LS-TaSC Version 2 and LS-DYNA

Topology Design using LS-TaSC Version 2 and LS-DYNA Topology Desgn usng LS-TaSC Verson 2 and LS-DYNA Wllem Roux Lvermore Software Technology Corporaton, Lvermore, CA, USA Abstract Ths paper gves an overvew of LS-TaSC verson 2, a topology optmzaton tool

More information

For instance, ; the five basic number-sets are increasingly more n A B & B A A = B (1)

For instance, ; the five basic number-sets are increasingly more n A B & B A A = B (1) Secton 1.2 Subsets and the Boolean operatons on sets If every element of the set A s an element of the set B, we say that A s a subset of B, or that A s contaned n B, or that B contans A, and we wrte A

More information

Empirical Distributions of Parameter Estimates. in Binary Logistic Regression Using Bootstrap

Empirical Distributions of Parameter Estimates. in Binary Logistic Regression Using Bootstrap Int. Journal of Math. Analyss, Vol. 8, 4, no. 5, 7-7 HIKARI Ltd, www.m-hkar.com http://dx.do.org/.988/jma.4.494 Emprcal Dstrbutons of Parameter Estmates n Bnary Logstc Regresson Usng Bootstrap Anwar Ftranto*

More information

Lobachevsky State University of Nizhni Novgorod. Polyhedron. Quick Start Guide

Lobachevsky State University of Nizhni Novgorod. Polyhedron. Quick Start Guide Lobachevsky State Unversty of Nzhn Novgorod Polyhedron Quck Start Gude Nzhn Novgorod 2016 Contents Specfcaton of Polyhedron software... 3 Theoretcal background... 4 1. Interface of Polyhedron... 6 1.1.

More information

Categories and Subject Descriptors B.7.2 [Integrated Circuits]: Design Aids Verification. General Terms Algorithms

Categories and Subject Descriptors B.7.2 [Integrated Circuits]: Design Aids Verification. General Terms Algorithms 3. Fndng Determnstc Soluton from Underdetermned Equaton: Large-Scale Performance Modelng by Least Angle Regresson Xn L ECE Department, Carnege Mellon Unversty Forbs Avenue, Pttsburgh, PA 3 xnl@ece.cmu.edu

More information

Reading. 14. Subdivision curves. Recommended:

Reading. 14. Subdivision curves. Recommended: eadng ecommended: Stollntz, Deose, and Salesn. Wavelets for Computer Graphcs: heory and Applcatons, 996, secton 6.-6., A.5. 4. Subdvson curves Note: there s an error n Stollntz, et al., secton A.5. Equaton

More information

Machine Learning. Support Vector Machines. (contains material adapted from talks by Constantin F. Aliferis & Ioannis Tsamardinos, and Martin Law)

Machine Learning. Support Vector Machines. (contains material adapted from talks by Constantin F. Aliferis & Ioannis Tsamardinos, and Martin Law) Machne Learnng Support Vector Machnes (contans materal adapted from talks by Constantn F. Alfers & Ioanns Tsamardnos, and Martn Law) Bryan Pardo, Machne Learnng: EECS 349 Fall 2014 Support Vector Machnes

More information

A Bilinear Model for Sparse Coding

A Bilinear Model for Sparse Coding A Blnear Model for Sparse Codng Davd B. Grmes and Rajesh P. N. Rao Department of Computer Scence and Engneerng Unversty of Washngton Seattle, WA 98195-2350, U.S.A. grmes,rao @cs.washngton.edu Abstract

More information

Analysis of 3D Cracks in an Arbitrary Geometry with Weld Residual Stress

Analysis of 3D Cracks in an Arbitrary Geometry with Weld Residual Stress Analyss of 3D Cracks n an Arbtrary Geometry wth Weld Resdual Stress Greg Thorwald, Ph.D. Ted L. Anderson, Ph.D. Structural Relablty Technology, Boulder, CO Abstract Materals contanng flaws lke nclusons

More information

EECS 730 Introduction to Bioinformatics Sequence Alignment. Luke Huan Electrical Engineering and Computer Science

EECS 730 Introduction to Bioinformatics Sequence Alignment. Luke Huan Electrical Engineering and Computer Science EECS 730 Introducton to Bonformatcs Sequence Algnment Luke Huan Electrcal Engneerng and Computer Scence http://people.eecs.ku.edu/~huan/ HMM Π s a set of states Transton Probabltes a kl Pr( l 1 k Probablty

More information

Improving Web Image Search using Meta Re-rankers

Improving Web Image Search using Meta Re-rankers VOLUME-1, ISSUE-V (Aug-Sep 2013) IS NOW AVAILABLE AT: www.dcst.com Improvng Web Image Search usng Meta Re-rankers B.Kavtha 1, N. Suata 2 1 Department of Computer Scence and Engneerng, Chtanya Bharath Insttute

More information

Array transposition in CUDA shared memory

Array transposition in CUDA shared memory Array transposton n CUDA shared memory Mke Gles February 19, 2014 Abstract Ths short note s nspred by some code wrtten by Jeremy Appleyard for the transposton of data through shared memory. I had some

More information

LOOP ANALYSIS. The second systematic technique to determine all currents and voltages in a circuit

LOOP ANALYSIS. The second systematic technique to determine all currents and voltages in a circuit LOOP ANALYSS The second systematic technique to determine all currents and voltages in a circuit T S DUAL TO NODE ANALYSS - T FRST DETERMNES ALL CURRENTS N A CRCUT AND THEN T USES OHM S LAW TO COMPUTE

More information

Hierarchical clustering for gene expression data analysis

Hierarchical clustering for gene expression data analysis Herarchcal clusterng for gene expresson data analyss Gorgo Valentn e-mal: valentn@ds.unm.t Clusterng of Mcroarray Data. Clusterng of gene expresson profles (rows) => dscovery of co-regulated and functonally

More information

Why visualisation? IRDS: Visualization. Univariate data. Visualisations that we won t be interested in. Graphics provide little additional information

Why visualisation? IRDS: Visualization. Univariate data. Visualisations that we won t be interested in. Graphics provide little additional information Why vsualsaton? IRDS: Vsualzaton Charles Sutton Unversty of Ednburgh Goal : Have a data set that I want to understand. Ths s called exploratory data analyss. Today s lecture. Goal II: Want to dsplay data

More information

Inverse Kinematics (part 2) CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Spring 2016

Inverse Kinematics (part 2) CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Spring 2016 Inverse Knematcs (part 2) CSE169: Computer Anmaton Instructor: Steve Rotenberg UCSD, Sprng 2016 Forward Knematcs We wll use the vector: Φ... 1 2 M to represent the array of M jont DOF values We wll also

More information